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ABSTRACT

Whenalack of datainhibits decisionmaking,largescale
what-if queriescanbe conductedvertheuncertainparam-
eter ranges. Suchwhat-if queriescan generatean over-
whelming amountof data. We describehere a general
methodfor understandinghat data. Large scalewhat-if
gueriescanguideMonte Carlosimulationsof amodel. Ma-
chinelearningcanthenbe usedto summarizethe output.
The summarizatioris an ensembleof decisiontrees. The
TARZAN systemcanpoll the ensembldooking for major
ity conclusionsregardingwhat factorschangethe classifi-
cationsof the data. TARZAN can succinctly presentthe
resultsfrom very largewhat-if queries For example,in one
of the studiespresentedhere,we canview on % apagethe
significantfeaturesrom 10° what-ifs.

KEYWORDS: Machine learning, ensemblelearning,
Monte-Carlo simulations,risk assessmentCOCOMO-I,
decisionsupportsystems.

1. Intr oduction

Incomplete information can cripple decision making.
For example,suppose software managemwantsto reduce
the oddsof time overrunson her project. To performthis
task, our managercould use a software effort estimation
modellike COCOMO-II (seeFigurel). Our managemay
be uncertainaboutall the detailsof the currentstateof the
project, or is debatingmultiple changego the project. If
COCOMO-Il is run for eachcombinationof currentand
possiblenew values thenour managervould be buriedun-
deramountainof reports.For example,Figure2 shonsthe
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The COCOMO project aims at developing an open-source,
public-domainsoftware effort estimationmodel. The project
has collected information on 161 projects from commercial,
aerospacegovernment,and non-profit organizations[R As of
1998, the projectsrepresentedh the databasevereof size20 to
2000KSLOC (thousandsf lines of code)andtook betweenl00
to 10000personmonthsto build.

COCOMOmeasureegffort in calendamonthswhereonemonth
is 152 hours(andincludesdevelopmentandmanagemertiours).
The coreintuition behindCOCOMO-baseastimationis thatas
systemsgrow in size, the effort requiredto createthem grows
exponentiallyi.e. ef fort « KSLOC?®. More precisely:

17
months = a * (I(,S'LOC’(I'OH'EL1 SF’)) * (H EMj>
Jj=1

wherea is adomain-specifiparameterandKSLOC is estimated
directly or computedrom afunctionpoint analysis.SF; arethe
scalefactors(e.qg. factorssuchas“have we built thiskind of sys-
tembefore?”) and EM; arethe costdrivers(e.g. requiredlevel
of reliability).

Software effort-estimationmodelslike COCOMO-II shouldbe
tunedto theirlocal domain.Off-the-shelf‘untuned”modelshave
beenup to 600% inaccuratein their estimatesg.g. [16, p165]
and[6]. However, tunedmodelscanbefar moreaccurateFor ex-
ample,[3] reportsa studywith a bayesiartuningalgorithmusing
the COCOMO projectdatabase After bayesiartuning, a cross-
validationstudy shaved that COCOMO-II model producedesti-
matesthatarewithin 30% of the actuals69% of thetime.

Figure 1. Some background notes on
COCOMO-II. For more details, see [1]



NASA softwareprojects
KC-1 FB-3 BJ-1
(very new (moderatelynen (very mature
project) project) project)
ranges nowvl changesl|| nown2 | changesg | changesg now3
prec=0..5 | precedentness 0,1 2,3 4,5
Scale flex=0..5 | developmentflexibility 1,2,3,4 1 ? 34 0-5 0,1
drives resl=0..5 | architecturahnalysisorrisk resolution | 0,1,2 2 ? 0-5 4,5
team=0..5 | teamcohesion 1,2 2 4 34
pmat=0..5 | processnaturity 0,1,2,3 3 ? 0-5 4,5
rely=0..4 | requiredreliability 4 4 4
Product | data=1..4 | databassize 2 ? 1-4 1,2
attributes | cplx=0..5 | productcompleity 4,5 3,45 3,45
ruse=1..5 | level of reuse 1,2,3 3 ? 1-5 4,5
docu=0..4 | documentatiomequirements 1,2,3 3 1 34
Platform | time=2..5 | executiontime constraints ? 5 4 2,3
attributes | stor=2..5 | mainmemorystorage 2,3,4 2 ? 2-5 34
pvol=1..4 | platformvolatility 1 ? 2-4 1,2
acap=0..4 | analystcapability 1,2 2 2 2,34
Personnel| pcap=0..4 | programmecapability 2 2 2,3
attributes | pcon=0..4 | programmecontinuity 1,2 2 ? 0-4 2,3
axp=0..4 | analystexperience 1,2 ? 0-4 34
pexp=0..4 | platformexperience 2 ? 0-4 3,4
ltex =0..4 | experiencewith languageandtools 1,2,3 3 2 34
Project tool=0..4 | useof softwaretools 1,2 1 23 3,4
attributes | site=0..5 | multi-sitedevelopment ? 0-5 ?
sced=0..4 | timebeforedelvery 2 2 ? 0-4 2
# of what-ifs (combinationf now X U changes X) = | 6 % 10° [ 3% 107 | 109 [ 107 |

Figure 2. Three software NASA projects:

“no w"= current situation;

“changes’= some proposed

chang es. Attrib utes come from the COCOMO-Il software cost estimation model described in Figure 1.
Attrib ute values of “2” are nominal; lower values usuall y denote some undesirab le situation; higher

values usuall y denote some desired situation.

Each “don't know " (denoted “?")

requires what-if

queries for the entire rang e of that parameter. No changes are shown for BJ-1 since, in the view of
the managers, this project has already had years of useful process improvement.

currentstateandproposedhangeso threeNASA projects.

In the bottomrow, we seetheseprojectscontain108 to 10°
combinationf currentandproposedarameters.

This paperproposesa new methodfor practicallarge
scalewhat-if queries.We characterize&xploring a spaceof
what-ifsasthesearcHor thesignificantranges i.e. asmall
setof parameterangesthat have mostimpacton achies-

ing somedesiredresults. Our approachhasthree stages.

Firstly, we build the spaceof potentiallysignificantwhat-ifs
by asking“what arethe differentmodelspostulatedor this
domain?”. The significantrangeslies somavherewithin
the input parameterrangesof thesemodels(e.g. column
2 of Figure2). Secondlywe generateand cachebehaior
from our rangeof modelsusingrandomMonte Carlo sim-
ulations. This behaior is summarizedy a decisiontree
learner This studyusedC4.5[17]. Thirdly, we passthe
learnttreesto our TARZAN package. TARZAN usesthe
treesanddomaininformationsuchasFigure 2 to savagely

prunetheranges. TARZAN's pruning methods(described
below) canbevery effective. For example,in this study(see
belowv), TARZAN generatedi% pagereportthatshavsthe

significantfeatureswithin a spaceof 10? what-ifs.

This rest of this paperis structuredas follows. First,
we discussthe novel contritutions and generalityof this
research. Second,we offer somebriefing noteson tech-
nologiesthat are core to our technique: random Monte
Carlosimulationsdecisiontreelearning,andthe TARZAN
pruning methods. Third, we describethe Madachyrisk
modelwhich will assesshe software risk of the projects
in Figure 2 (the Madachy model was first reported at
KBSE'94 [9]). Finally, we shov how thesetechnologies
work onthe NASA casestudiesof Figure2.

1.1 Originality

This is the first report to detail the use of automatic
softwareengineerindgechniquegor theindependenassess-



mentof software projects. We believe this researctoffers
the possibility for betterconflict reductionin requirements
engineeringfastereasoningn thepresencef uncertainty
andeasierexplanationof automaticallygeneratedheories.

Independentassessment:Recentsatellite losseshave
highlightedNASA s needfor quality software.An indepen-
dentassessmeis anearlylife-cycleassessmenf therisks
within asoftwareproject. Theassessmeiis performecdby a
consultanfrom outsidethe developmenteam. NASA can
savehighrisk projectsif we canfind themearlyenoughge.g.
by allocatingadditionalresourcesFor suchassessments
be useful, hawever, they mustbe cheapto conductandbe
performedearlyin thelife cycle. Our methodsupportsuch
early life cycle risk assessmentgven beforekey param-
etersare not known with certainty Further we not only
assessisk, but alsoexplore how to alterit. After building
decisiontreesthatsummarizeour risk knowledge,we then
guerythosetreeslooking for forks that canalter the clas-
sifications.In particulay TARZAN returnsthoseparameter
rangeghat,if appliedto someproject,significantlyreduce
thatproject'srisk.

Requiementengineering Requirementengineersiote
thatdecisionmakingcanbe complicatedby the conflicting
plansof multiple staleholders[5]. One subtlefeatureof
TARZAN isthatit is aconflictreductiontool. Givenasetof
proposedchangege.g.the changesXcolumnsin Figure2),
TARZAN returnsa smallersetcontainingthe changeghat
aremostinfluential. For example,only two of the11 mem-
bersof changeslare effective in reducingthe risk of the
KC-1 project (seebelov). Without TARZAN, our stale-
holdersmighthave (2!! = 2048) argumentsasthey discuss
which portionsof changes1to apply With TARZAN, our
stalkeholdersneedonly have (22 = 4) arguments.

Reasoningn the presenceof uncertainty Uncertainty
is fundamentato mary undermeasuredlomains.e.g. hu-
man internal medicine,economicg13], and software de-
velopment. For example, software developmentdatamay
bescarcef the developmenteamwasnot fundedto main-
tain a metrics repository or the collected data does not
relateto the businesscase,or if contractorspreferto re-
tain control of their own information. After two yearsof
watchingour NASA colleagueshasedata,we suspecthat
datafaminescannotbe solved by managementirectives
to collect moredata. Our view is that we shouldtake data
faminesas a premise,andthenresearchhow to reasonin
their presenceQur prior researclhinto reasoningaboutun-
certaindomainsusedabductve logics to implementHT4:
a set-caveringtruth maintenanceystem[13]. Suchlogical
approacheso uncertainreasoningcanbetoo slow: HT4's
inferencds provably NP-hardandexperimentallyexponen-
tial on modelsize. TARZAN, ontheotherhand,is amuch
simpler, fastermethod. TARZAN learnsemegent stable
propertiesfrom a wide rangeof randomlyselectecbehar-

ior. Assumingmastetvariablesystemssuchemepgentsta-
ble propertiesshouldbefew in numberandfastto find.

Explanation of automatically geneated theories We
shaw below thatthe explanationof alargelearnttheorycan
requirespecialexplanationfacilities. Suchexplanationfa-
cilities arenot usuallyresearchedby the machinelearning
community Most machinelearningresearchmerely gen-
eratesheoriesbut doesnot describethe post-processingf
that theory Two exceptionsare the researchersvho ex-
ploredalternateepresentation® decisiontrees:Quinlan’s
rule generatof17] andMuggletonswork onlearninghorn
clauseq15]. In part,the work of Muggletonand Quinlan
wasmotivatedby the problemof explaininglarge decision
trees. Unlike thesestudies,our solutionto the explanation
problemonly requiresstandarddecisiontreelearnersplus
(< 300) lines of simple Prologto explorethe learnttrees.
We assumethat when a humanoperator‘understands”a
tree,they cananswertthefollowing question:

Here are somethings| am planningto change;
tell me the smallestsetthatwill changethe clas-
sificationsof this system.

Note that this questioncan be answeredby hiding the
learnttreesandmerelyshaving the operatoithe significant
ranges TARZAN swingsthroughthedecisiontreedooking
for the significantrangeghatpick interestingoranches.

1.2 Generality

The Madachymodelis not core to our work; ratherit
is just an examplewe useto demonstrate new technique
for automaticallyunderstandingnodels. In theory there
is nothingin our systempreventingus from swappingthe
Madachymodelfor another Thatis, while the casestudy
in this paperrelatesto softwarerisk managemengur tech-
niguepotentiallyappliesmorebroadly For example,in our
conclusionwe discussapplicationsof this techniqueto the
treatmenbf diabetics.

On the otherhand,this approachs only practicalwhen
a model’s behaior canbe quickly sampled,then quickly
pruned.Thus:

e To quickly samplea model’s behaior, it hasbe run
mary times (e.g. this study ran a model 900,000
times). Hence,we cannotusethis approachfor sys-
tems that are slov to execute, or which generate
extensve side-efects when executed; e.g. adding
megabytego a databasevith eachexecution.

e Toquickly pruneasystemsbehavior, thatsystenmust
containa small numberof mastervariablesthat con-
trol the larger numberof slave variablesin the restof
the system. In such mastefvariable systems,prun-
ing terminateson a very small setor mastervariable



rangesElsevhere we have offeredevidencefrom the-

ory [12], experimentatior{14], andan extensve liter-

aturereview [11] suggestingnastesvariablesystems
arecommon evenfor indeterminatesystems.

2. The Madachy Risk Model

For our experimentswe usedthe MadachyCOCOMO-
basedeffort-risk model [10]. Dr. Madachyis one of
the authors of the COCOMO-II model description [1].
The Madachymodelwasan experimentin explicating the
heuristicnatureof effort estimation. Themodelcontains94
tablesof theform of Figure3. Eachsuchtableimplements
acontet-dependentnodificationto internal COCOMOpa-
rameters. Two importantfeaturesof the Madachymodel
areits classificationsandits validation. In the first case,
the model generatesa numeric effort-risk index which is
thenmappednto the classificationdow, medium high. In
the secondthe modelhassurvived at leastone validation
study Most risk modelscomewith no validationinforma-
tion. The Madachymodelis the rare exception. Studies
with the COCOMO-I projectdatabaséave shovn thatthe
Madachyindex correlateswell with ’?g’gfghf (whereKDSI
is thousandsf deliveredsourcdinesof code)[10].

The Madachymodelwas exercisedusing Monte Carlo
simulations thensummarizedvith a machinelearner(de-
scribedbelow). Hence,our summarieseflect the biases
of the Madachymodel. Recallthat Madachyvalidatedhis
modelby findingagoodcorrelationbetweertherisk assess-
mentsof his modelandthe developmenttimes of the sys-
temsrecordedn the COCOMOdatabaseThatis, Madachy
definesrisk asa developmentssue. This is differentto the
standardsoftwarerisk assessmentiew, which definesrisk

rely= | rely= rely= rely= | rely=

very low nominal | high | very

low high
sced=very low 0 0 0 1 2
sced=low 0 0 0 0 1
sced=nominal 0 0 0 0 0
sced=high 0 0 0 0 0
sced=very high 0 0 0 0 0

Figure 3. A Madachy factor s table. From [10].
This table reads as follows. In the exceptional

case of high reliability systems and very tight
schedule pressure (i.e. sced=lowor very low
and rely= high or very high), add some incre-
ments to the built-in parameter s (increments

shown top-right). Otherwise , in the non-
exceptional case, add nothing to the built-in

parameter s.
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Figure 4. A circle of radius r within a square
of side 2r. From [18]

2r

assomemeasuref theruntimeperformancef thesystem;
in otherwords,in the standard/iew risk is definedasanop-

erationalissue(e.g.[7, 8]). Sincewe areusingtheMadachy
model,we mustadopthis definitions.Hence whenwe say
“software risk"we mean“developmentrisk”; i.e. the risk

that the project while take longer than plannedto build.

Note that our methodscould also be usedfor operational
risk assessmenif, we couldaccessucha developmentisk

model.

Madachys model usesoff-the-shelf COCOMO, which
canbe up to 600%inaccuraten its estimategseethe dis-
cussionin Figure1). In practice,userstune COCOMOS%s
parametersising historicaldatain orderto generateaccu-
rate estimates.For the projectsin Figure 2, we lacked the
datato calibratethe model. Thereforewe ran our simula-
tionsusingthreedifferentCOCOMOtuningsandfoundthat
we generatedhe samesignificantrangesrom all threetun-
ings (seebelow). Hence we werenot motivatedto explore
othertunings.

3. Monte Carlo Simulations

The Madachymodelwas exercisedusing Monte Carlo
simulations. Thatis, insteadof running(e.g.) 10° simula-
tions,we rana smallnumberpicked at randomto seewhat
we could learn. We thenran a larger numberof randomly
picked simulations. A conclusionwas deemedstableif it
did not changewhen we useda larger samplesize. The
restof this sectionofferssomeintroductorynoteson Monte
Carlosimulationsandtheir applicationin our domain.

Traditionally, MC methodswere usedfor mathematical
integration. For example,to computethe valueof 7 using
MC, we might aska very baddartsplayerto throw dartsat
Figure4. In this approachpur dartsplayeris a stochastic
generatoof thedata.Assumingall thedartslandwithin the
squareof Figure4, thentheratio of dartshitting the circle

will be:
# darts hitting circle 2

# throws ~(2r)2




b pi=3.141

Computed value of pi

25 —

2 1 1 1 1
1 10 100 1000 10000
# of throws

Figure 5. Finding = using MC methods; i.e.
throwing darts at Figure 4 and applying Equa-
tion 1. Adapted from [18]

whichwe canrearrangeo

4 x4 darts hitting circle (1)
N # throws

Note thatthe resultsof an MC studycanbe skewed by
inadequatesampling. If our dartsplayeronly makesa few
throws, our valuefor « will beinaccurate.Figure5 shavs
how the valueof Equationl variedasa computemprogram
simulatedthe dartsplayer The valuefor = seenafter 10
“throws” was very differentto the value seenafter 1000
“throws”. However, after 5000 “throws”, the value sta-
bilized i.e. morethrows did not significantly changethe
value.Thegeneralessorfrom thisexampleis thatthesam-
ple sizeof anMC studymustbe extendeduntil the conclu-
sionsstabilize

In orderto apply MC to software risk managementye
ran the Madachymodelusingrandomlyselectednputsas
follows:

e Sincetheoutputsof a COCOMOmodelaredependent
onits tunings,we pickedourtuningsfrom severalpub-
lishedsources.Thosesourcesshaved tuningsgener
atedvia geneticalgorithms[4], tuningsgeneratediia
bayesiariearning[3], andthe standarduningsfound
within the Madachymodel.

e COCOMO estimationsare basedon sourcelines of
code (SLOC). SLOC is notoriously hard to esti-
mate. Hence,we ran our MC simulationson differ-
entrangesof SLOCs. From Boehms text Softwae
Engineeringeconomicswe saw thatusingSLOC =
10K,SLOC = 100K, SLOC = 2000K would cover
aninterestingrangeof softwaresystemg2].

o Next, for thethreedifferentSLOCsandthreetunings,
we generatedl00,000randomexamplesby picking
onevalueat randomfor eachof the parametergrom
column2 of Figure2.

This generated 900,000 examples classified low,
medium,high, divided into different SLOCsand tunings.
We madeour conclusionszia machindearning(seebelow)
using N randomly selectedexamplesfrom eachdivision.
Weincreasedhesamplesize(to 2N, 3N, ...) until we found
conclusionghatwerestableacrossall divisions. In our ex-
periments, N = 10,000 samplesandour conclusionaisu-
ally stabilizedat3N = 30,000 samples.These45 training
setswereusedto build anensemblef 45trees:

3 SLOCs *3tunings * 5 samples = 45 trees

4. DecisionTrees

Our conclusionsverefoundusingthe TARZAN system.
TARZAN swingsthroughthe 45 treesgeneratedrom the
above 45 experimentslooking for parameterchangeghat
alteredthe classificationsBeforediscussingTARZAN, we
digressfor a brief tutorial on decisiontreelearners.

Decisiontreelearnersnput classifiedexamplesandout-
putdecisiontrees(seeFigure6). ThisstudyusedC4.5[17].

INPUT:

#outlook, temp, humidity, windy, class
sunny, 85, 85, false, dont_play
sunny, 80, 90, true, dont_play
overcast, 83, 88, false, play

rain, 70, 96, false, play

rain, 68, 80, false, play

rain, 65, 70, true, dont_play
overcast, 64, 65, true, play
sunny, 72, 95, false, dont_play
sunny, 69, 70, false, play

rain, 75, 80, false, play
sunny, 75, 70, true, play
overcast, 72, 90, true, play
overcast, 81, 75, false, play

rain, 71, 96, true, dont_play

OUTPUT (estimatecderror=38.5%):

outlook=overcast
~_ humidity <= 752

humidity > 75

outlook=sunny

outlook=rain—— windy = false

—
windy = true

dont_play>

Figure 6. Decision-tree learning. Classified
examples (above) generate the decision tree
(below).



C4.5is aninternationaktandardn machinelearning;most
new machinelearnersare benchmarkd againstthis pro-
gram. The algorithm usesa heuristicentropy measureof
informationcontentto build its trees. The parameterange
with the mostinformation content(highestentrogy) is se-
lectedas the root of a decisiontree. The examplesetis
thendividedup accordingto which examplesdo/donot sat-
isfy thetestin theroot. For eachdivided exampleset,the
processs thenrepeatedecursvely. A statisticalmeasure
is thenusedto estimatethe classificationerror on unseen
cases.

For example,considetthedecisiontreelearntby C4.5in
Figure6. In thattree,C4.5hasdecidedhattheweathemout-
look hasthemostinformationcontent.Hence,it hasplaced
outlook nearthe root of the learnttree. If outlook=rain,
a sub-trees enteredwhosenext-mostcritical parameters
wind. We seethat we shouldnot play golf on high-wind
dayswhenit mightrain. Notethat C4.5estimateghatthis
treewill leadto incorrectclassifications38.5 times out of
1000n future casesWe shouldexpectsucha large classifi-
cationerrorswhenlearningfrom only 15 examples.n gen-
eral,C4.5needshundredgo thousand®f examplesbefore
it canproducetreeswith low classificationerrors. Hence,
whenwe build trees we shouldincreaséhe samplesizetill
the estimatederror dropsto an acceptabldevel. Figure7
shaws the error levels in our 45 treesbuilt from 10-50K
samplesourerrorsfall to low levelsaftertensof thousands
of samplesObsenethatafter4 104, theerrorcurveis flat;
i.e. we learnnothingfurther aboutthe system.Thatis, we
neednot exploreall the (e.g.) 10° what-ifsfrom changes2
in Figure2 (sincemostof thesewhat-ifshavethesameover-
all result). Secondlywe seethatby 50K samplespurtrees
areover 6000nodesin size. Humanshave muchdifficulty
readingthesdargetrees.Suchlargetreesneedanautomatic
explanationfacility suchasTARZAN.

5. TARZAN'’ s Pruning Methods

This section describesthe pruning methodsused by
TARZAN. Notethat:

¢ PruningmethodP; culls someoutputOut; asfollows:
Out,- = PZ (Outi,l).

e QOuty is initialized to includeall the known rangesof
all theknown variables.

e TARZAN returnsthe rangesOutg after applyingthe
pruningspP;, P2, ..., Bs.

5.1 Pruning Methods: The Golf Example

The first four pruning methodsP; .. P, will be demon-
stratedusingthe golf exampleof Figure6.

30 T T T T

= _\N\’w
10 r

% Estimated error

6000
4000
2000

Tree size

10K 20K 30K 40K 50K

Figure 7. Error (top) and size (bottom) in the
45 trees learnt at five diff erent sampling sizes.

humidity > 75 —ﬂ@

i
start outlook=sunny___ B
_play

humidity <= 75

Figure 8. P, pruning: example #1. The golf
tree, after pruning branc hes that contradict
outlook=sunny

Outy; = P; (Outy): The entropy measureof C4.5 per
formsthefirst pruning.RecallthatC4.5selectghe parame-
terrangedor thetreeusingentropy. Parameterangeswith
high entrogy appearhigh in the tree (e.g. outlooR, while
low entropy attributesmay disappeafrom the treeall to-
gether For example,notethattempeature hasbeenpruned
from thelearnttreesof Figure6.

Outs = Py (Outy): P> prunesangeshatcontradictthe
domainconstraintse.g.nowX Uchanges X from Figure2.
Also, whenapplying P,, we prunetree brancheghat use
rangesrom the discardedset. For example,supposesome
golf coursenadweathercontroltechnologyandsowascon-
sideringchangedor constraints = {outlook = sunny}.
Figure8 shavs how this secondpruneusingshrinkthetree
learntin Figure®6.

Outs = P (Outs): P; prunegangeghatdonotchange
classificationdn the trees. For example,in Figure8, the
rangeoutlook=sunnydoesnot appearin somechangethat
altersour golf-playingbehavior.

Outy = Py (Outs): Py prunesrangeshatarenotinter-
estingto the user i.e. thosethatare not mentionedin the
changesX set( Outy = Outz A changesX).



5.2 Mor e Pruning Methods: The KC-1 Example

P1,...P4 applyto singletrees. The remainingpruning
methodgake Outssgeneratedrom all thesingletreesthen
appliedthatacrosshe ensemble Theseremainingpruning
methodsPs.. P; will bedemonstratedsingoneof our soft-
ware project managemenexamples;i.e. KC-1 from Fig-
ure?2.

Outs = Ps (Outy): Ps prunegangeghatdonotchange
classification$n the majority of thememberof theensem-
ble (our thresholdis 66%). For example,in the caseof the
KC-1 domainfrom Figure 2, we applied P;..P5 to genef
atea setof rangesthat changerisk classifications.Of the
11 changedoundin KC-1's changesl set,only 4 ranges
changehe classificationsn morethan66% of the decision
trees.Hence Outs only contained4 ranges.

Outg = P (Outs): Ps prunesrangesthat are not sta-
ble,i.e. thoserangeghatarenot alwaysfoundatthelarger
samplef therandomMonte Carlosimulations.

Outr; = P; (Outg): P; exploresall subsetof Outg to
rejectthe combinationsthat have low impacton the clas-
sifications. Theimpactof eachsubsetis assessesia how
thatsubsetthangeghe numberof branchego the different
classifications.For example,Figure 9 shavs how someof
thesubset®f therangedoundin Outg affect KC-1. In that
figure,barchartAl showvs the averagenumberof branches
to low, mediumandhighrisk seenin the45trees.For each
subsetX C Outg, we make a copy of the treesprunedby
Ps, thendeleteall brancheghat contradictX. This gen-
eratesA5 new treesthat are consistenwith X. The aver-
agenumberof branchedo eachclassificationin thesenew
branchess then calculated. P; would reject the subsets
shavnin B1, C1,andB2 sincethesebarelyalterthe current
situationin Al.

Outg = Pg (Outy): Py comparesnemberf Out; and
rejectsa combinationif somesmallercombinationhasa
similar effect. For example,in Figure9, we seein A2 that
having moderatelytalentedanalystsandno schedulepres-
sure(acap=[2], sced=[2]) reduceourrisk nearlyasmuch
asary largersubset.Exception:C2 appliesall four actions
from KC-1's Outg setto remove all branchego medium
and high risk projects. Neverthelesswe still recommend
A2, notC2,sinceA2 seemgo achieze mostof whatC2 can
do, with muchlesseffort.

OUTs is reportedbackto theuser Notethat,in the KC-
1 study we have found 2 significantrangesout of a range
of 6 x 106 what-ifsand11 proposechew changes.

TARZAN took 8 minutesto procesKC-1 ona350MHz
machine. That time was divided equally betweenProlog
codethat implementsthe tree processingand someineffi-
cient shell scriptsthat filter the Prolog outputto generate
Figure 9. We arecurrently porting TARZAN to “C” and
will usebit manipulationdor setprocessingWe arehope-

A B C
201 E 20:1_‘ 20:1_'
10 10 E 10 %

1 0 0 || 0 ||
7 24 8 7216 6 20 6
Current Current+ Current+

situation= Itex=[3] pmat=[3]
nowl
201 201 201
104 104 E 101

2] o= 0- 0=
210 6 17 5 2 00
Current+ Current+ Current+

acap=[2]+ Itex=[3]+ acap=[2]+
sced=[2] pmat=[3] Itex=[3]+
pmat=[3]+
sced=[2]

Figure 9. Average number of branc hes to dif-
ferent classifications in the 45 trees in KC-
1, assuming diff erent subsets of the ranges
seen in KC-1's Outg set. Legend: [ 1 =low
risk EEFE =medium risk Il =high risk.

ful thatthis new languageandsmartemprocessingvill make
TARZAN muchfaster

6. Other CaseStudies

Theabovetechniquevasappliedto the BJ-1project,i.e.
now3from Figure2. BJ-1is the mostmaturesoftwarepro-
gramat NASA (andKC-1 is oneof the nevestprograms).
Overtheyears significantresource$ave beenallocatedo
BJ-1to improveits quality. The pre-experimentalexpecta-
tion wasthat BJ-1would be assessedsa muchlower risk
projectthan KC-1. This wasindeedthe case. Nearly all
the branchegemainingafter P, wentto low risk. Hence,
P; returnedvery few non-emptysetsandBJ-1's processing
wasterminatedafter P;.

Our next casestudyusedthe FB-3 project;i.e. now2 U
changes2, from Figure2. FB-3's currentsituationis the
Al barchartin Figure10: therearenumerousvaysto high
risk projectsin FB-3. Unfortunately TARZAN wasunable
to offer risk mitigation stratgjies. Changes2, lists sofew
possiblechangeghat P, alwaysreturned. Hence,we de-
cidedto explorethe changesot mentionedn changes2,,,
just to seeif there existed useful changesthat we had
missed. In this next study we usednow?2 U changes2;.
This generatedhe largestwhat-if spaceyet processedy
TARZAN (10%). Out, containedhundredsof entriesso
we increasedhe Py thresholdto 100%;i.e. Ps culls ary
rangesthat do not changeclassificationsn all trees. This
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Figure 10. Average number of branches to
diff erent classifications in the 45 trees in
FB-3, assuming some subsets of changes2,
from Figure 2. Legend: [ 1 =low risk EEH
=medium risk [N =high risk.

very strict pruning resultedin Outs containing50 items.
Before P; explored all subsetsf 50 items, we manually
culled Outs backto six itemsthat we believed would be
inexpensve to change(e.g. we culled changedo process
maturity). The now2 U changes2;, studytook 2 hoursto
complete.Figure 10 shovs someresultsfrom the Pg prun-
ing. Notethatsomechangeareclearlyinferior (e.g.C1). If
our userscould toleratemorethantwo changeswe would
recommenceither B2 or C2. Otherwise,if our usersare
seekingheleastchangefor themostbenefit,we would rec-
ommencdeitherB1 or A2.

7. Discussion

We have shavn thatthe resultsfrom large scalewhat-if
gueriescanbe automaticallysurveyed andsuccinctlysum-
marizedvia:

Part 1: Identifying the rangesimplied by the what-if
queries;

Part 2: Conducting Monte Carlo simulations of some
modelacrosghoserangego generatexamples;

Part 3: Performingmachingearningto corvertthe exam-
plesinto anensemblef decisiontrees;

Part 4: Using TARZAN to find mitigation strateies that
changeg<lassificationsn a majority of thetrees.

This techniqueis usefulfor more thanjust the domain
of software risk mitigation. By swappingthe modelused
in Part 2, we shouldbe ableto apply this methodto other
domains. For example,we are currently exploring apply-
ing this techniqueo diet andexerciseplanningfor diabetic
patients. We have accessedrom the world-wide web a
commonly-used. 5-parametemodel of blood sugarlevels
in humans.This modelis beinginstalledinto Part 2 of our
rig. Using the model,we intendto learnthe simplestac-
tion patientsshouldtake to maintaintheir bloodsugaratthe
correctlevel.

This techniguemay alsobe usefulfor morethanjustthe
task of automaticallygeneratingplansto improve the be-
havior of a system.TARZAN cansupporta rangeof other
taskssuchasclassification prediction,diagnosis monitor
ing, validation, maintenanceand multiple-stalkeholderre-
guirementsngineeringn uncertaindomains:

e Decisiontreelearnersanauto-generatelassifiersand
predictors.

¢ Decision-tredearnerscan generatediagnosisknowl-
edgefor detectingfaultsif they learnfrom examples
containingfaulty behavior.

e TARZAN canalsorationalizeand reducethe cost of
monitoring a system. For example, once TARZAN
hasidentified the crucial changeparametersmetrics
collection on software projectscould be restrictedto
just thosevariables. This could significantly reduce
the costof metricscollection.

e To validatea TARZAN-basedsystem,test engineers
caninspectOutg tofind theeffectsof changindkey pa-
rametersn the system. This validationschemecould
faultthemodelusedin Part 2 if thetestengineerdind
thatsystermbehavior changesnappropriatelywhenthe
key control parameterghange.We ervision that this
styleof validationwill becomeveryimportantto orga-
nizationslike NASA in thenearfuture. NASA already
has hundredsof simulatorsof flight systems. Such
simulatorsare usedto explore alternatvesin system
designandflight profiles. Toolslike TARZAN canbe
usedto checkif thosesimulatorsaregeneratingsensi-
ble output.



e TARZAN-based systems are simple to maintain.
Whendomainknowledgechangesye mustmanually
changethe modelusedin Part 2. However, oncethat
changehasbeenmade we canthenautomaticallygen-
erateclassifiers,predictors,diagnosisengines,plan-
ners,validationtools,andmonitors.

e Asnotedabore, TARZAN couldalsoassistacommu-
nity of stalkeholdersasthey debatedifferent method
of implementingtheir classifierspredictors diagnosis
engines,planners,monitoring, validation, and main-
tenancaegimes. Whenconflictsarisebetweenstale-
holders,TARZAN canfind which decisionsarecrucial
andwhich argumentsdo not impactthe system. De-
batescouldthenbeshortenedo justthecrucialissues.

e Lastly, the examples presentedhere suggestthat
TARZAN canperformtheaboretasksin domainawith
less-than-certaimformation.

What we cannotshowv at this time is evidencethat the
softwarerisk mitigation stratgyiesfound above actuallyde-
creasesoftwaredevelopmentisk. Giventhedatafaminein
the softwareengineeringndustryin generalandat NASA
in particular we areunsurewhensuchanassessmerould
beapplied.While we await anendto the datafamine,soft-
ware mustbe built and projectmanagersnustmake deci-
sionsbasedon the modelsand dataat hand. In the FB-3
study we sav that TARZAN could (1) handlelarge scale
what-if queriesto (2) find risk mitigation stratejies over-
looked by humans. From the BJ-1 and KC-1 studies,we
sav that(3) TARZAN wasableto distinguishlow risk from
higherrisk projects,evenwhenmary parametersvereun-
known precisely All three obsenations suggestionthat
TARZAN could be a useful tool for assessinglecisions
whenfacedwith a poverty of dataand uncertaintywithin
themodels.
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