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Abstract. In fast-pacedoftware projects,engineerslont have the time or the
resourceso build hearyweightcompletedescriptionf their software. Thebest
they cando is lightweightincompletedescriptionswhich may containmissing
and contradictoryinformation. Reasoningaboutincompleteand contradictory
knowledgeis notoriouslydifficult. However, recentresultsfrom the empirical
Al communitysuggesthatrandomizedearch cantamethis difficult problem.In
this articlewe demonstratéhetherelevanceandthepredictability of randomized
searcHor reasoningaboutlightweightmodels.

1 Introduction

Softwareengineering SE) facesa dilemmawhich might beresolhedby artificial intel-
ligence(Al) researchHowever, beforeSE practitionersacceptAl methodsthey must
be satisfiedasto therelevanceandthe predictability of Al solutions.

Thedilemmaof currentSEresearchs thatmuchof thatresearchs out of stepwith
muchof currentindustrialpractice At therecentinternationalSymposiurron Software
Predictability(SanJose California, 2000),a keynoteaddresg§rom SunMicrosystems
shocledtheresearchers the audiencefew of the techniqguesendorsedy the SEre-
searcltommunityarebeingusedn fast-mwing dot-comsoftwarecompanieskor such
projects,developersandmanagerdack the resourceso conductheavyweighsoftwae
modeling e.g.the constructionof completedescriptionsf the businessmodel or the
userrequirementsYet suchhearyweight software modelingis very useful. Complete
modelsof (e.g.) specificationscan be usedfor a variety of tasks.For example,test
casexcould be auto-generateffom the specification Also, the consequencesf con-
flicts betweerthe requirement®f differentstaleholderscould be studied.Further we
canautomaticallytestthatimportanttemporalconstraintshold over the lifetime of the
executionof the specificationLastly, model-basedliagnosiscouldbe usedto localize
errors.

To better supportthe fast pace of modernsoftware, we needa newv generation
of lightweight softwae modelingtools. Lightweight software modelscan be built in

! For the the purposesf explaining this work to an SE audiencewe will adoptwidely used
terminology Hence,we will say business‘model” when, strictly speaking,we should say
businesstheory”.



a hurry and so are more suitablefor the fast-maing software companiesHowever,
softwaremodelshbuilt in a hurry cancontainincompleteandcontradictoryknowledge.
Thepresenc®f contradictionsn thelightweighttheoriescomplicategheabove useful
tasks.Supposeomeinferenceengineis trying to build a prooftreeacrossalightweight
softwaremodelcontainingcontradictionsGabav et.al.[4] shoved thatbuilding path-
waysacrosgprogramswith contradictionds NP-completdor all but the simplestsoft-
waremodels(a softwaremodelis very simpleif it is very small,or it is a simpletree,
or it hasa dependengnetworkswith out-degree< 1). No fastandcompletealgorithm
for NP-completdaskshasbeendiscovered,despitedecade®f research.

Empiricalresultsfrom Al offersnew hopefor the practicalityof NP-completdasks
suchasreasoningaboutlightweight softwaremodels.A repeatecandrobustempirical
result(e.g.[1, 14]) is thattheoreticallyslow NP-completetasksareonly truly slow in
anarrov phasetransitionzonebetweerunderconstrainedaind over-constrainegrob-
lems. Further it hasbeenshovn empirically thatin both the under/oer-constrained
zones,seeminglynaive randomizedseach algorithmsexecutefasterthan,andnearly
as completely as traditional, slower, completealgorithms.Much of that researchis
basedon conjunctive normalforms (e.g. [14]) but someevidenceexiststhattheresult
holdsalsofor horn-clauseaepresentationf9, 10]. Theseempiricalresultssuggesthat
we might be able to implementthe processingof lightweight software modelsusing
randomizedsearch.

SE practitionersmay well rebelat the prospectof applyingrandomizedsearchto
their applicationsOneissueis the relevanceproblem With the exceptionof database
programmerdf is notusualpracticeto view a(e.g.)‘C” programasadeclaratvesearch
spacethat can be explored this way or that way. Anotherissueis the predictability
problem Nondeterministiprogramsareusuallynot acceptabléo an SEaudienceFor
example,the SE guruNang Levesonclearly states‘'Nondeterminisnis the enemyof
reliability” [6]. If randomsearchalgorithmsgeneratesignificantlydifferentconclusions
eachtime they run, thenthey would be unpredictableuncertifiable,and unacceptable
to thegeneralSEcommunity

Thegoalof thisarticleis to solve therelevanceandpredictabilityproblems §2 dis-
cusseghe relevanceproblemand arguesthat declaratve representationarecommon
in SE, evenwhendealingwith proceduralbrogramsWe will further arguethatthese
declaratve representationare compatiblewith NAYO graphs a directed,possiblycy-
cle graphcontainingNo-edgesAnd-nodesy es-edgesandOr-nodes §3 discusseshe
predictabilityproblemin the context of NAY O graphs.Thatdiscussiorformalizesthe
predictability problemin termsof multiple world reasoninglf very differentconclu-
sionsarefound in the worlds of belief extractedfrom NAY O graphsthenwe cannot
predictablyassertvhatconclusionshold. §4 builds andexploresa mathematicainodel
thatpredictsthelik elihoodof multiple worlds. This sectionconcludeghatrandomized
set-caveringabductionthe oddsof multiple worlds arevery small. Hence predictabil-
ity is nota majorconcern.
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Fig. 1. Methodsof generatingNAY O graphs

2 TheRelevance Problem

Figurel showsavarietyof commonlyusedrepresentationis SE.Al searclhis relevant
to SEif theserepresentationsanbe mappednto declaratve representationg.hereare
mary examplesof sucha mappingin theliterature,a sampleof whichis offeredin this
section.

Before beginning, we note that eachof the mappingsdescribedpotentially con-
found the predictability problem.Someinformationis lost when mappingdown into
low-level declaratve representationslypically, the informationlose removescertain
constraintsvhichmeanghatmoreinferencesrepossiblein theabstractedorm thanin
thenon-abstractetbrm. Fortunatelyin thenext sectionwe show thatthe predictability
problemis lessof anissuethatwe might expect.

Commonrepresentationsisedin SE are object-orientedspecificationdocuments
andproceduratode.Whittle and Schumanrhave shavn thatspecificationgontaining
classdiagramsand scenariodiagramscan be automaticallycorvertedto finite state
machineg[15]. Also, Corbettet.al have shovn that codewritten in somelanguages
canbe corvertedinto finite statemachineq3]. For example,the BANDERA system
automaticallyextracts(slices)the minimum portionsof a JAVA programs bytecodes
which arerelevantto proving particularpropertiesmodels.Theseminimal portionsare
thencorvertedinto thefinite statemachinerequiredfor automatidormal analysis.

Beforegeneratingrroceduratode softwareengineersnaybuild requirementocu-
ments Mylopoulos,Chung,andYu expresssystenrequirementsisinganand-orstruc-
ture called“soft goals”[12]. “Soft goals” have beenmappednto horn-clausdorm by
Menzies Easterbrooket.al.[9]. Horn clausesarea declaratve representatiothattake
theform

Goal if SubGoall and SubGoal2 and ...



which,in aProlognotationwewouldwrite asgoal :- subCoall, subCoal 2, ...
If thereexistsmorethanonemethodof demonstratingomeGoal, theneachmethodis
aseparatelause.

Sometimesoftwareengineerslescribebusinessulesin somerule-basedanguage.
Theserules can be mappedinto horn-clausesising standardpartial evaluationtech-
nigues[13]. At othertimes,softwareengineersduild discreteeventsimulationsof their
systemsn somesortof compartmentaiodelingframework?. Menziesand Compton
offeredan declaratve (abductve) semanticfor executingincompletecompartmental
modelg[8].

Finite statemachinesareacommonlyusedrepresentatiorparticularlyfor real-time
systemsFinite-statediagramscontaintransitionsbetweenstates.Transitionsmay be
conditionalonsomeguard.StatesnaycontainnestedstatesTo translatestatemachines
to horn-clausesywe createonevariablefor eachstate thencreateone clausefor each

transitionfrom stateS1 to S2. Eachclausewill take theforms2 :- s1, guard
where guard comesfrom the conditionalteststhat activate that transition.If a state
S1 containssub-states$'1.a, S1.b,...thencreateclauseof theformsla : - sl and

slb :- sl,etc.

Horn-clausesan be easily reducedto NAYO graphs.A NAYO graphis a finite
directedgraphcontainingtwo typesof edgesandtwo typesof nodes.Or-nodesstore
assignmentef asinglevalueto avariable.Only oneof theparentof anor-nodeneedcbe
reachedeforewe visit the or-node.And-nodesnodelmultiple pre-conditionsAll the
parentsof anand-nodemustbereachedeforethis nodeis visited. No-edgsrepresent
illegal pairsof inferencesj.e. thingswe cant believe at the sametime. For example,
wewouldconnecdi et (| i ght) anddi et (f atty) withano-edgeYes-edgsrep-
resentiegal inferencedetweenor-nodesandand-nodesFigure2 shavs somesample
hornclausesandits associatedNAY O graph.

We focuson NAY Osfor threereasonsFirstly, it is merelya graphicalform acom-
monrepresentatiomegation-freehorn clausesSecondlyandrelatedto thefirst point,
arangeof representationsanbeexpresse@sNAY Os. Thirdly, thereexist averagecase
searchresultsfor NAY O graphs(seebelow). Any otherrepresentatiowith thesethree
propertieamightbe a suitablealternative framework for our analysis.

At first glance,it might appearthatwe cansimply emulatethe executionof a pro-
gram by building proof treesacrossthe NAYO graph.For example,we could mark
somenodesas“inputs” thengrow treesacrossthe NAYO graphwhoseleavesarethe
inputsandwhoserootis somereachedartof the program However, we cant reckless
grow prooftreesacrossa NAY O: asa proof treegrows it shouldremainconsistenti.e.
mustnot containtwo nodesconnectedy a no-edge).

Proving agoalin aNAY O graphmeangecursvely exploring all edgeshatarrive at
thatnode A randomizedearchwould exploretheseedgesn anorderchosemrandomly
HTO is sucha randomsearchalgorithmfor NAY O graphs[10]. WhenHTO reaches
literal, it retractsall other literals that might contradictthis literal. The algorithmis

2 Compartmentainodelsutilize theprincipalof conserationof massandassuméhatthesumof
flows of substancén andout of acompartmentnustequalzero.Flows aretypically modeled
usingatime-dependangxponentialfunctionsincetherateof flow is oftenproportionalto the
amountof stuff in thecompartmenf7].
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Fig. 2. Somegroundhornclausegleft) convertedto a NAY O graph(right).

very fastsinceit removesthe Gabav et.alpreconditiorfor NP-completenes&@ny node
that contradictsthe nodesalreadyin the proof tree). The randomorderin which HTO
exploresthe NAY O graphsselectswhich literalswill beexplored.Hence HTO repeats
its processingseveral times. After trying to prove all it's goalsin this randomway,
HTO re-assertshe retractedliterals and executesanother‘try” to prove all its goals.
This procesgerminatesvhenalgorithmdetectsa plateauin the largestpercentagef
reachableyoalsfoundin ary “try”.

3 NAYO Graphsand Predictability

NAY O graphsoffer acommondeclaratve readingfor a rangeof representationée.qg.

thoseshown in Figurel). At the NAYO level it is easyto shav thatthe heuristicinfer-

encesnadeby randomsearchmay not berepeatabl@andhencenot predictable.
ConsiderthethreeproofsHTO mightgeneratdo prove happy in Figure2.

Proof, : happy ¢ tranquility(hi) + conscience(clear)

Proof, : happy < tranquility(hi) + satieted + diet(fatty)
< rich

Proofs : happy « andl { + healthy < diet(light)

Someof theseconclusionsnadeby theseproofsarenot categoricalconclusionskFor
example,our beliefin heal t hy is contingenton acceptingProof; andnot Proof,
(Proofs is incompatiblewith Proofs sincethesetwo proofsrequiredifferentdiets).
In thegeneralcase arandomsearchenginelike HTO will find only somesubsebf the
possibleproofs,particularlyif it is runfor aheuristicallyselectedime interval. Thatis,
arandomsearctenginemaynotrepeatedlyealizethat(e.g.)heal t hy isanuncertain
conclusion.

Clearlyfor tiny systemdik e Figure2 generatingpnly a handfulof proofs,the con-
clusionsfrom randomsearchareunpredictabl@andour SE colleaguesirewiseto reject



it. However, for suchtiny systemsmanualanalysiswill suffice. Theautomatigrocess-
ing of NAYO graphsonly getsinterestingfor larger systemsln suchlarge systems,
the goal nodesarea small subsetf the total nodes.Further aswe shav below, there
emepgesaveragecasepropertieselatingto our ability to quickly probeall the possible
contingencie$rom asystemThesequepresentheseaveragecasepropertiesisingthe

terminologyof Menzies’ prior work on set-caveringabduction[8] (for noteson other

abductve frameworks,se€[2, 5]).

GivenamodelsuchasFigure2 anda goalsuchashappy, HTO builds prooftrees
to thosegoals;e.g. Proof; . . .Proofs. Anything that hasnot beenassertedas a fact
is an assumptionNo proof cancontainmutually exclusive assumption®r contradict
the goal; i.e. assuming-happy is illegal. The generatedroofs shouldbe grouped
togetherinto maximal consistentsubsetscalled worlds. Our example generategswo
worlds:World, = { Proofi, Proofs} andWorlds= { Proof,, Proofs}.

A world containswhat we canconcludefrom NAY O inference. A goalis proved
if it canbefoundin aworld. In termsof multiple world reasoningthe predictability
problemcanbeformalizedasfollows:

Randomsearh is unpredictablewhenit doesnot geneite enoughworldsto
covertherange of possibleconclusions.

Note thatthis is a weakobjectionif it canbe shavn thatthe numberof generated
worldsis notlarge. Thiswill be ourargumentbelow.

4 Average Number of Generated Worlds

Assumptionscan be catayorizedinto threeimportantgroups,only one of which de-
termineshow mary worlds are generatedSomeassumptionsre dependanbn other
assumptionsFor example,in Proofs, the heal t hy assumptionslependsfully on
di et (1ight) . Intermsof exploring all the effectsof differentassumptionsye can
ignorethe dependanassumptionsAnotherimportantcategory of assumptionsrethe
assumptionghat contradictno other assumptionsThesenon-contoversial assump-
tions are never at oddswith other assumptionsind so do not effect the numberof
worlds generatedin our example,the non-contrawversialassumptionsre everything
exceptdi et (1i ght) anddi et (heal t hy) . Hence,like the dependanassump-
tions,we will ignorethesenon-contraversialassumptionsThe remainingassumptions
are the controversial, non-dependanassumption®r funnel assumptionsThesefun-
nel assumptiongontrolhow all the otherassumptionsregroupedinto worlds of be-
lief. DeKleers key insightin the ATMS researchwas that a multi-world reasoning
device needonly focuson the funnef When switching betweenworlds, all we need
to resolwe is which funnelassumptionsve endorseContinuingour example,if we en-
dorsedi et (1 i ght) thenall the conclusionsn World, follow andif we endorse
di et (heal t hy) thenall theconclusionsn World, follow.

3 DeKleer called the funnel assumptionghe minimal ervironments We do not adopt that
terminology here since DeKleer usedconsisteng-basedabductionwhile we are exploring
set-cavering abductionhere.For an excellent discussionthat definesand distinguishesset-
covering from consisteng-basedmethodssee[2].



Proofsmeetand clashin the funnel. If the size of the funnelis very small, then
the numberof possibleclashesis very small andthe numberof possibleresolutions
to thoseclasheds very small. Whenthe numberof possibleresolutionss very small,
the numberof possibleworldsis very smallandrandomsearchcanquickly probethe
differentworlds of beliefs(sincetherearesofew of them).Hence,if we canshow that
the averagesize of the funnelis small,thenwe canquickly poll the rangeof possible
conclusiondrom our NAYO graphs.

Thereare numerouscasestudiessuggestinghat generatinga few worlds (picked
at random)adequatelysamplesthe spaceof possibilitiesthat would be found after
samplinga much larger numberof worlds. Williams and Nayak found that a locally
guidesconflict resolutionalgorithm performedaswell asthe bestavailable ATMS al-
gorithm[16]. Menzies Easterbroolet.al.reportexperimentscomparingrandomworld
generationwith full world generationAfter millions of runs,they concludedthatthe
randomworld generatofound almostasmary goalsin lesstime asfull world gener
ation [9]. In otherwork, Menziesand Michael shaved that the maximumpercentage
of reachablggoalsfound by HTO plateausafter a small numberof tries [10]. These
casestudiesareconsistentvith the claim that(1) thetotal numberof worldsis usually
very small,hence(2) averagefunnelsizeis notlarge.In orderto testif this claim gen-
eralizesbeyond theseisolatedcasestudies we developedthe following mathematical
model[11]. Supposesomegoalcanbereachedy a narrav funnel M or awide funnel
N asfollows:

(N &
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Under what circumstancewill the narrov funnel be favored over the wide funnel?
More preciselywhenaretheoddsof reachinggoal; viathenarron funnelmuchgreater
thanthe oddsof reachinggoal; via thewide funnel?To answetrthis questionwe begin
with thefollowing definitions.Let the M funnelusem variablesandthe N funneluse
n variables For comparisorpurposesye expresshesizeof thewider funnelasaratio
« of thenarraver funnel;i.e.n = am. Eachmemberof M is reachedsia a pathwith
probability a; while eachmemberof IV is reachedvia a pathwith probability b;. Two
pathsexist from the funnelsto this goal: onefrom the narrov neckwith probability ¢
andonefrom thewide neckwith probabilityd. Theprobabilityof reachinghegoalvia
thenarrav pathway is narrow = ¢[];-, a; while the probability of reachingthe goal
via thewide pathwayis wide = d[]-, b;.

Assumingthatthe goal is reachedthentherearethreewaysto do so. Firstly, we
canreachthe goal using both funnelswith probability narrow.wide. Secondly we
canreachthe goal usingthe narrov funneland not the wider funnel with probability
narrow(1l — wide). Thirdly, we can reachthe goal using the wider funnel and not
thenarrav funnelwith probability (1 — narrow)wide. Let g beprobability of reaching
goal; whichis thesumof thethreeprobabilitiesj.e.g = narrow + wide — narrow.wide.



Giventhe goalis reachedthenthe conditionalprobabilitiesof reachingthe goal;
via two ourfunnelsis:

narrow

P (narrow|g) = - -
( l9) narrow + wide — narrow.wide

wide

P (wid =
(widelg) narrow + wide — narrow.wide

Let R betheratio of theodds of theseconditionalprobabilities Our pre-condition
for useof thenarrov funnelis R > 1. More generallyusingthe narrov funnelis much
morelikely if R is biggerthansomethresholdvaluet:

<R _ (narrow)2 (1- wz’de)) >

(wide)? (1 — narrow)

1)

4.1 Assuming Uniform Distributions

Assumingthata; andb; comefrom uniform probabilitydistributions,thenzgz1 a; =1
anda; = L, sonarrow = ¢ (%)™. Similarly, underthe sameassumptionsyide =

d (%)n Thus,by Equationl whent = 1, narron funnelsaremorelik ely when:
narrow®(1 — wide) > wide?(1 — narrow)

whichwe canrearrangeo: (narrow — wide)(narrow + wide — narrow.wide) > 0.
This expressiorcontaingwo terms,the seconf which is alwayspositive. Hence this
expressioris positive when 22222% > 1. We canexpandthis expressiorto:

(a) "
Recallingthatn = am, this expressiorbecomegam)*™m="™ > §

Considerthe caseof two funnels,onetwice asbig asthe other;i.e. « = 2. This
expressiorcanthenberearrangedo shav that #7-22% > 1 is truewhen

3=

narrow  C
wide d

S|=

(4m)™ >

ol

(2)

At m = 2, Equation2 becomesl < 64c. Thatis, to accesgoal; from thewiderfunnel,
thepathway d mustbe64timesmorelik ely thanthepathway c. Thisis nothighly likely
andthis becomedesslikely asthe narraver funnel grows. By the samereasoningat
m = 3, to accesgoal; from thewider funnel,the pathway d mustbe 1728timesmore
likely thanthe narraver pathway c. Thatis, undertheassumptionsf this uniformcase,
asthewide funnelgetswider, it becomedessandlesslik ely thatit will beused.

* The odds of an event with probability P(z) is the ratio of the probability that the event

does/doesiot happeni.e. %



4.2 Assuming Non-Uniform Distributions

To explorethe casewhere""  a; # 1 and)_ ;" b; # 1 (i.e. the non-uniformprob-
ability distribution case) we createdand executeda small simulatormary times.The
meany and standarddeviation o2 of the logarithm of the variablesa;, b;, ¢, d were
pickedatrandomfrom thefollowing rangesyu € {1,2,...10};

spread € {0.05,0.1,0.2,0.4,0.8}. 4 andspread wherethencorvertedinto probabil-
ity asfollows: 0% = spread * u; probability = 10— 1*normDist(u,0*) Next, m anda
werepickedatrandomfrom therangesm € {1,2,...10}; « € {1,1.25,1.5,...10}.
R was then calculatedand the numberof times R exceededdifferent valuesfor ¢
isshovnin Figure3. As might

be expectedatt = 1,a = 1

the funnelsare the samesize

andthe oddsof using one of 100,000 runs for each value of t
themis 50%. As « increases, _ 1900

then increasinglyEquation 1 é\: 90

is satisfiedand the narraver o 80

funnel will be preferredto & -,

the wider funnel. The effect i 1%

is quite pronouncedFor ex- 5 60

ample,at a = 3, 82% of & 950¢ t=1
our simulated runs, random S 40F 10 E):old%%%%%%f .
searchwill be10,000,000,000 30 L A e M

timesmorelikely to favor nar 1 2 3 4 5 6 7 8 9 10
row funnels% thesizeof alter alpha

native funnels.
In summary in both the Fig.3. 100000runs of the funnel simulator Y-axis

uniformandnon-uniformcase, Shavswhatpercentagef therunssatisfiesEquationl.
random searchenginessuch

asHTO will favor worldswith

narrav funnels.Sincenarrov funnelsmeanfewer worlds, we cannow assureour SE
colleagueghatit is highly likely that randomsearchwill samplethe entire spaceof
possibleconclusions.

5 Conclusion

Modern SE researchurgently needsto addresghe issueof lightweight modelingin
orderto supportcurrentindustrialpractices A centralproblemwith the processingf
lightweightmodelsis thatthey areincompleteandcontaincontradictionsAl research
hasbeenexploring theoriescontainingcontradictiongor decadesRandomsearchs an
Al techniqueahatcanexploreverylargemodels gvenwhenthey containcontradictions.
Beforethe SEcommunityacceptgandomsearchit mustbe shovn thatthesetech-
niguesarerelevantandpredictable We have shavn that a wide rangeof SE artifacts
can be mappedinto a declaratve representatiortalled NAYO graphs.We have also
shavnthataftertherandomizedyeneratiorof asmallnumberof worldsfrom theNAY O



graphsit is unlikely thatvery differentgoalswill bereachabléf we randomlygener
atedmary moreworlds. Hence,we asserthat (1) randomsearchis both relevantand
surprisinglypredictableand(2) SE canuserandomsearchto supportthe lightweight
modelingtools neededor the currentfastpaceof softwaredevelopment.
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