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Abstract. In fast-pacedsoftwareprojects,engineersdon’t have the time or the
resourcesto build heavyweightcompletedescriptionsof their software.Thebest
they cando is lightweight incompletedescriptionswhich may containmissing
and contradictoryinformation. Reasoningabout incompleteand contradictory
knowledge is notoriouslydifficult. However, recentresultsfrom the empirical
AI communitysuggestthatrandomizedsearch cantamethisdifficult problem.In
thisarticlewedemonstratethetherelevanceandthepredictabilityof randomized
searchfor reasoningaboutlightweightmodels.

1 Introduction

Softwareengineering(SE)facesadilemmawhich might beresolvedby artificial intel-
ligence(AI) research.However, beforeSEpractitionersacceptAI methods,they must
besatisfiedasto therelevanceandthepredictabilityof AI solutions.

Thedilemmaof currentSEresearchis thatmuchof thatresearchis outof stepwith
muchof currentindustrialpractice.At therecentInternationalSymposiumonSoftware
Predictability(SanJose,California,2000),a keynoteaddressfrom SunMicrosystems
shockedtheresearchersin theaudience:few of thetechniquesendorsedby theSEre-
searchcommunityarebeingusedin fast-movingdot-comsoftwarecompanies.For such
projects,developersandmanagerslack theresourcesto conductheavyweightsoftware
modeling; e.g.theconstructionof completedescriptionsof thebusinessmodel

�
or the

userrequirements.Yet suchheavyweightsoftwaremodelingis very useful.Complete
modelsof (e.g.) specificationscan be usedfor a variety of tasks.For example,test
casescould be auto-generatedfrom the specification.Also, the consequencesof con-
flicts betweentherequirementsof differentstakeholderscouldbestudied.Further, we
canautomaticallytestthat importanttemporalconstraintshold over thelifetime of the
executionof thespecification.Lastly, model-baseddiagnosiscouldbeusedto localize
errors.

To better supportthe fast paceof modernsoftware, we needa new generation
of lightweightsoftware modelingtools. Lightweight softwaremodelscanbe built in�

For the the purposesof explaining this work to an SE audience,we will adoptwidely used
terminology. Hence,we will say business“model” when,strictly speaking,we shouldsay
business“theory”.



a hurry andso are more suitablefor the fast-moving softwarecompanies.However,
softwaremodelsbuilt in a hurry cancontainincompleteandcontradictoryknowledge.
Thepresenceof contradictionsin thelightweighttheoriescomplicatestheaboveuseful
tasks.Supposesomeinferenceengineis trying to build aproof treeacrossa lightweight
softwaremodelcontainingcontradictions.Gabow et.al.[4] showedthatbuilding path-
waysacrossprogramswith contradictionsis NP-completefor all but thesimplestsoft-
waremodels(a softwaremodelis very simpleif it is very small,or it is a simpletree,
or it hasa dependency networkswith out-degree

���
). No fastandcompletealgorithm

for NP-completetaskshasbeendiscovered,despitedecadesof research.

Empiricalresultsfrom AI offersnew hopefor thepracticalityof NP-completetasks
suchasreasoningaboutlightweightsoftwaremodels.A repeatedandrobustempirical
result(e.g.[1, 14]) is that theoreticallyslow NP-completetasksareonly truly slow in
a narrow phasetransitionzonebetweenunder-constrainedandover-constrainedprob-
lems.Further, it hasbeenshown empirically that in both the under/over-constrained
zones,seeminglynaive randomizedsearch algorithmsexecutefasterthan,andnearly
as completely, as traditional, slower, completealgorithms.Much of that researchis
basedon conjunctivenormalforms(e.g. [14]) but someevidenceexiststhat theresult
holdsalsofor horn-clauserepresentations[9, 10]. Theseempiricalresultssuggestthat
we might be able to implementthe processingof lightweight softwaremodelsusing
randomizedsearch.

SE practitionersmay well rebelat the prospectof applyingrandomizedsearchto
their applications.Oneissueis the relevanceproblem. With theexceptionof database
programmers,it is notusualpracticeto view a(e.g.)“C” programasadeclarativesearch
spacethat can be explored this way or that way. Another issueis the predictability
problem. Nondeterministicprogramsareusuallynot acceptableto anSEaudience.For
example,theSEguruNancy Levesonclearlystates“Nondeterminismis theenemyof
reliability” [6]. If randomsearchalgorithmsgeneratesignificantlydifferentconclusions
eachtime they run, thenthey would be unpredictable,uncertifiable,andunacceptable
to thegeneralSEcommunity.

Thegoalof thisarticleis to solve therelevanceandpredictabilityproblems.� 2 dis-
cussesthe relevanceproblemandarguesthat declarative representationsarecommon
in SE,even whendealingwith proceduralprograms.We will further arguethat these
declarative representationsarecompatiblewith NAY0graphs: a directed,possiblycy-
cle graphcontainingNo-edges,And-nodes,Yes-edges,andOr-nodes.� 3 discussesthe
predictabilityproblemin thecontext of NAYO graphs.Thatdiscussionformalizesthe
predictabilityproblemin termsof multiple world reasoning.If very differentconclu-
sionsarefound in the worlds of belief extractedfrom NAYO graphs,thenwe cannot
predictablyassertwhatconclusionshold. � 4 buildsandexploresamathematicalmodel
thatpredictsthelikelihoodof multiple worlds.Thissectionconcludesthatrandomized
set-coveringabduction,theoddsof multiple worldsareverysmall.Hence,predictabil-
ity is nota majorconcern.
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Fig. 1. Methodsof generatingNAYO graphs

2 The Relevance Problem

Figure1 showsavarietyof commonlyusedrepresentationsin SE.AI searchis relevant
to SEif theserepresentationscanbemappedinto declarativerepresentations.Thereare
many examplesof sucha mappingin theliterature,a sampleof which is offeredin this
section.

Before beginning, we note that eachof the mappingsdescribedpotentially con-
found the predictabilityproblem.Someinformation is lost whenmappingdown into
low-level declarative representations.Typically, the information loseremovescertain
constraintswhichmeansthatmoreinferencesarepossiblein theabstractedform thanin
thenon-abstractedform.Fortunately, in thenext section,weshow thatthepredictability
problemis lessof anissuethatwe mightexpect.

Commonrepresentationsusedin SE are object-orientedspecificationdocuments
andproceduralcode.Whittle andSchumannhaveshown thatspecificationscontaining
classdiagramsand scenariodiagramscan be automaticallyconvertedto finite state
machines[15]. Also, Corbettet.al have shown that codewritten in somelanguages
canbe convertedinto finite statemachines[3]. For example,the BANDERA system
automaticallyextracts(slices)the minimum portionsof a JAVA program’s bytecodes
which arerelevantto proving particularpropertiesmodels.Theseminimal portionsare
thenconvertedinto thefinite statemachinerequiredfor automaticformalanalysis.

Beforegeneratingproceduralcode,softwareengineersmaybuild requirementdocu-
ments.Mylopoulos,Chung,andYu expresssystemrequirementsusinganand-orstruc-
turecalled“soft goals” [12]. “Soft goals”have beenmappedinto horn-clauseform by
Menzies,Easterbrook,et.al.[9]. Horn clausesarea declarativerepresentationthattake
theform � 	�

����������� � 	�
 ��� 

��������� � 	�
�� �!

���#"$"%"



which,in aProlognotation,wewouldwrite asgoal :- subGoa11, subGoal2,...
If thereexistsmorethanonemethodof demonstratingsome

� 	�
�� , theneachmethodis
a separateclause.

Sometimessoftwareengineersdescribebusinessrulesin somerule-basedlanguage.
Theserules can be mappedinto horn-clausesusingstandardpartial evaluationtech-
niques[13]. At othertimes,softwareengineersbuild discreteeventsimulationsof their
systemsin somesortof compartmentalmodelingframework

�
. MenziesandCompton

offeredan declarative (abductive) semanticsfor executingincompletecompartmental
models[8].

Finitestatemachinesareacommonlyusedrepresentation,particularlyfor real-time
systems.Finite-statediagramscontaintransitionsbetweenstates.Transitionsmay be
conditionalonsomeguard.Statesmaycontainnestedstates.To translatestatemachines
to horn-clauses,we createonevariablefor eachstate,thencreateoneclausefor each
transitionfrom state � �

to �&� . Eachclausewill take the form s2 :- s1, guard
where ' ��

(�� comesfrom the conditionalteststhat activate that transition.If a state� �

containssub-states� � " 
 , � � " � ,. . . thencreateclausesof theform s1a :- s1 and
s1b :- s1, etc.

Horn-clausescan be easily reducedto NAYO graphs.A NAYO graphis a finite
directedgraphcontainingtwo typesof edgesandtwo typesof nodes.Or-nodesstore
assignmentsof asinglevaluetoavariable.Onlyoneof theparentsof anor-nodeneedbe
reachedbeforewe visit theor-node.And-nodesmodelmultiple pre-conditions.All the
parentsof anand-nodemustbereachedbeforethis nodeis visited.No-edgesrepresent
illegal pairsof inferences;i.e. thingswe can’t believe at the sametime. For example,
wewouldconnectdiet(light) anddiet(fatty)with ano-edge.Yes-edgesrep-
resentlegal inferencesbetweenor-nodesandand-nodes.Figure2 shows somesample
hornclausesandits associatedNAYO graph.

We focuson NAYOsfor threereasons.Firstly, it is merelya graphicalform a com-
monrepresentation:negation-freehornclauses.Secondly, andrelatedto thefirst point,
arangeof representationscanbeexpressedasNAYOs.Thirdly, thereexist averagecase
searchresultsfor NAYO graphs(seebelow). Any otherrepresentationwith thesethree
propertiesmightbea suitablealternative framework for ouranalysis.

At first glance,it might appearthatwe cansimply emulatetheexecutionof a pro-
gram by building proof treesacrossthe NAYO graph.For example,we could mark
somenodesas“inputs” thengrow treesacrossthe NAYO graphwhoseleavesarethe
inputsandwhoseroot is somereachedpartof theprogram.However, wecan’t reckless
grow proof treesacrossa NAYO: asaproof treegrows it shouldremainconsistent(i.e.
mustnot containtwo nodesconnectedby a no-edge).

Proving agoalin aNAYO graphmeansrecursively exploringall edgesthatarriveat
thatnode.A randomizedsearchwouldexploretheseedgesin anorderchosenrandomly.
HT0 is sucha randomsearchalgorithmfor NAYO graphs[10]. WhenHT0 reachesa
literal, it retractsall other literals that might contradictthis literal. The algorithm is�

Compartmentalmodelsutilize theprincipalof conservationof massandassumethatthesumof
flows of substancein andout of a compartmentmustequalzero.Flows aretypically modeled
usinga time-dependantexponentialfunctionsincetherateof flow is oftenproportionalto the
amountof stuff in thecompartment[7].
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Fig. 2. Somegroundhornclauses(left) convertedto a NAYO graph(right).

very fastsinceit removestheGabow et.alpreconditionfor NP-completeness(any node
that contradictsthe nodesalreadyin the proof tree).The randomorderin which HT0
explorestheNAYO graphsselectswhich literalswill beexplored.Hence,HT0 repeats
its processingseveral times.After trying to prove all it’s goals in this randomway,
HT0 re-assertsthe retractedliterals andexecutesanother“try” to prove all its goals.
This processterminateswhenalgorithmdetectsa plateauin the largestpercentageof
reachablegoalsfoundin any “try”.

3 NAYO Graphs and Predictability

NAYO graphsoffer a commondeclarative readingfor a rangeof representations(e.g.
thoseshown in Figure1). At theNAYO level it is easyto show thattheheuristicinfer-
encesmadeby randomsearchmaynot berepeatableandhencenot predictable.

ConsiderthethreeproofsHT0 mightgenerateto provehappy in Figure2.0 (�	�	1� �32547698�8;:=<?>�@;69ACB�DFE1G7EH>�:FIJ4FE1K�<ML9N1A�O�L;E1P1A�L9P�IQL�G
P�69@CK0 (�	�	1� �R2547698�8;:=<?>�@;69ACB�DFE1G7EH>�:FIJ4FE1K�<MO969>�E1P�>CP�ST<US�E1P�>FIWV;6�>
>�:CK0 (�	�	1��X 2547698�8;:=<Y69A;SFZ\[ <?@�E
LH4<]47P�6;G9>�4;:�<YS�E1P�>FI G7EH^�4;>CK
Someof theseconclusionsmadeby theseproofsarenotcategoricalconclusions.For

example,our belief in healthy is contingenton accepting
0 (�	�	1� X andnot

0 (�	�	1� �
(
0 (�	�	1� X is incompatiblewith

0 (�	�	1� � sincethesetwo proofsrequiredifferentdiets).
In thegeneralcase,a randomsearchenginelike HT0 will find only somesubsetof the
possibleproofs,particularlyif it is run for aheuristicallyselectedtime interval.Thatis,
a randomsearchenginemaynot repeatedlyrealizethat(e.g.)healthy is anuncertain
conclusion.

Clearlyfor tiny systemslike Figure2 generatingonly a handfulof proofs,thecon-
clusionsfrom randomsearchareunpredictableandourSEcolleaguesarewiseto reject



it. However, for suchtiny systems,manualanalysiswill suffice.Theautomaticprocess-
ing of NAYO graphsonly getsinterestingfor larger systems.In suchlarge systems,
the goalnodesarea small subsetof the total nodes.Further, aswe show below, there
emergesaveragecasepropertiesrelatingto our ability to quickly probeall thepossible
contingenciesfrom asystem.Thesequelpresenttheseaveragecasepropertiesusingthe
terminologyof Menzies’prior work on set-coveringabduction[8] (for noteson other
abductiveframeworks,see[2,5]).

Givena modelsuchasFigure2 anda goalsuchashappy, HT0 builds proof trees
to thosegoals;e.g.

0 (�	�	1� � "_"`" 0 (�	�	1��X . Anything that hasnot beenassertedasa fact
is an assumption.No proof cancontainmutually exclusive assumptionsor contradict
the goal; i.e. assuminga happy is illegal. The generatedproofs shouldbe grouped
togetherinto maximal consistentsubsetscalled worlds. Our examplegeneratestwo
worlds: b 	H(��c� � = d 0 (H	�	1� ��e 0 (H	�	1� X1f and b 	H(��W� � = d 0 (�	�	1� �1e 0 (�	�	1� � f .

A world containswhat we canconcludefrom NAYO inference.A goal is proved
if it canbe found in a world. In termsof multiple world reasoning,the predictability
problemcanbeformalizedasfollows:

Randomsearch is unpredictablewhenit doesnot generate enoughworlds to
cover therangeof possibleconclusions.

Note that this is a weakobjectionif it canbeshown that the numberof generated
worldsis not large.Thiswill beour argumentbelow.

4 Average Number of Generated Worlds

Assumptionscanbe categorizedinto threeimportantgroups,only oneof which de-
termineshow many worlds aregenerated.Someassumptionsaredependanton other
assumptions.For example,in

0 (�	�	1��X , the healthy assumptionsdependsfully on
diet(light). In termsof exploring all theeffectsof differentassumptions,we can
ignorethedependantassumptions.Anotherimportantcategory of assumptionsarethe
assumptionsthat contradictno other assumptions.Thesenon-controversial assump-
tions are never at oddswith other assumptionsand so do not effect the numberof
worlds generated.In our example,the non-controversialassumptionsare everything
exceptdiet(light) anddiet(healthy). Hence,like the dependantassump-
tions,we will ignorethesenon-controversialassumptions.Theremainingassumptions
are the controversial, non-dependantassumptionsor funnel assumptions.Thesefun-
nel assumptionscontrolhow all the otherassumptionsaregroupedinto worldsof be-
lief. DeKleer’s key insight in the ATMS researchwas that a multi-world reasoning
device needonly focuson the funnel

X
Whenswitchingbetweenworlds, all we need

to resolve is which funnelassumptionswe endorse.Continuingour example,if we en-
dorsediet(light) thenall the conclusionsin b 	H(��W� � follow and if we endorse
diet(healthy) thenall theconclusionsin b 	H(��W� � follow.g

DeKleer called the funnel assumptionsthe minimal environments. We do not adopt that
terminologyheresinceDeKleer usedconsistency-basedabductionwhile we are exploring
set-covering abductionhere.For an excellent discussionthat definesand distinguishesset-
coveringfrom consistency-basedmethods,see[2].



Proofsmeetandclashin the funnel. If the sizeof the funnel is very small, then
the numberof possibleclashesis very small and the numberof possibleresolutions
to thoseclashesis very small.Whenthenumberof possibleresolutionsis very small,
thenumberof possibleworlds is very small andrandomsearchcanquickly probethe
differentworldsof beliefs(sincetherearesofew of them).Hence,if we canshow that
theaveragesizeof the funnel is small, thenwe canquickly poll the rangeof possible
conclusionsfrom ourNAYO graphs.

Therearenumerouscasestudiessuggestingthat generatinga few worlds (picked
at random)adequatelysamplesthe spaceof possibilitiesthat would be found after
samplinga much larger numberof worlds. Williams andNayak found that a locally
guidesconflict resolutionalgorithmperformedaswell asthebestavailableATMS al-
gorithm[16]. Menzies,Easterbrooket.al.reportexperimentscomparingrandomworld
generationwith full world generation.After millions of runs,they concludedthat the
randomworld generatorfoundalmostasmany goalsin lesstime asfull world gener-
ation [9]. In otherwork, MenziesandMichael showed that the maximumpercentage
of reachablegoalsfound by HT0 plateausafter a small numberof tries [10]. These
casestudiesareconsistentwith theclaim that(1) thetotal numberof worldsis usually
very small,hence(2) averagefunnelsizeis not large.In orderto testif this claim gen-
eralizesbeyond theseisolatedcasestudies,we developedthe following mathematical
model[11]. Supposesomegoalcanbereachedby a narrow funnel h or a wide funneli

asfollows: j_kl�m h �jonl�m h �"_"_"joplqm hsr
t uuvuuw xl�m ' 	�

�Jy{z< l

|uuuuuuuu} uuuuuuuu~
i ��� k< li ��� n< li X � n< liT� � n< l"`"_"i�� � �< l

Under what circumstanceswill the narrow funnel be favored over the wide funnel?
Moreprecisely, whenaretheoddsof reaching' 	�

� y via thenarrow funnelmuchgreater
thantheoddsof reaching' 	�
�� y via thewide funnel?To answerthisquestion,we begin
with thefollowing definitions.Let the h funneluse� variablesandthe

i
funneluse� variables.For comparisonpurposes,weexpressthesizeof thewider funnelasa ratio� of thenarrower funnel; i.e. �s��� � . Eachmemberof h is reachedvia a pathwith

probability 
�y while eachmemberof
i

is reachedvia a pathwith probability ��y . Two
pathsexist from the funnelsto this goal:onefrom thenarrow neckwith probability �
andonefrom thewideneckwith probability � . Theprobabilityof reachingthegoalvia
thenarrow pathway is ��

(H(H	H��� ��� ry%� � 
�y while theprobabilityof reachingthegoal
via thewide pathway is �!���
���3� � �y$� � �oy .

Assumingthat the goal is reached,thentherearethreewaysto do so.Firstly, we
can reachthe goal using both funnelswith probability ��

(H(H	H��" ���Q�
� . Secondly, we
canreachthe goal usingthe narrow funnel andnot the wider funnel with probability��
�(H(�	H� I � l ���Q�
� K . Thirdly, we can reachthe goal using the wider funnel and not
thenarrow funnelwith probability I � l ��

(H(H	H� K ���Q�
� . Let ' beprobabilityof reaching' 	�
�� y whichis thesumof thethreeprobabilities;i.e. ' ����

(H(�	H�������Q��� l ��
�(H(�	H�T" ���Q��� .



Given the goal is reached,thenthe conditionalprobabilitiesof reachingthe ' 	�
��Jy
via two our funnelsis:0 I ��

(H(�	H�=� ' K � ��

(�(�	H���

(H(�	H�������Q��� l ��

(H(�	H�T" �!���
�0 I ���Q�
��� ' K � ���Q�
���

(H(�	H�������Q��� l ��

(H(�	H�T" �!���
�

Let � betheratioof theodds
�

of theseconditionalprobabilities.Our pre-condition
for useof thenarrow funnelis ��� �

. Moregenerally, usingthenarrow funnelis much
morelikely if � is biggerthansomethresholdvalue � :� � � I ��
�(H(�	H� K � I � l �!���
� KI ���Q��� K � I � l ��

(�(�	H� K�� ��� (1)

4.1 Assuming Uniform Distributions

Assumingthat 
�y and �oy comefrom uniformprobabilitydistributions,then   ry$� � 
�y¡� �
and 
�y¢� �r , so ��

(H(�	H��� �¢£ �r¥¤ r . Similarly, underthesameassumptions,���Q���¦�� £ �� ¤ � . Thus,by Equation1 when � � �

, narrow funnelsaremorelikely when:��

(H(�	H� � I � l ���Q��� K � ���Q��� � I � l ��

(�(�	H� K
whichwe canrearrangeto: I ��
�(H(�	H� l �!���
� K�I ��
�(H(�	H���§���Q��� l ��

(�(�	H�T" ���Q�
� K ��¨ .
Thisexpressioncontainstwo terms,thesecondof which is alwayspositive.Hence,this
expressionis positivewhen

� jo©ª©¬«®­­ y zo¯ � �
. We canexpandthisexpressionto:��

(H(�	H����Q��� � � £ �r#¤ r� £ �� ¤ �

Recallingthat �°�3� � , thisexpressionbecomesI � � K®± r �³² r � z xConsiderthe caseof two funnels,onetwice asbig asthe other; i.e. ���´� . This
expressioncanthenberearrangedto show that

� jo©µ©¬«µ­­ y zo¯ � �
is truewhenIW¶ � K r � � � (2)

At � �3� , Equation2 becomes�#·�¸ ¶ � . Thatis, to access' 	�
��Jy from thewiderfunnel,
thepathway � mustbe64timesmorelikely thanthepathway � . This is nothighly likely
andthis becomeslesslikely asthe narrower funnel grows. By the samereasoning,at� �º¹ , to access' 	�
��Jy from thewider funnel,thepathway � mustbe1728timesmore
likely thanthenarrowerpathway � . Thatis, undertheassumptionsof thisuniformcase,
asthewide funnelgetswider, it becomeslessandlesslikely thatit will beused.»

The oddsof an event with probability ¼¾½J¿CÀ is the ratio of the probability that the event
does/doesnot happen;i.e. Á�ÂÄÃÆÅ�QÇ ÁFÂÄÃ�Å



4.2 Assuming Non-Uniform Distributions

To explorethecasewhere   ry$� � 
�yÉÈ� �
and   ry$� � ��y¾È� �

(i.e. thenon-uniformprob-
ability distribution case),we createdandexecuteda small simulatormany times.The
mean Ê and standarddeviation Ë �

of the logarithm of the variables 

y e �oy e � e � were
pickedat randomfrom thefollowing ranges:ÊÍÌ³d � e � e "`"_" � ¨ f ;Î®Ïq(���
�� Ì�d�¨ " ¨
Ð e ¨ " � e ¨ " � e ¨ " ¶ e ¨ " Ñ f . Ê and ÎµÏ7(��H
�� wherethenconvertedinto probabil-
ity asfollows: Ë � �ÒÎµÏ7(��H

�TÓ Ê ; Ï7(�	1�o
;�¬�Q�W� �QÔ � � ¨ ² �ªÕ � «®© r×Ö yÙØ�Ú�Û%Ü
Ý Þ nªß

. Next, � and �
werepickedat randomfrom theranges:�YÌ�d � e � e "`"_" � ¨ f ; � Ì�d � e � "Ä� Ð e � " Ð e "_"_" � ¨ f .� was then calculatedand the numberof times � exceededdifferent valuesfor �
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Fig. 3. 100000runs of the funnel simulator. Y-axis
showswhatpercentageof therunssatisfiesEquation1.

is shown in Figure3.As might
be expected,at � � � e ��� �
the funnelsare the samesize
and the oddsof usingone of
themis 50%.As � increases,
then increasinglyEquation1
is satisfiedand the narrower
funnel will be preferred to
the wider funnel. The effect
is quite pronounced.For ex-
ample, at �á� ¹ , 82% of
our simulated runs, random
searchwill be10,000,000,000
timesmorelikely to favor nar-
row funnels

�X thesizeof alter-
native funnels.

In summary, in both the
uniformandnon-uniformcase,
random searchenginessuch
asHT0 will favor worldswith
narrow funnels.Sincenarrow funnelsmeanfewer worlds,we cannow assureour SE
colleaguesthat it is highly likely that randomsearchwill samplethe entirespaceof
possibleconclusions.

5 Conclusion

Modern SE researchurgently needsto addressthe issueof lightweight modelingin
orderto supportcurrentindustrialpractices.A centralproblemwith theprocessingof
lightweightmodelsis that they areincompleteandcontaincontradictions.AI research
hasbeenexploringtheoriescontainingcontradictionsfor decades.Randomsearchis an
AI techniquethatcanexploreverylargemodels,evenwhenthey containcontradictions.

BeforetheSEcommunityacceptsrandomsearch,it mustbeshown thatthesetech-
niquesarerelevant andpredictable.We have shown that a wide rangeof SE artifacts
can be mappedinto a declarative representationcalled NAYO graphs.We have also
shown thataftertherandomizedgenerationof asmallnumberof worldsfrom theNAYO



graphs,it is unlikely thatvery differentgoalswill bereachableif we randomlygener-
atedmany moreworlds.Hence,we assertthat (1) randomsearchis both relevantand
surprisinglypredictable;and(2) SEcanuserandomsearchto supportthe lightweight
modelingtoolsneededfor thecurrentfastpaceof softwaredevelopment.

References

1. P. Cheeseman,B. Kanefsky, andW. Taylor. Wherethereallyhardproblemsare.In Proceed-
ingsof IJCAI-91, pages331–337,1991.

2. L. ConsoleandP. Torasso.A Spectrumof Definitionsof Model-BasedDiagnosis.Compu-
tational Intelligence, 7:133–141,3 1991.

3. J.Corbett,M. Dwyer, J.Hatcliff, S.Laubach,C. Pasarenu,Robby, andH. Zheng.Bandera:
Extractingfinite-statemodelsfrom java sourcecode. In ProceedingsICSE2000,Limerick,
Ireland, pages439–448,2000.

4. H. Gabow, S.Maheshwari, andL. Osterweil.On two problemsin thegenerationof program
testpaths.IEEETrans.Software Engrg, SE-2:227–231,1976.

5. A. Kakas,R. Kowalski, andF. Toni. Therole of abductionin logic programming.In C. H.
D.M. Gabbayand J. Robinson,editors,Handbookof Logic in Artificial Intelligenceand
Logic Programming5, pages235–324.Oxford UniversityPress,1998.

6. N. Leveson.Safeware SystemSafetyAndComputers. Addison-Wesley, 1995.
7. J. McIntoshandR. McIntosh. MathematicalModelingand Computers in Endocrinology.

Springer-Verlag,1980.
8. T. Menzies and P. Compton. Applications of abduction:Hypothesistesting of neu-

roendocrinologicalqualitative compartmentalmodels. Artificial Intelligencein Medicine,
10:145–175,1997.Availablefrom http://tim.menzies.com/pdf/96aim.pdf.

9. T. Menzies,S.Easterbrook,B. Nuseibeh,andS.Waugh.An empiricalinvestigationof mul-
tiple viewpoint reasoningin requirementsengineering. In RE ’99, 1999. Available from
http://tim.menzies.com/pdf/99re.pdf.

10. T. MenziesandC. Michael. Fewer slicesof pie: Optimisingmutationtestingvia abduc-
tion. In SEKE’99, June17-19,Kaiserslautern,Germany. Available fromhttp://tim.
menzies.com/pdf/99seke.pdf , 1999.

11. T. MenziesandH. Singh. Many maybesmean(mostly) the samething. In 2nd Interna-
tional Workshopon SoftComputingappliedto Software Engineering(Netherlands),Febru-
ary, 2001.Availablefrom http://tim.menzies.com/pdf/00maybe.pdf.

12. J. Mylopoulos,L. Cheng,andE. Yu. From object-orientedto goal-orientedrequirements
analysis.Communicationsof theACM, 42(1):31–37,January1999.

13. D. Sahlin. An AutomaticPartial Evaluatorfor Full Prolog. PhDthesis,TheRoyal Institute
of Technology(KTH), Stockholm,Sweden,May 1991. Availablefrom file://sics.
se/pub/isl/papers/dan-sahlin-thesis.ps.gz.

14. B. Selman,H. Levesque,and D. Mitchell. A new methodfor solving hard satisfiability
problems.In AAAI ’92, pages440–446,1992.

15. J. Whittle andJ. Schumann.Generatingstatechartdesignsfrom scenarios.In Proceedings
of the 22nd InternationalConferenceon Software Engineering(ICSE).Limerick, Ireland,
June2000. Available from http://www.riacs.edu/research/detail/ase/
icse2000.ps.gz.

16. B. Williams andP. Nayak.A model-basedapproachto reactive self-configuringsystems.In
Proceedings,AAAI ’96, pages971–978,1996.


