
Validating Inconsistent Requirements Models using

Graph-based Abduction

TIM MENZIES

University of British Columbia, Canada

STEVE EASTERBROOK

University of Toronto, Canada

BASHAR NUSEIBEH

Imperial College of Science Technology and Medicine, UK

and

SAM WAUGH

Defence Science and Technology Organisation Air Operations Division, Australia

Multiple viewpoints are often used in requirements engineering to facilitate traceability to stake-

holders, to structure the requirements process, and to provide richer modeling by incorporating

multiple conicting descriptions. Toleration of inconsistency is a key advantage. However, in-

consistency introduces considerable extra complexity when reasoning about requirements. This

complexity may limit our ability to maintain a lazy approach to consistency management when

we want to validate requirements models. In this paper, we describe a series of experiments with

graph-based abduction for multiple world reasoning over inconsistent requirements models. Our

abductive algorithm, HT4, sorts an inconsistent model into a number of consistent worlds that

support answers to speci�c queries about the model. This approach avoids the trivialization that

occurs in classical deductive inference in the presence of inconsistency. Experiments with this

approach reveal that surprisingly few worlds are generated. This result is robust over a range

of di�erent models, di�erent amounts of data available from the domain, and di�erent modeling

primitives for representing time. To explore the implications of this result, we developed a second

algorithm, HT0, that extracts a single world at random from an inconsistent model. Experimen-

tally, HT0 runs fast even for very large models, and supports most of the queries addressed by

HT4. The paper discusses possible reasons for this �nding, and the implications it has for software

engineering in general. We conclude that it is not diÆcult to support reasoning in the presence

of inconsistency even in large models.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Speci�cations

General Terms:

Additional Key Words and Phrases: Abductive inference, inconsistency, multiple world reasoning,

viewpoints

This work was partially supported by NASA through cooperative agreement #NCC 2-979, par-

tially by UK EPSRC through funding for project MISE (GR/L 55964), and partially by the Aus-

tralian Defence Science Technology Organisation. The article is a revised and expanded version

of a paper presented at the Fourth IEEE International Symposium on Requirements Engineering.

Authors' addresses: T. Menzies, Department of Electrical and Computer Engineering, Univer-

sity of British Columbia, 2356 Main Mall, Vancouver, B.C. Canada V6T 1Z4, tim@menzies.com;

S. Easterbrook, Department of Computer Science, University of Toronto, 6, King's College Rd,

Toronto, Ontario, Canada, M5S 3H5, sme@cs.toronto.edu; B. Nuseibeh, Department of Comput-

ing, Imperial College, 180 Queens Gate, London, UK, SW7 2BZ, ban@doc.ic.ac.uk; S. Waugh,

Defence Science and Technology Organisation Air Operations Division, PO Box 4331, Melbourne,

Australia, 3001, sam.waugh@dsto.defence.gov.au;



2 � Tim Menzies et al.

1. INTRODUCTION

Requirements Engineering (RE) is the process of identifying high-level project goals

and re�ning them into software speci�cations. This process is complicated by the

inconsistent and incomplete nature of the information available early in the soft-

ware life cycle. Di�erent stakeholders often have very di�erent perspectives on the

requirements. They use di�erent vocabulary, they talk about di�erent aspects of

the problem, they have di�erent ways of structuring their descriptions, and they

may have conicting goals. For these reasons, information gathered from di�erent

stakeholders can be diÆcult to consolidate. It can even be hard just to distinguish

which things the various stakeholders agree about, and which things they disagree

about.

In viewpoints-based RE, an emphasis is placed on capturing separately descrip-

tions of the viewpoints of di�erent stakeholders, and on identifying and resolving

conicts between them [Finkelstein et al. 1994; Easterbrook 1991b]. Darke and

Shanks [1996] note that \if di�erent perceptions of the same problem domain can

exist, then it may not always be possible, or desirable, to develop a single integrated

viewpoint [that] attempts to satisfy the needs of all stakeholders". Reasoning about

multiple viewpoints will be increasingly important as software development focuses

more on the development of product families, on building software by integrating

commercial-o�-the-shelf packages, on distributed development over the web, and

on software targeted at globally distributed users with very di�erent needs and

contexts of use.

A key advantage to the use of viewpoints is that inconsistencies between view-

points can be tolerated [Easterbrook and Nuseibeh 1996]. Toleration of inconsistent

viewpoints is bene�cial for three di�erent aspects of requirements engineering:

|Stakeholder buy-in and traceability. By capturing separately di�erent stake-

holder viewpoints during elicitation, stakeholders can identify their contributions,

and requirements can be traced back to a source.

|Structuring the process. By permitting parallel development of separate `work-

pieces', with no hard constraint on consistency between them, the analysis and

speci�cation process can be distributed amongst a team of developers.

|Structuring the descriptions. Richer requirements models can be obtained by

separating out di�erent concerns, employing multiple problem structures, and

delaying resolution of conicts.

Most existing approaches to requirements modeling and validation assume that a

consistent model is needed; such methods provide little or no support for managing

inconsistencies. Tools that overcome this limitation by providing explicit support

for identifying, tracking and resolving inconsistencies are emerging [Easterbrook

and Nuseibeh 1996; Grundy et al. 1998; Robinson and Pawlowski 1999]. However,

there is disagreement over how long inconsistency can and should be tolerated dur-

ing software development. For example, van Lamsweerde et al. [1998] concentrate

on resolving inconsistency at a very early stage by analyzing and resolving diver-

gences between stakeholder goals, while Nuseibeh et al. [2000] argue that some

inconsistencies are never resolved, even in an operational system.



Validating Inconsistent Requirements Models using Graph-based Abduction � 3

In order to determine how long inconsistency should be tolerated during de-

velopment, we need to examine the costs. At �rst sight, the costs of tolerating

inconsistency seem high. For example, assume that our requirements model can

be expressed as a set of sentences in some suitable logic. Determining whether

an arbitrary set of sentences is consistent is an NP-complete problem, and hence

global consistency will be expensive to test in large models. Classical reasoning is

of limited use for analyzing inconsistent models because the presence of a single

contradiction results in trivialization: anything follows from A ^ :A. This makes

inconsistent requirements models impossible to validate because we cannot refute

them. We could overcome this by sorting an inconsistent model into maximally

consistent subsets (which we will refer to as `worlds'). Unfortunately, this sorting

is also an NP-complete problem. Gabow et al. [1976] showed that the worst case

time complexity for generating a consistent pathway through a space containing

incompatible pairs is exponential (O(2N )).

Despite this complexity, practical systems can be built to do reasoning over incon-

sistent models for reasonable sized problems. In the original ViewPoints framework

[Finkelstein et al. 1994] the natural structure of the modeling process is exploited so

that each viewpoint becomes a self contained speci�cation tool. Inconsistencies are

contained at the boundaries between viewpoints, permitting local reasoning with

each viewpoint. Inter-viewpoint consistency is explored using a set of heuristic

checks. Recently we have explored more rigorous approaches, such as the use of

labeled quasi-classical logic [Hunter and Nuseibeh 1998], abductive inference [Men-

zies 1996a; Nuseibeh and Russo 1999], and multi-valued logics [Chechik et al. 2000].

For the experiments described in this paper we used a particular form of abductive

inference known as graph-based abductive validation.

But if we permit inconsistent models to be constructed during elicitation, we

will eventually want to validate them. We can build analysis tools that tolerate

inconsistency, but in so doing we incur a signi�cant cost in complexity. At what

point should we attempt to combine the multiple viewpoints into a single consistent

model? The goal of this paper is to address that question.

We proceed as follows. We �rst provide an overview of the use of viewpoints and

inconsistency management in requirements engineering (Section 2). We then intro-

duce the use of abductive inference, present our graph-based abductive validation

tool, HT4, and show how it can be used for handling conicting viewpoints during

requirements modeling (Section 3). We then describe two experiments in which

we mutated an initial domain model to obtain a range of conicting viewpoints,

and then used HT4 to validate the multiple viewpoints against an existing data

set (Section 4). The �rst experiment shows that, at least in the domain studied,

inconsistent models exhibited far less indeterminacy than we expected. The sec-

ond experiment indicates that multiple world reasoning may be unnecessary. This

�nding led to the development of HT0, a simpli�ed version of HT4. Whereas HT4

searches all possible worlds, HT0 is a randomized search of some of the worlds.

While HT4 is slow (O(2N )), HT0 ran very fast (O(N2)) even for very large models

(N = 20; 000 clauses). Based on these experiments, we conclude that reasoning

with inconsistent viewpoints is far simpler than we had thought (section 5). Hence,

we need not rush to combine stakeholder's viewpoint into a possibly premature and

arti�cial uni�ed view, even for large requirements problems.



4 � Tim Menzies et al.

2. VIEWPOINTS AND INCONSISTENCY IN RE

Viewpoints have been used in Requirements Engineering as a structuring technique,

to cope with complexity during requirements elicitation and modeling. Unfortu-

nately, di�erent authors have used the term `viewpoint' for widely di�erent things.

For example viewpoints have been used to characterize entities in a system's envi-

ronment [Kotonya and Sommerville 1992], to characterize di�erent classes of users

[Ross 1985], to distinguish between stakeholder terminologies [Stamper 1994], and

to partition the requirements process into loosely coupled workpieces [Nuseibeh

et al. 1994]. Darke & Shanks [1996] provide an excellent survey and comparison.

A common theme across most of these usages is that `viewpoints' provide a tech-

nique for partitioning a large quantity of information collected from many di�erent

sources. The information is collected in coherent, but overlapping chunks (`view-

points'). Because viewpoints can overlap, there is the potential for inconsistency

[Spanoudakis et al. 1999]. However, the inconsistencies between viewpoints can be

dealt with separately from the task of describing and elaborating each viewpoint. It

is this toleration of inconsistency that distinguishes viewpoints from other problem

structuring techniques.

Most of the work on viewpoints has emphasized the bene�t they o�er during re-

quirements elicitation. Viewpoints can be identi�ed with stakeholders, with classes

of users, with individual analysts, and so on, to address the multiple perspectives

problem [Finkelstein et al. 1994]. Each viewpoint owner is then free to describe her

contribution using whatever notation and problem decomposition she chooses, and

to focus on the aspects that matter most to her.

In this paper, we are interested in what happens to those inconsistent viewpoints

once they have been elicited. How can we build requirements models that incor-

porate inconsistent information from multiple viewpoints, and how can we validate

these models? Of course, building models in requirements engineering is not an end

in itself: models are useful only if they help us validate our understanding of the

requirements, and if they help us communicate that understanding to others.

To understand why most RE methods assume inconsistencies should be removed

before models can be validated, we can compare requirements validation with

theory-building in science. Many requirements engineers adopt a logical positivist

approach { essentially the belief that there is an objective world that can be mod-

eled by building a consistent body of knowledge grounded in empirical observation

[Nuseibeh and Easterbrook 2000]. In RE, this is the view that the requirements

describe some objective problem that exists in the world, and that validation is

the task of making suÆcient empirical observations to check that the problem has

been captured correctly. Popper's observations on the limitations of empirical ob-

servation clearly apply: scienti�c theories can never be proved correct through

observation, they can only be refuted [Popper 1963]. For RE, this suggests that

validation should proceed by devising experiments to attempt to refute the cur-

rent statement of requirements [Jackson 1995]. Descriptions that are not refutable

are therefore of little use, which explains the need for consistency; an inconsistent

theory is not refutable using classical reasoning because everything follows from it.

Just as logical positivism was severely criticized in the latter part of the twentieth

century, so requirements methods that adopt this stance have been questioned. For



Validating Inconsistent Requirements Models using Graph-based Abduction � 5

example, take the Kuhnian idea that observation is not value-free, but rather is

theory-driven, and biased by the current paradigm [Kuhn 1962]. For requirements

engineers, this implies that the methods and tools they use dominate the way that

they see and describe problems. In the extreme case, this can shift the problem of

validating requirements statements to a problem of convincing stakeholders that the

chosen representation for requirements models is appropriate [Goguen and Linde

1993]. There is a growing recognition in RE that usually the task is not to describe

some pre-existing problem in the world; more often the task involves negotiation

and consensus building among stakeholders who have conicting goals [Easterbrook

1991b; van Lamsweerde et al. 1998; Boehm et al. 1998; Damian et al. 2000].

The use of viewpoints to capture overlapping, inconsistent information is a prag-

matic attempt to address these criticisms. For example, individual viewpoints can

be validated separately by the stakeholders that `own' them. Viewpoints also al-

low inconsistencies to be tolerated in an evolving speci�cation. This is important,

as the inconsistencies often indicate areas of uncertainty, where more stakeholder

input is needed [Nuseibeh et al. 2000]. Unfortunately, this does not solve the prob-

lem of validating our entire set of viewpoints: existing approaches still assume that

eventually we need to resolve all the inconsistencies as a basis for validation.

In this paper, we propose and test an alternative approach that allows us to

validate a merged set of viewpoints without �rst resolving the inconsistencies.

3. ABDUCTIVE REASONING OVER VIEWPOINTS

To validate requirements models that incorporate inconsistent information from

multiple viewpoints, we need to be able to reason about the models. Speci�cally,

we would like to be able to formally challenge the model [Rushby 1995]: we express

the requirements model formally, and then challenge it by �nding properties that

should hold if the model is valid. The properties against which the model is tested

are drawn from the domain [Easterbrook et al. 1998], for example from empirical

data, from expert opinion, or from stakeholder's goals. In this section we describe

how abductive inference can be used for this type of validation.

3.1 Classical Abductive reasoning

Informally, abduction is an inference technique that �nds the set of assumptions

needed to draw a speci�c conclusion [O'Rourke 1990]. Imagine that we have a

domain theory1, D, along with some observed facts, I , about the domain. Deductive

Inference allows us to derive some conclusions, O, from D and I , such that

I;D ` O (1)

I and O can be thought of as inputs and outputs for a deductive reasoning

engine with D as its knowledge base. Inductive Inference allows us to derive a

domain theory, D, given lots of examples of I and O. Abductive Inference allows us

to identify which I would be needed in order to derive a given O from the domain

theory, D. More speci�cally, we may know some of the inputs and wish to know

1We will use the term domain theory as synonymous with the more common software engineering

term domain model, as we intend both the logic and scienti�c notion of a `theory'.



6 � Tim Menzies et al.

what additional inputs are needed to derive particular outputs. We refer to the

additional inputs as assumptions, A, so the inference task becomes: given I , D,

and O, �nd a minimal A such that:

I;D;A ` O (2)

and, because Equation 2 is trivially true in any classical deductive logic if the

antecedents are inconsistent, we need to check:

I;D;A 0 ? (3)

Like inductive inference, abductive inference is under-constrained. There may be

many possible choices for A, so the results need to be assessed using a plausibility

operator [Bylander et al. 1991].

Abductive inference is closely related to deductive inference; the main di�erence

is in terms of proof strategy. This can be seen more clearly when we examine

soundness and completeness. Abduction uses the standard set of deductive infer-

ence rules to construct proofs, hence abductive proofs are sound (with respect to

a given semantics) for any logic in which deductive inference is sound. To consider

completeness, note that Equation 2 can be re-written as

I;D ` A! O (4)

For reasoning over consistent theories (i.e. when Equation 3 holds), abductive

inference is complete for any logic in which the deductive inference rules are com-

plete: if we restrict ourselves to the case where A = true, then Equation 4 reduces

to Equation 1, which is exactly the deductive case2. However, for inconsistent the-

ories, we use a paraconsistent form of abductive inference, described in the next

section, for which completeness and soundness with respect to the classical conse-

quence relation ` do not apply3.

Abductive inference has been used for a wide range of tasks [Menzies 1996b],

including identifying missing assumptions, and generating explanations for given

observations. In this paper, we concentrate on its use to validate inconsistent

domain models formed by merging multiple viewpoints. The next two sections

describe how abductive inference can be used for inconsistent domain theories,

and how we use it as a validation tool. We will then present our graph based

abductive validation tool, HT4, and show how it can be used to validate inconsistent

viewpoints.

3.2 Paraconsistent abductive reasoning

Abductive inference can be used for inconsistent domain theories in the following

way. Firstly, note that if D contains contradictions, then Equation 3 is unsatis�able

2and hence deductive inference can be viewed as just a special case of abductive inference!
3Soundness and completeness of paraconsistent reasoning can be de�ned in terms of a non-classical

consequence relation, such as credulous consequence, j�, which is de�ned over maximally consistent

subsets of an inconsistent theory [Makinson 1994]. However, such considerations are beyond the

scope of this paper.



Validating Inconsistent Requirements Models using Graph-based Abduction � 7

for any A. So instead of using the entire theory, we look for sets of assumptions aj
that satisfy:

ij ; dj ; aj ` oj (5)

for dj�D, ij�I , oj�O, and to avoid trivialization, we require

ij ; dj ; aj 0 ? (6)

Operationally, an abductive algorithm searches for proofs of elements of O, using

the structure of the domain theory to guide the search. Each time a candidate

proof, ik; dk; ak, of elements of O, is found, we check whether the terms used in

dk; ak are consistent with any world dj ; aj that we have already found; if so, we add

the terms used in the new proof to dj ; aj , if not we create a new world to contain

dk; ak. In this way we develop a set of maximally consistent subsets of D, which

we call worlds. For a plausibility operator to evaluate each aj , we could simply

measure joj j, and prefer those worlds that cover the more elements of O.

In e�ect, this form of abductive inference adds paraconsistent reasoning to an

existing (non-paraconsistent) logic. Paraconsistent reasoning permits some contra-

dictions to be true, without then entailing that all contradictions be true [Mortensen

1995]. Classical deductive logic is not paraconsistent, because anything follows from

a contradiction, including all other possible contradictions. Paraconsistent logics

are interesting because they avoid trivialisation in the presence of inconsistency4;

for this reason they appear to have useful applications for reasoning about incon-

sistent speci�cations [Hunter and Nuseibeh 1998].

To show that abductive inference is paraconsistent, we need to distinguish be-

tween theories and theory presentations. A theory presentation is a subset of the

sentences of a theory, which, when closed under deduction, forms the theory. In

a non-paraconsistent logic, if a given theory presentation contains a contradiction,

then the corresponding theory is trivial. However, given such a theory presenta-

tion, our abductive inference procedure constructs only those proofs that do not

contain contradictions. These are then sorted into worlds, each of which is consis-

tent. Hence, the abductive closure of an inconsistent theory presentation is actually

a set of theories, each of which contains no contradictions. We have therefore al-

lowed true contradictions in a theory presentation, without then entailing that all

contradictions be true in the corresponding theory.

Abductive inference does not by itself form a paraconsistent logic, because we

do not change the basic deduction rules; rather we achieve the same e�ect by

restricting the form of the proofs that are constructed. Hence we describe this as

paraconsistent reasoning rather than a paraconsistent logic.

3.3 Validating inconsistent theories

In this paper we use abductive inference for validating domain theories. Abductive

inference is ideally suited to this, as it allows us to collect empirical observations,

4for an accessible introduction to paraconsistent logics, see the Stanford Encyclopedia of Philos-

ophy at http://plato.stanford.edu/entries/logic-paraconsistent/



8 � Tim Menzies et al.

express them as pairs hI; Oi, and present them to an abductive inference engine to

be tested against the theory, D. If there is no set of assumptions, A, that satis�es

Equation 2, then our data refutes the theory. If we do �nd di�erent sets of assump-

tions, and at least one of them is plausible, then we have failed to refute the theory.

Note that deductive inference is less suited to this task, because Equation 1 may

not hold if the theory is incomplete, and in Requirements Engineering we expect

our domain theories to be incomplete.

This approach was �rst proposed by Feldman and Compton [1989], then gener-

alized and optimized by Menzies [1996c]. Abductive validation has found a large

number of previously unseen errors in scienti�c theories taken from internationally

refereed publications [Menzies and Compton 1997]. The errors had not previously

been detected and had escaped peer review prior to publication.

The approach works equally well for inconsistent theories. We use the paracon-

sistent abductive reasoning described above to generate multiple worlds from the

inconsistent theory for a given pair hI; Oi. If we do not �nd any world that contains

proofs for all of O, then the pair hI; Oi is not supported by the theory - we have

found a refutation. Inconsistent theories exhibit more indeterminacy than consis-

tent theories [Clancy and Kuipers 1997], although our experiments below indicate

there is less indeterminacy that one might expect. The greater the indeterminacy,

the less likely it is that we will be able to refute the theory; there is greater chance

that at least one world will support the data. However, contrast this with deductive

validation, with which we can never refute an inconsistent theory.

The idea of refuting an inconsistent theory makes sense if we view each inconsis-

tency as a disagreement between the people that developed the theory (our stake-

holders). We may still be able to �nd data that contradicts the things that the

stakeholders do agree on.

Note that we can also use the approach to tell us whether the theory is consistent

with respect to a given data set. If we do not generate multiple worlds for some

given query hI; Oi, the domain theory is consistent for the portion of the domain

covered by hI; Oi. Conversely, if we do generate multiple worlds, then the query

hI; Oi represents a boundary condition, i.e. a condition for which the inconsistency

does matter.

Our de�nition of a boundary condition is similar to that of van Lamsweerde et al.

[1998], who use it when reasoning about inconsistencies between stakeholder goals.

Briey, they de�ne a divergence as an inconsistency between goals G1,...,Gn, in

the presence of some boundary condition B (assuming a domain theory, D), such

that:5:

D;B;^1�i�nGi ` ? (7)

8j(D;B;^i6=jGi 0 ?) (8)

However, this de�nition focuses only on divergences between the stakeholder

goals, Gi, not within the domain theory itself. In practice, we have found that

domain theories themselves may be inconsistent, especially when constructed from

5There is a third condition concerning the feasibility of B, which we will not concern ourselves

with here.



Validating Inconsistent Requirements Models using Graph-based Abduction � 9

multiple viewpoints. Our approach allows us to determine whether a given data set

hI; Oi forms a boundary condition with respect to the domain theory itself { i.e. it

is a condition that exercises a latent inconsistency in the domain theory. We believe

this to be much more useful than insisting that we eliminate all inconsistencies from

the domain theory before it can be used for reasoning.

3.4 HT4 - An abductive validation tool

Our abductive validation tool, HT4, uses graph-based abduction. We assume that

our domain theory can be represented as a directed graph, where each node is a

term that can be assigned a value, and each edge is an inference step that allows

us to propagate the values. Our sets of inputs, outputs and assumptions are sets

of assignments of values to some of the nodes of the graph. In principle, we can

represent many di�erent types of modeling scheme used in requirements engineering

in this way:

|the nodes might be predicates taking the values true or false, and the edges are

entailments;

|the nodes might be states represented as state vectors, and the edges represent

next-state relations;

|the nodes might be soft goals taking a range of values representing degree of

satisfaction, and the edges represent inuence relationships between goals (e.g.

see Figure 1).

For the examples in this paper, we will use the latter, as this modeling scheme has

been widely used in the early stages of Requirements Engineering (see for example

the softgoal framework of Mylopoulos et al. [1999]).

HT4 is a graph-based abductive validation algorithm [Menzies and Compton 1997;

Menzies 1996c] that allows us to perform inference on an inconsistent theory, with-

out trivialization. Graph-based abductive validation builds explanations (worlds)

for each query hI; Oi from a domain theory represented as a graph. The pairs hI; Oi

represent speci�c behaviors that we would like the theory to cover. In other words,

each query asks: does the graph contain paths from the given set of inputs, I , to

the given set of outputs, O?

In an inconsistent domain theory, there may be paths through the graph that

allow us to draw contradictory conclusions: for a given set of inputs, we can derive

conicting values for other nodes depending on the path(s) taken. HT4 deals with

this by �nding all possible paths from outputs back to inputs across the directed

graph, and treating each maximally consistent subset of these paths as a separate

world. If two paths contain contradictory value assignment for some of their nodes,

they are stored in separate worlds. HT4's plausibility operator simply evaluates

each world generated according to its coverage of the set of queries.

3.5 HT4 for reasoning over viewpoints

Firstly, note that we distinguish viewpoints from worlds. Viewpoints correspond

to natural division of requirements information into overlapping chunks, perhaps

representing di�erent stakeholders, di�erent notations, or di�erent aspects of the

domain. We use the term worlds to denote maximally consistent subsets of a theory

generated during analysis. That is, viewpoints are used to preserve traceability to



10 � Tim Menzies et al.

Dr Thin Dr Thick

usability performance

flexibility

flexible

work

patterns
maintainability

sharing of

information

task

switching

usability

flexibility

performance

maintainability

task

switching

sharing of

information

future

growth

++++

++

++

++

++

++

-- --

--

Fig. 1. Soft-goal viewpoints from two experts: adapted from [Mylopoulos et al. 1999]. Dr. Thick's

and Dr. Thin's ideas are shown in thick and thin lines respectively.

stakeholders' contributions, while worlds are used purely to facilitate reasoning. If

several viewpoints are consistent they can be covered by a single world; conversely

if a single viewpoint contains inconsistencies, it may be divided into several worlds.

To illustrate how HT4 can be used to reason with conicting viewpoints, con-

sider the following example. A requirements engineer has interviewed two domain

experts, Dr. Thick and Dr. Thin, to create the two viewpoints shown in Figure 1.

The two viewpoints represent the experts' views of the inter-relationship of the

goals relating to the development of a new CASE tool.

These viewpoints are softgoal graphs recorded in the QCM notation [Menzies

and Compton 1997]. Each node represents a variable that can take three possible

values: up, down or steady. There are two types of dependencies between nodes,

as follows. An edge labelled ++ indicates a direct connection between goals; for

example Dr. Thin would explain exible work patterns being up (or down) using

exibility being up (or down respectively). An edge labeled �� indicates an inverse

connection between goals; for example Dr. Thick would explain maintainability

being up (or down) using exibility being down (or up respectively).

Note that our doctors hold some of the same views, but focus on di�erent aspects

of the system. Note also that our doctors disagree on the connection between

exibility and maintainability. Dr. Thin holds the standard view that future change

requests are best managed via a exible system. Dr. Thick takes the opposite

view, saying that when developers work in very exible environments, their bizarre

alterations confuse the maintenance team.

In e�ect, the viewpoints represent overlapping fragments of a domain theory. We

can query these viewpoints to �nd out how we might e�ect certain changes. For

example, we could ask whether it is possible to increase our ability to move between

tasks (\task switching"=up) and increase future growth (\future growth"=up)

while reducing the amount of documentation shared across the development team



Validating Inconsistent Requirements Models using Graph-based Abduction � 11

Dr Thin + Dr Thick

usability performance

flexibility

flexible work

patterns

maintainability

sharing of

information

task

switching

++++

++
++

-- --

future

growth

++

++

++

--

Fig. 2. Union of the viewpoints of Figure 1.

(\sharing of information"=down).

We can assess the two viewpoints in Figure 1 in a number of ways. For example,

we can measure how useful the viewpoints are in answering queries related to the

requirements analysis. More importantly, we can partially validate the viewpoints

against historical data, or data observed in similar domains: if one viewpoint ex-

plains more of the observed behaviors than another, we can regard it as \more

valid". However, selecting one of these viewpoints in preference to the other may

not yield the best solution. It is unlikely that, for example, Dr. Thick is totally

correct and Dr. Thin is totally wrong. It may be preferable to combine portions of

Dr. Thick's and Dr. Thin's viewpoints. Hence, we �rst merge the two viewpoints

to create a single (inconsistent) domain theory, Figure 2. This combined space will

be explored, looking for portions that explain our set of observed behaviors.

To demonstrate how graph-based abductive validation allows us to validate an

inconsistent model, imagine that we have an observed case where performance=up

and usability=down led to task switching=up, future growth=up and sharing of

information=down. We can present this as a query to the domain theory in Figure 2,

with appropriate inputs and outputs. There are �ve proofs P across Figure 2 that

can reach the outputs from the inputs:

P.1: performance=up, task switching=up

P.2: usability=down, exibility=up, exible work patterns=up, task switching=up

P.3: usability=down, exibility=up, future growth=up

P.4: usability=down, sharing of information=down

P.5: performance=up, exibility=down, exible work patterns=down, sharing of

information=down

Note that these proofs contain contradictory assumptions; e.g. exibility=up in

P.2 and exibility=down in P.5. When we sort these proofs into maximal subsets

that contain no contradictory assumptions, we arrive at the two worlds shown in

Figure 3. Note that world #1 covers all the outputs in the query while world #2

only covers two-thirds of the outputs.



12 � Tim Menzies et al.

World 1: assume flexibility=up

usability=down

flexibility=up

flexible work
patterns=up

sharing of
information=down

task
switching=up

++++

++

-- --

future
growth=up

++
++

++

World 2: assume flexibility=down

usability=down performance=up

performance=up

flexibility=down

task
switching=up

sharing of
information=down

flexible work
patterns=down

++

++
++

Fig. 3. Worlds from Figure 2. World #1 contains the proofs that do not contradict exibility=up;

i.e. P.1, P.2, P.3, p.4. World #2 contains the proofs that do not contradict exibility=down;

i.e. P.1, P.4, P.5.

The use of viewpoints in requirements engineering is geared towards gaining

stakeholder buy-in and facilitating discussion as much as it is about selecting the

best model. Hence, this abductive approach does not o�er automatic support

for resolving conicts between di�erent experts. However, it does support the

automatic generation of reports describing the relative merits of the ideas of Dr.

Thick and Dr. Thin as follows:

|Our query does not refute the theory, because we found a world (world #1) that

contains proofs for all of O.

|Our query is a boundary case that reveals an inconsistency. Hence, with re-

spect to the our observed case, inputs hperformance=up, usability=downi and

outputs hfuture growth=up, sharing of information=down, task switching=upi,

our doctors' views are inconsistent.

|We can measure the utility of di�erent worlds. This can be achieved through

a variety of scoring functions for generated worlds. For example, we might give

world #1 a higher score than world #2 because world #1 covers all the outputs.

More sophisticated scoring functions might give higher scores to worlds that

contain multiple reasons for believing each output.

Note how abduction can guide the viewpoint owners to a point of collaboration,

despite having conicting viewpoints. Rather than focus on the obvious dispute

(the e�ects of exibility on maintenance), abduction can show the requirements

engineer how to validate other portions of the viewpoints using domain data during

the analysis process.

In summary, abductive reasoning builds worlds from the union of the viewpoints

of di�erent stakeholders. This framework will be used below to assess the utility

of multiple world reasoning for conicting viewpoints. In particular, we will assess



Validating Inconsistent Requirements Models using Graph-based Abduction � 13

whether generating multiple worlds provides greater expressive power than a single

world chosen at random from those generated.

3.6 Applying HT4 in requirements analysis

Before we present our experiments in the cost and bene�ts of multiple world rea-

soning in RE, we need to consider the broader issues surrounding our use of graph

based abductive validation. Although we have described a particular example using

abduction to reason about softgoal graphs, we expect that the approach generalizes

to a wide variety of modeling notations, with the following limitations:

|We assume a vocabulary shared by all viewpoint owners. For example, when the

domain experts in the example above talk about \exibility", we assume they

both mean the same thing. In practice, conicts over the use of vocabulary are a

pervasive and complex problem. E�ort can be expended early in the requirements

process to establish a common ontology, but this does not guarantee to prevent

terminological clashes, because of ontological drift [Easterbrook 1995]. Often,

such problems are �rst revealed as inconsistencies between viewpoints [Easter-

brook and Nuseibeh 1996]; the analysis we have described above may help to

pinpoint terminological clashes. For methods of repairing terminological clashes

see, for example, the repertory grid research of Gaines and Shaw [1989; 1997].

|We assume that there exists a dataset that can be used to validate the viewpoints,

which is endorsed by the entire community. The dataset may be a historical case

library, or a set of observations taken during the RE process. Our approach is of

limited use if the viewpoint owners disagree about the validity of the dataset.

|We assume a scoring function where the worth of a world is along the lines

of what percent of the observed behaviors is found in that world? Further, our

scoring system assumes there is a uniform distribution of utilities across the

queries. That is, it measures worth by the number of behaviors explained, and

ignores the fact that some behaviors may be more important than others. This

may be an incorrect assumption in some requirements processes. The di�erences

in utilities of stakeholders' goals may be crucial when di�erences between their

viewpoints are considered.

|We assume that the di�erent viewpoints are expressed in the same notation.

Despite these limitations, our abductive approach has a number of advantages.

Firstly, unlike previous approaches for analyzing viewpoints, we don't assume that

individual viewpoints are internally consistent and we don't need to label infor-

mation during the analysis according to the viewpoint that it is from. Recalling

the above example, abduction can handle inconsistencies within the viewpoint of a

single expert. Further, this approach can check whether the disagreement between

viewpoints matter for di�erent kinds of analysis: if they don't generate di�erent

worlds for given queries when they are combined, then they are not in conict as

far as those queries are concerned.

Secondly, graph-based abductive validation is not the Justi�cation-based Truth

Maintenance System (JTMS) [Doyle 1979] approach used in other conict recogni-

tion and management systems (e.g. [Rich and Feldman 1992]). A JTMS searches

for a single set of beliefs. Hence, by de�nition, a JTMS can only represent a single



14 � Tim Menzies et al.

world at any one time. Our approach is more like the Assumption-based Truth

Maintenance Systems (ATMS) [DeKleer 1986]. An ATMS maintains all consistent

belief sets. We believe that an ATMS approach is better suited to conict man-

agement in requirements engineering, since the di�erent belief sets (worlds) are

available for reection.

Thirdly, one striking feature of other systems that support multiple-worlds (e.g.

CAKE [Rich and Feldman 1992], TELOS [Plexousakis 1993]) is their implemen-

tation complexity. Rich and Feldman especially comment on the complexity of

their heterogeneous architecture [Rich and Feldman 1992]. We have found that it

is easier to build eÆcient implementations [Menzies 1996a; 1996c] using the above

graph-based approach than using purely logical approaches.

Fourthly, these tools do not su�er from the restrictions of other tools. For exam-

ple, while earlier tools such as Synoptic [Easterbrook 1991a] only permit compar-

isons of two viewpoints, our approach can compare N viewpoints.

Lastly, the approach is simple enough that we can perform experiments on the

utility of multiple world reasoning under di�erent circumstances. The remainder

of this paper describes such experiments.

4. EXPERIMENTS WITH ABDUCTION

Our experiments are concerned with the costs of multiple world reasoning for

analysing requirements models. Such analysis is important to determine at what

point during the development process we need to resolve conicts between require-

ments. If the costs of multiple world reasoning are too high, we should attempt to

resolve any inconsistencies immediately they arise; requirements conicts should be

handled early so that a single consistent requirements model can be developed and

maintained. If on the other hand, the costs are low, we can delay resolution of in-

consistencies, allowing greater freedom during requirements modeling to entertain

divergent views and to delay design decisions.

The �rst experiment explores how many worlds are generated during our ab-

ductive reasoning. Researchers into qualitative models often comment on the in-

determinacy of such models (the generation of too many worlds). Clancy and

Kuipers [1997] suggest that qualitative indeterminacy is the major restriction to

the widespread adoption of qualitative reasoners. Our �rst experiment set out to

explore whether this is a problem for our graph-based abductive reasoner.

The second experiment explores the expressive power of multiple worlds. One of

the reasons for maintaining multiple viewpoints during requirements modeling is

the assumption that allowing inconsistencies between stakeholders delivers greater

expressive power. In other words, a single consistent model would be less able to

cover all the requirements our stakeholders care about. Our second experiment

compared the expressive power of multiple worlds with a single world chosen at

random.

4.1 Experimental setup

The experiments were set up as follows. We chose as an example domain a set of

quantitative equations describing a �sheries system taken from Bossel [1994]. We

developed an initial domain model (Figure 4) to represent these equations, then

mutated it using a series of mutators to generate multiple (conicting) viewpoints.



Validating Inconsistent Requirements Models using Graph-based Abduction � 15

fish growth
rate

boat
investment
fraction

boat
purchases

catch potential

--

++

++

++

++ ++
++

++

++

--

++ ++

++

++

--

fish catch

boat
maintenance

income
net

catch
proceeds

++

--

fish density

decomissions
boat

fish population

in boat
numbers

change 

change in

Fig. 4. The �sheries model. Adapted from [Bossel 1994] (pp135-141).

We then combined these viewpoints in various ways to generate a series of incon-

sistent models to be used as our experimental treatments. Data from the original

�sheries equations was used as validation data for the abductive reasoning. We will

now explain these treatments in more detail.

Firstly, note that our initial model (Figure 4) is similar to the softgoal graphs of

Figure 1, with one signi�cant complication. The variables change in boatNumbers

and change in �shPopulation explicitly model rates of change over time; we therefore

need to handle time in the modeling language. The original published data from

the quantitative equations o�ered state assignments at each year. To handle this,

we copied the qualitative model once for every time tick (year) in the simulation.

That is, variables like �shCatch were copied to become �shCatch@1, �shCatch@2,

etc. Variables at time i were connected to variables at time i+1 using a particular

temporal linking policy, which we discuss below.

The mutators we used were as follows:

|Mutator 1 corrupted the edges on the original �sheries model. This mutator

selects N links at random in the �sheries model and ipped the annotation (++

to �� and vice versa). There are 17 edges in the �sheries model. Note that as

the number of edges mutated increases from 0 to 17, the mutated model becomes

less and less like the original model.

|Mutator 2 added edges to the �sheries model. The original model has 12 nodes

and 17 edges (fanout=17/12=1.4). This mutator added 0, 5, 10, 15, 20, 25

or 30 new edges at random (checking each time that the added edges did not

exist already in the model). That is, the model fanout was mutated from 1.4 to



16 � Tim Menzies et al.

xnode:
explicit node
linking

a1
--
++ b1

--

++

++

--

a2
--
++ b2

a3
--
++ b3

iedge:
implicit edge
linking

a1
--
++ b1

a2
--
++ b2

a3
--
++ b3

++

++

Fig. 5. Direct(A,B) and inverse(B,A) renamed over 3 time intervals using di�erent temporal

linking policies. Dashed lines indicate time traversal edges.

(17+30)/12=3.9.

|Mutator 3 changed the amount of validation data available to our graph-based

abduction. The complete set of Bossel equations provides values for all variables

at all time points. However, if we provide 100% of this data to the abductive infer-

ence procedure, no inconsistency can occur (because every variable is assigned).

Mutator 3 threw away some of the data to produce data sets with 0,10,..,90

percent of the variables unmeasured (denoted as U percent unmeasured).

|Mutator 4 changed how the variables were connected across time steps. The XN-

ODE temporal linking policy connects all the explicitly-marked temporal vari-

ables from time i to time i+1; e.g. change in boatNumbers=up@1 to change in

boatNumbers=up@2. Note that there are only two explicit temporal variables in

�sheries. It was thought that, since the number of connections were so few, this

could arti�cially restrict world generation. Hence, an alternative temporal link-

ing policy was de�ned which made many cross-time links. The IEDGE temporal

linking policy took all edges from A to B in the �sheries model and connected

A@i to B@i+1. XNODE and IEDGE can be compared as follows. Consider a

model with two variables, A and B, with a direct connection from A to B, and

an inverse connection from B to A. Figure 5 shows how the XNODE and IEDGE

linking policies expand this model over three time steps.

The above mutators were used to create experimental treatments as follows. For

statistical validity, the following procedure was repeated 20 times:

(1) Mutator 4 generated two copies of the original model, using the IEDGE and

XNODE linking policies.

(2) Mutator 1 corrupted 0 to 17 of the edges in each model. This produced 20�

2� 18 = 720 models.

(3) Mutator 2 added 0, 5, 10, 15, 20, 25 or 30 edges to each model, giving 20�2�7 =

280 models.



Validating Inconsistent Requirements Models using Graph-based Abduction � 17

(4) Mutator 3 provided di�erent amounts of domain data for each of the above

models, using values of U = 0; 10; ::; 90. This produced (720+280)�10 = 10; 000

models.

The original Bossel equations were then used to generate 105 pairs of inputs and

outputs for our abductive validation process, producing 10; 000� 105 = 1; 050; 000

runs. In our modeling terms, each run represents a validation step: does the (mu-

tated) model capture a particular behavior described in the original equations?

In summary, generated treatments contained (i) a range of di�erent models (rang-

ing from correct to very incorrect); (ii) models with di�erent fanouts, (iii) di�erent

amounts of data available from the domain; (iv) di�erent temporal linking policies.

4.2 Experiment #1

For the �rst experiment, we merely counted the number of worlds generated. If we

generate a large number of worlds, it indicates our reasoning process involves too

much indeterminacy. Too many worlds means too many possible answers, making

the abductive inference virtually useless. Curiously, and contrary to the experience

of Clancy, Kuipers, Kakas, et al., graph-based abductive validation exhibits very

little indeterminacy.

The results are shown in Figure 6. The upper graph gives the results for the

models generated by mutator 1, for di�erent numbers of edges corrupted; the lower

graph gives the results for models generated by mutator 2 for di�erent numbers of

edges added.

Note the low number of worlds generated. Our reading of the literature (e.g.

[Kakas et al. 1998; Clancy and Kuipers 1997]) led us to expect far more worlds

than those observed here (maximum=5). Also, note the hump shape in all the

results graphs. As we decrease the amount of data available, there is less informa-

tion available to constrain indeterminacy. Hence, initially, less data means more

worlds. However, after some point (around 50 percent unmeasured), another e�ect

dominates and the number of worlds decreases.

To explain this e�ect, we must distinguish between set-covering abduction and

consistency-based abduction. HT4 uses set-covering; i.e. the only thing added

to worlds are literals that are found on pathways between inputs and outputs.

Consistency-based approaches (e.g. the ATMS [DeKleer 1986]) adds to worlds all

literals consistent with proof pathways, even if those literals are not required for

building that proof. World-generation is a function of the number of conicting

assumptions made by the reasoner. As the percentage of unmeasured variables

increases, the size of the input and output sets decreases. In consistency-based ab-

duction, this has no e�ect on the number of assumptions made since consistency-

based abduction o�ers assumptions for all variables. However, set-covering ab-

duction make fewer assumptions since it adds fewer literals to worlds. Hence, for

low-assumption policies (e.g. set-covering abduction), world-generation is reduced

when the amount of data from the domain is reduced.

Also, note that only one of our two di�erent temporal linking policies (IEDGE)

generated the multiple worlds that we expected. In other words, the generation

of multiple worlds is extremely sensitive to the choice of modeling constructs, and

some constructs will not generate multiple worlds. Our initial reaction was that if



18 � Tim Menzies et al.

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

W
or

ld
s 

(w
he

n 
ed

ge
s 

co
rr

up
te

d)

Percentage unmeasured

0
 
3
 
6
 
9
 

12
 

15
 

1

1.5

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100

W
or

ld
s 

(w
he

n 
ed

ge
s 

ad
de

d)

Percentage Unmeasured

0
 
5
 

10
 

15
 

20
 

25
 

30
 

Fig. 6. Results from Experiment 1, showing the number of worlds generated. Results for IEDGE

(solid lines) and XNODE (dashed lines) di�er dramatically.



Validating Inconsistent Requirements Models using Graph-based Abduction � 19

XNODE does not generate multiple worlds, then it is less expressive as a modeling

language, and would be poorer at capturing all the behaviors in the original data.

However, our next experiment contradicted this interpretation.

4.3 Experiment #2

For the second experiment, we explored whether models that generated multiple

worlds were more expressive. We modi�ed the graph-based abductive validation

procedure, so that instead of returning the world(s) that explained the most number

of outputs, we returned any single world, chosen at random. The results of that

one-world abduction run were compared to the results gained from full multiple-

world abduction. For this experiment, we used the same set of treatments as was

used in experiment 1; i.e. another 1,050,000 runs.

The results are shown in Figure 7. In these graphs, the percentage of the input-

output pairs that were covered in the worlds is shown on the y-axis (labeled percent

explicable). For multiple-world abduction, the maximum percentage is shown; i.e.

this is the most explanations that the model can support. For one-world abduction,

the percent of the one-world (chosen at random) is shown. Note that, at most,

many-world reasoning was ten percent better than one-world reasoning (in the

IEDGE graph for U=40 and 10 edges corrupted). The average improvement of

many-world reasoning over one-world reasoning was 5.6 percent. That is, in millions

of runs over thousands of models, there was very little di�erence seen in the worlds

generated using one-world and multiple-world abduction.

5. SIMPLER REQUIREMENTS CONFLICT EXPLORATION

The results of experiment 1 demonstrate that our graph based abductive valida-

tion does not su�er the extreme problems of indeterminacy of other abductive

approaches. This is important because it strengthens our belief in the utility of

graph-based abduction. If we generate many di�erent worlds, each supporting dif-

ferent conclusions, our ability to refute the models is in doubt. This conclusion is

supported by the gradients on the graphs in Figure 7: as we mutate the models to

be less like the original, we increase the amount of data that cannot be explained in

the model. Our validation procedure is clearly useful for inconsistent requirements

models.

The results of experiment 2 seem counter-intuitive. Although each world repre-

sents a di�erent way of resolving the inconsistencies, there was very little di�erence

in the number of queries covered. In other words, each di�erent world seems to

give the pretty much the same answers. How can this be? Are our results dis-

torted by our choice of case study or choice of scoring function? Our results are

based on mutations of a single small model, �sheries. Perhaps an analysis of larger,

more intricate models, would o�er di�erent conclusions? While we acknowledge

this possibility, we note �sheries was just the initial model that seeded our muta-

tors. Thousands of variants on �sheries were constructed, many of which were more

complicated than �sheries (recall the �rst mutator added edges into the model).

Nevertheless, it is always appropriate to question the generality of experimental

results. Methodologically speaking, in order to generalize our experiments, we need

to isolate some principle that could apply to other models. We have identi�ed one

possible underlying principle, that we call funnel theory.



20 � Tim Menzies et al.

20

30

40

50

60

70

80

90

100

0 5 10 1517

%
 e

xp
lic

ab
le

Number of corrupted edges; max=17

XNODE, U% unmeasured

many;U= 0
one;U= 0

many;U=20
one;U=20

many;U=40
one;U=40

many;U=60
one;U=60

20

30

40

50

60

70

80

90

100

0 5 10 1517

%
 e

xp
lic

ab
le

Number of corrupted edges; max=17

IEDGE, U% unmeasured

many;U= 0
one;U= 0

many;U=20
one;U=20

many;U=40
one;U=40

many;U=60
one;U=60

Fig. 7. Results of experiment 2, showing multiple-world abduction (solid line) vs one-world ab-

duction (dashed line).



Validating Inconsistent Requirements Models using Graph-based Abduction � 21

5.1 Funnel Theory

According to funnel theory, the pathways within our requirements models contain

very narrow funnels; i.e.

|Most pathways converge to the same points.

|Inference outside the narrow funnels quickly runs down into the funnels

We can see part of such a narrow funnel around �sh catch variable of Figure 4.

Without �sh catch, our model divides into 2 sub-networks. That is, all inferences

from (e.g.) boat purchases to (e.g.) �sh growth rate must pass through the funnel

of �sh catch.

Narrow funnels have two interesting properties that simplify conict resolution:

(1) Narrow funnels dictate how arguments must be resolved around the funnel. Dr.

Thick and Dr. Thin may argue for days on the nature of the inferences around

�sh catch. However, all that discussion is irrelevant if, to achieve some query,

then (e.g.) catch potential must encourage �sh catch.

(2) Narrow funnels let us ignore certain disagreements. Consider two arguments:

one around a narrow funnel and another very peripheral to that funnel. The

funnel argument might be resolved quickly (see the last point). Further, we

need not spend much time on the peripheral argument since it is likely that

most pathways will never use that peripheral part of the model.

Assuming that funnel theory is correct, the presence of the �sh catch funnel in

Figure 4 suggests that it is not surprising that the �sheries models generated so

few worlds.

Elsewhere Menzies and Cukic have conducted an extensive literature review show-

ing that funnel-like behaviour has been seen in numerous cases in software engi-

neering and knowledge engineering [Menzies and Cukic 2000]. Further, there is

some mathematical evidence to suggest that we should routinely expect funnels

when searching indeterminate spaces [Menzies et al. 2000].

5.2 HT0

Funnel theory suggests that we can often rely on one world reaching as many goals

as multiple worlds. HT0 [Menzies and Michael 1999] is a single-world abductive

inference engine that exploits this \one world is usually enough" property.

Recall that HT4 build all worlds from maximal consistent subsets of all the

possible pathways. Instead of building all worlds, HT0 builds them one at a time.

When assumptions are required, HT0 takes random choices. HT0 terminates when

the reached outputs for world Wi are about the same as the maximum reached

outputs for worlds W1::Wi�1.

HT0 executes over horn-clauses. Note that Figure 4 can simply be expressed in

such horn-clauses; e.g. �sh density encouraging �sh catch could be encoded as:

t(fishCatch,up) :-

t(fishDensity,up).

t(fishCatch,down) :-

t(fishDensity,down).



22 � Tim Menzies et al.

1 INPUT: Theory,Inputs, Outputs, File, N1,N2,N3

2 OUTPUT: File

3 (<A,Max>:=readBest(File)) or (A:=[];Max:=0)

4 Facts := Inputs + Outputs;

5 N1 times repeat

6 f N2 times repeat

7 f Covered := [];

8 T1 := burn(Facts,copy(T))

9 for Output in Outputs do

10 f if <T2,A1>:=thrashBurn(Output,Inputs,T1,A)

11 then fadd Output to Covered

12 A:= A1; T1:= T2;

13 g g
14 if size(Covered) > Max

15 then fMax := size(Covered);

16 append(File,<A,Max,Covered>)

17 if Max=100% then goto :stopg
18 Outputs:=permute(Outputs-Covered)+permute(Covered)

19 A:=change(first(N3,mostUsed(A)));

20 g
21 A := []; Outputs := permute(Outputs);

22 g :stop

Fig. 8. HT0

The HT0 algorithm is shown in Figure 8. In that �gure, square brackets denote

ordered sets and the Permute function randomly shu�es set order. A persistent

store of old runs is maintained in File. If File already exists, then the best

assumptions found to date are retrieved; else they are initialized (line 3). N1,

N2, N3 control the number of searches performed (the variable Nall will be used

to denote N1+N2+N3). N1-1 times, HT0 clears any old assumptions and randomly

permutes the order of the outputs (line 21). Then, N2 times, HT0 tries to prove

each output in order (line 10). ThrashBurn is a depth-�rst search from Output to

any member of Inputs across T1. T1 is generated (at line 8) from T by burning

away all variable assignments inconsistent with known Facts (technically, this is

node consistency [Mackworth 1977]). As thrashBurn searches, if new assumptions

are found, they are added to A1. When a horn clause is accessed, its sub-goals are

thrashed; i.e. re-arranged randomly. This randomizes the direction of the depth �rst

search from this point on. Also, when a new assumption is made, contradictory

assumptions are burnt away (i.e. removed via node consistency). The burning

and the discovery of new assumptions creates T2 and A1 respectively. Lines 11,12

arrange that if Outputi is explained, T2 and A1 are used for the subsequent searches

for Outputj (i < j). That is, searches for Outputj explore a smaller space than

Outputi. Note that if Outputi is explained and Outputj is not, then the system does

not backtrack to �nd other pathways to Outputi. However, we may get another

chance to explain Outputj since the next time through lines 7-19, we permute the

order in which we explore the outputs (see line 18). Note, in line 18, when we reset

the output order, we move the uncovered outputs to the front of the output list; i.e.



Validating Inconsistent Requirements Models using Graph-based Abduction � 23

0.1

1

10

100

1000

10000

0 4000 8000 12000 16000 20000

S
=

ru
nt

im
e 

(s
ec

on
ds

)

C=number of clauses

HT4
HT0

S=O(C^2)

Fig. 9. Runtimes.

Model Clauses Literals sub�goals

clause

clauses

literals

T1 [Smythe 1989] 558 273 1.6 2

Random 1 2390 688 1.6 3.5

Random 2 6961 1540 1.7 4.5

Random 3 18803 3394 1.7 5.5

Fig. 10. Some models processed by HT0

next time through we give priority to things we could not prove this time through.

The only other feature of note is line 19. The N3-th most used assumptions are

changed so that the next time through lines 7-19, the proofs for Outputs are forced

into other parts of the model.

HT0 can be used as an anytime conict exploration algorithm. Assuming that

each explanation supplies less information than the one before, HT0 could run while

the analyst traced the Max covered value. At anytime, the best Max found to date

would be available. Also, at anytime, running the system for longer would explore

di�erent parts of the model and (potentially) could �nd better worlds.

Real world and arti�cially generated models were used to test HT0. A real-world

model of neuroendocrinology [Smythe 1989] with 558 clauses containing 91 variables

with 3 values each (273 literals) was copied X times. Next, Y% of the variables in

one copy were connected at random to variables in other copies. In this way, the

models Random1, Random2, and Random3 (see Figure 10) were built using Y=40.

When executed with Nall varied from 1 to 50, the O(N2) curve of Figure 9 was

generated. We conclude that HT0 was O(N2) in these experiments since the R2

for an O(N2) curve �t to the HT0 data was 0.98 while the R2 for O(N), O(N3),

O(eN ) were all < 0.82.

In a result consistent with the HT4 experiments, no increase in queries covered

was detected above Nall=5. That is, (1) the anytime nature of HT0 may not be

required since (2) what explanations HT0 can �nd, it seems to �nd very quickly.



24 � Tim Menzies et al.

6. SUMMARY AND CONCLUSIONS

In exploring the utility of multiple viewpoints, we have found it useful to distinguish

between use of multiple viewpoints during elicitation and their use during modeling

and analysis. For the former, viewpoints can be used to represent di�erent stake-

holder's contributions, and to provide traceability back to an authority for each

piece of information [Gotel and Finkelstein 1997]. For the latter, viewpoints can

be used to model and analyze inconsistent information. Viewpoints o�er a number

of other bene�ts for requirements modeling, including the use of multiple repre-

sentation schemes, multiple problem structures, and the ability to partition the

modeling process itself. However, if there is no inconsistency, then these bene�ts

are essentially presentation issues: the same bene�ts could be achieved by taking

projections and translations of a single, consistent model. That is not to say that

such issues are trivial, but rather that it is the handling of inconsistency that makes

viewpoints truly interesting for requirements analysis.

In this paper, we examined the question of modeling and analyzing inconsistent

models created from multiple viewpoints, and in particular whether is is possible

to validate inconsistent models. From our theoretical and experimental work with

graph-based abduction, we draw two general conclusions: (i) that it is feasible to

reason with and validate inconsistent requirements models, and (ii) that to do so is

much cheaper than the initial complexity analysis led us to believe. These results

are important because they mean that stakeholders need not be rushed into some

premature and arti�cial uni�cation of their di�ering views.

Firstly, we showed that if we move away from purely classical deductive reasoning,

we can perform sound reasoning on inconsistent models. We described an abduc-

tive inference approach that allows us to validate an inconsistent model against

domain data. The abductive reasoner only generates proofs that do not contain

inconsistencies, sorting the possible proofs into consistent worlds. E�ectively, we

add a form of paraconsistent reasoning to an existing non-paraconsistent deductive

logic. Despite the theoretical complexity of our reasoning algorithm, we showed

that it can be applied to reasonable sized problems.

More importantly, our experimental results showed that frequently we do not

need to incur the extra complexity of multiple world reasoning. Multiple worlds

reasoning is only useful if the worlds are truly di�erent. We have explored these is-

sues using our abductive framework. Abduction can check if some explicitly named

viewpoints are truly di�erent: if the combined viewpoints don't generate multiple

worlds in response to particular a particular query, then they are not truly di�erent

with respect to that query.

Experimentally, we have shown here that for a range of problems (di�erent mod-

els ranging from correct to very incorrect, di�erent fanouts, di�erent amounts of

data available from the domain, di�erent temporal linking policies) multiple world

reasoning can only generate marginally better results than one-world reasoning (ten

percent or less). Hence, in the domain explored by these experiments, there is little

or no value in fully exploring all the possible worlds. Further, if our explanation

of this e�ect via funnel theory is correct, we expect that the result generalizes to

many other domains. For domains where \one world is usually enough", we o�er

HT0 as a very simple conict exploration tool. HT0 runs fast (O(N2)), even for



Validating Inconsistent Requirements Models using Graph-based Abduction � 25

very large models (N = 20; 000).

Note that the result in experiment 2, and our exploration of HT0 show that

one world often explains as much of the data as multiple worlds. This is not the

same as saying that any viewpoint does the same. Our `worlds' are extracted from

multiple viewpoints merged together without resolving inconsistencies. Depending

on how they are used, viewpoints tend to cover particular areas of interest (sub-

domains). One world, extracted from multiple viewpoints, may contain data from

all the viewpoints, and therefore may cover all of the sub-domains. We cannot

therefore just discard other viewpoints in favor of one selected at random.

Our results allow us to extend the use of viewpoints beyond their demonstrated

bene�ts for requirements elicitation. We can use multiple viewpoints as a way of

maintaining multiple overlapping descriptions at any stage of software development,

without worrying about resolving inconsistencies between them. Not only can we

validate such inconsistent models against domain data, but in many cases, the

inconsistencies have little impact on the validity of the overall model. We explained

this counter-intuitive result via funnel theory. Our future work will explore whether

funnel theory applies to other domains.

ACKNOWLEDGMENTS

We would like to thank Axel van Lamsweerde, Bojan Cukic, Tony Bonner, Marsha

Chechik, Ric Hehner, Alessandra Russo, Albert Lai, Benet Devereux, Victor Petro-

vykh, and Christopher Thompson-Walsh for their detailed comments on earlier

versions of this paper.

REFERENCES

Boehm, B., Egyed, A., Port, D., Shah, A., Kwan, J., and Madachy, R. 1998. A stakeholder

win-win approach to software engineering education. Annals of Software Engineering 6, 295{

321.

Bossel, H. 1994. Modeling and Simulation. A.K. Peters Ltd.

Bylander, T., Allemang, D., Tanner, M., and Josephson, J. 1991. The Computational Com-

plexity of Abduction. Arti�cial Intelligence 49, 25{60.

Chechik, M., Easterbrook, S., and Petrovykh, V. 2000. \Model-Checking Over Multi-Valued

Logics". (submitted for publication).

Clancy, D. and Kuipers, B. 1997. Model decomposition and simulation: A component based

qualitative simulation algorithm. In Proceedings, AAAI National Conference on Arti�cial

Intelligence, AAAI-97.

Damian, D., Eberlein, A., Shaw, M., and Gaines, B. 2000. Using di�erent communication

media in requirements negotiation. IEEE Software 17, 3 (May/June), 28{36.

Darke, P. and Shanks, G. 1996. Stakeholder viewpoints in requirements de�nition: A framework

for understanding viewpoint development approaches. Requirements Engineering 1, 2, 88{105.

DeKleer, J. 1986. An Assumption-Based TMS. Arti�cial Intelligence 28, 163{196.

Doyle, J. 1979. A truth maintenance system. Arti�cial Intelligence 12, 231{272.

Easterbrook, S. 1991a. Elicitation of requirements from multiple perspectives. Ph.D. thesis,

Imperial College of Science Technology and Medicine, University of London. Available from

http://www.cs.toronto.edu/~sme/papers/.

Easterbrook, S. 1991b. Handling conicts between domain descriptions with computer-

supported negotiation. Knowledge Acquisition 3, 255{289.

Easterbrook, S. 1995. Coordination breakdowns: why groupware is so diÆcult to design. In

Proceedings of the Twenty-Eighth Hawaii International Conference on System Sciences. 191{

199.



26 � Tim Menzies et al.

Easterbrook, S., Lutz, R., Covington, R., Kelly, J., Ampo, Y., and Hamilton, D. 1998.

Experiences using lightweight formal methods for requirements modeling. IEEE Transactions

on Software Engineering 24, 1 (January), 4{14.

Easterbrook, S. and Nuseibeh, B. 1996. Using viewpoints for inconsistency management.

BCS/IEE Software Engineering Journal 11, 1 (January), 31{43.

Feldman, B., Compton, P., and Smythe, G. 1989. Hypothesis Testing: an Appropriate Task

for Knowledge-Based Systems. In 4th AAAI-Sponsored Knowledge Acquisition for Knowledge-

based Systems Workshop, Ban�, Canada.

Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., and Nuseibeh, B. 1994. Inconsistency

handling in multi-perspective speci�cation. IEEE Transactions on Software Engineering 20, 8,

569{578.

Gabow, H., Maheshwari, S., and Osterweil, L. 1976. On two problems in the generation of

program test paths. IEEE Transactions on Software Engineering 2, 227{231.

Gaines, B. and Shaw, M. 1989. Comparing the conceptual systems of experts. In International

Joint Conference on Arti�cial Intelligence, (IJCAI '89). 633{638.

Goguen, J. and Linde, C. 1993. Techniques for requirements elicitation. In 1st IEEE Interna-

tional Symposium on Requirements Engineering (RE'93). 152{164.

Gotel, O. and Finkelstein, A. 1997. Extended requirements traceability: Results of an industrial

case study. In International Symposium on Requirements Engineering (RE'97) (January 6-10,

1997). 169{178.

Grundy, J., Hosking, J., and Mugridge, W. B. 1998. Inconsistency management for multiple-

view software development environments. IEEE Transactions on Software Engineering 24, 11,

960{981.

Hunter, A. and Nuseibeh, B. 1998. Managing inconsistent speci�cations: Reasoning, analysis

and action. ACM Transactions on Software Engineering and Methodology 7, 4, 335{367.

Jackson, M. 1995. Software Requirements and Speci�cations: A Lexicon of Practice, Principles

and Prejudices. Addison Wesley.

Kakas, A., Kowalski, R., and Toni, F. 1998. The role of abduction in logic programming. In

Handbook of Logic in Arti�cial Intelligence and Logic Programming 5, C. H. D.M. Gabbay and

J. Robinson, Eds. Oxford University Press, 235{324.

Kotonya, G. and Sommerville, I. 1992. Viewpoints for requirements de�nition. IEE Software

Engineering Journal 7, 375{387.

Kuhn, T. 1962. The Structure of Scienti�c Revolutions. Cambridge Press.

Mackworth, A. 1977. Consistency in Networks of Relations. Arti�cial Intelligence 8, 99{118.

Makinson, D. C. 1994. General patterns in nonmonotonic reasoning. In Handbook of Logic in

Arti�cial Intelligence and Logic Programming, D. Gabbay, C. Hogger, and J. Robinson, Eds.

Vol. 3. Oxford University Press, 35{110.

Menzies, T. 1996a. Applications of abduction: Knowledge level modeling. International Journal

of Human Computer Studies 45, 305{355.

Menzies, T. 1996b. Applications of abduction: Knowledge level modeling. International Journal

of Human Computer Studies.

Menzies, T. 1996c. On the practicality of abductive validation. In Proceedings of the European

Conference on AI (ECAI'96).

Menzies, T. and Compton, P. 1997. Applications of abduction: Hypothesis testing of neu-

roendocrinological qualitative compartmental models. Arti�cial Intelligence in Medicine 10,

145{175.

Menzies, T. and Cukic, B. 2000. Adequacy of limited testing for knowledge based systems.

International Journal on Arti�cial Intelligence Tools (IJAIT). (to appear).

Menzies, T., Cukic, B., Singh, H., and Powell, J. 2000. Testing indeterminate systems. Inter-

national Symposium on Software Reliability Engineering (ISSRE-2000).

Menzies, T. and Michael, C. 1999. Fewer slices of pie: Optimising mutation testing via abduc-

tion. In 11th International Conference on Software Engineering and Knowledge Engineering

(SEKE'99) (June 17-19).

Mortensen, C. 1995. Inconsistent Mathematics. Kluwer Academic.



Validating Inconsistent Requirements Models using Graph-based Abduction � 27

Mylopoulos, J., Cheng, L., and Yu, E. 1999. From object-oriented to goal-oriented requirements

analysis. Communications of the ACM 42, 1 (January), 31{37.

Nuseibeh, B. and Easterbrook, S. 2000. Requirements engineering: A roadmap. In Proceedings

of International Conference on Software Engineering (ICSE-2000).

Nuseibeh, B., Easterbrook, S., and Russo, A. 2000. Leveraging inconsistency in software

development. IEEE Computer 33, 4, 24{29.

Nuseibeh, B., Kramer, J., and Finkelstein, A. 1994. A framework for expressing the relation-

ships between multiple views in requirements speci�cation. IEEE Transactions on Software

Engineering 20, 10, 760{773.

Nuseibeh, B. and Russo, A. 1999. Using abduction to evolve inconsistent requirements speci�-

cations. Austrialian Journal of Information Systems 7, 1.

O'Rourke, P. 1990. Working notes of the 1990 spring symposium on automated abduction. Tech.

Rep. 90-32, University of California, Irvine, CA. September 27, 1990.

Plexousakis, D. 1993. Semantical and ontological considerations in telos: a language for knowl-

edge representation. Computational Intelligence 9, 1 (February).

Popper, K. 1963. Conjectures and Refutations: The Growth of Scienti�c Knowledge. Routledge

and Kegan Paul.

Rich, C. and Feldman, Y. 1992. Seven layers of knowledge representation and reasoning in

support of software development. IEEE Transactions on Software Engineering 18, 6 (June),

451{469.

Robinson, W. and Pawlowski, S. 1999. Managing requirements inconsistency with development

goal monitors. IEEE Transactions on Software Engineering 25, 6, 816{835.

Ross, D. 1985. Applications and extensions of sadt. IEEE Computer 18, 25{34.

Rushby, J. 1995. Formal methods and their role in the certi�cation of critical systems. Tech.

Rep. SRI-CSL-95-1, Computer Science Laboratory, SRI International, Menlo Park, CA. Mar.

Shaw, M. 1997. WebGrid: a WWW PCP Server. Knowledge Systems Institute, University of

Calgary, http://Tiger.cpsc.ucalgary.ca/WebGrid/WebGrid.html.

Smythe, G. 1989. Brain-hypothalmus, Pituitary and the Endocrine Pancreas. The Endocrine

Pancreas.

Spanoudakis, G., Finkelstein, A., and Till, D. 1999. Overlaps in requirements engineering.

Automated Software Engineering 6, 2, 171{198.

Stamper, R. 1994. Social norms in requirements analysis: an outline of measur. In Requirements

Engineering: Social and Technical Issues, M. Jirotka and J. Goguen, Eds. Academic Press,

107{139.

van Lamsweerde, A., Darimont, R., and Letier, E. 1998. Managing conicts in goal-driven

requirements engineering. IEEE Transactions on Software Engineering 24, 11, 908{926.


