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testing methods—for example, they might
set input parameters to some value chosen
at random between their maximum and
minimum values. 

In this article, we offer a justification for
reducing the effort associated with software-
in-the-small testing. (See the “Caveats” side-
bar for information regarding the article’s
content and scope.) We base our argument
on what we know of testing cost–benefit
curves. We express benefits as the likelihood
that a sequence of tests will reveal a fault
and costs as the number of tests required to
achieve that benefit. 

After making some simple assumptions
about a program’s average shape (we define
shape later in the article), we show that,
usually, numerous tests probe a program no
better than a small number of tests do. On
average, elaborate and expensive testing
regimes will not yield much more informa-
tion than inexpensive manual or simple au-
tomatic testing schemes.

The Theory of Testing
In theory, software-in-the-small projects

might never have the resources required to

adequately test their systems. The theory of
black-box testing cautions that a project
could require thousands of black-box tests
to determine—with only moderate confi-
dence—that all faults have been detected
within the software.

In black-box probing, we assume noth-
ing about the program’s internals. Even for
systems we build ourselves, we cannot be
100% sure (due to typographical errors) of
the system’s internal structure.

To perform a black-box test, we ran-
domly select test inputs from a space of
plausible inputs. Each such input probes the
program and might find faults. How many
random black-box probes do you need to
find a fault? A randomly chosen input has
odds x that it will stumble across some
fault. Furthermore, this input will miss that
fault with odds 1 − x. If we conduct N ran-
dom black-box probes, then the odds of a
failure not occurring (thus not revealing the
fault) is (1 − x)N. Hence, the probability y of
finding a fault in N random tests is 

y = 1 – (1 – x)N.
(1)
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T
esting software in the large is different from testing it in the small.
For large projects, we can define and develop elaborate auto-
mated software test environments and then apply them to the cur-
rent project.1 However, small-scale projects might not have the

funds to purchase STEs or the time to build their own. In such cases, soft-
ware-in-the-small projects must use manual or very simple automatic
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We usually choose x so it represents the de-
sired software reliability. Equation 1 gives
us a feel for the cost-benefit curve of black-
box testing. Consider a search for a moder-
ately low-frequency event—a one-in-10,000
event where x = 0.0001. Forty-six thousand
randomly selected tests are required to be
99% certain that we will reveal that event.2

Typically, software development in the
small does not use tens of thousands of tests
on its software. Based on our exposure to
small, commercial software development
groups in the US and Australia, we claim
that many programs in the small are shipped
after conducting anywhere from dozens to
hundreds of manually selected tests.

Black-box testing can be expensive, and
other techniques—such as formal-methods
testing—might not be any more promising.
In formal methods, analysts specify their
system’s essential details and a set of logical
constraints that the system must never vio-
late. Automatic tools can then check to see
if the system can violate those constraints.
The benefit of formally checking a system is
that such formal proofs can find faults more
systematically than standard testing. A sin-
gle formal first-order query is equivalent to
many black-box test inputs.3

Unfortunately, the computational cost of
such rigorous formal analysis can be imprac-
tically high. A rigorous analysis of formal
properties implies a full-scale search through

the system’s model. This space can be too
large to explore, even using today’s fast ma-
chines. Hence, we can only use formal meth-
ods to test small, critical portions of our sys-
tems, and we can only justify the expense of
formal methods after an extensive initial
black-box phase.3 This earlier phase serves to
focus the test engineer on a program’s small,
highly critical portions. Thus, even when ap-
plying formal verification, we recommend
first using black-box testing.

Another alternative is white-box testing,
in which analysts reflect over a program’s
internals to invent test inputs that exercise K
different partitions. Each partition exercises
one interesting feature of a program—a par-
ticular bug, for example. An unexpected but
repeated mathematical result is that the
odds of detecting a fault with white-box
methods are nearly the same as with black-
box methods.2 Even assuming certain spe-
cial cases that favor white-box methods (for
example, all inputs are equally likely),
white-box testing using K partitions is only
ever K times better at finding errors than
black-box testing.4 Building the partitions is
time-consuming, so analysts might not gen-
erate many partitions. Hence, white-box
testing only slightly reduces the number of
tests required by black-box methods.

The Reality of Testing
The previous section provided a rather

pessimistic view of software testing. How-
ever, in reality, software-in-the-small proj-
ects generate software without using thou-
sands of tests. The software generated
sometimes crashes—perhaps at the most
awkward or dangerous moment—but given
what we know about the mathematics of
black-box testing, it’s puzzling that the soft-
ware doesn’t crash more often.

To explain why software-in-the-small
products don’t crash more often, we have to
consider a program’s shape. For the mo-
ment, we’ll say that a program’s shape is the
shape of the pathways within the program.
If our program pathways are numerous and
tangled like spaghetti, then it will be hard
for the test input to navigate through the
program to reach a region where we can see
a bug. If our program pathways are few and
not complex, then it’s easy to find inputs
that can reach most of the system. Having
introduced the concept of shape, we can
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Before beginning, we pause for three caveats. First, this article presents
an average-case analysis of the recommended effort associated with testing.
By definition, such an average-case analysis says little about extreme cases
of high criticality. Hence, our analysis must be used with care if applied to
safety-critical software. On the other hand, we doubt that programming-in-
the-small groups will develop such safety-critical software. Such software
costs in excess of $1 million per thousand lines of code1—small teams prob-
ably can’t develop it quickly.

Secondly, this article does not distinguish between testing conducted at
different phases of the life cycle—unit testing, integration testing, product
testing, or regression testing. We believe our analysis is applicable, regard-
less of when testing is performed.

Lastly, due to space limitations, this article skips some of the details of
our mathematical model. Full details appear elsewhere.2
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now speculate on an answer to the question:
What should the shape of software be to ad-
equately test it using limited resources?

Numerous studies—three of which we
discuss here—suggest that simple shapes are
common.5 Bieman and Schultz reported very
simple shapes within a seemingly complex
natural-language processing system.6 They
studied how many sets of inputs are required
to exercise all du-pathways in a system. A
du-path is a link from where a variable is de-
fined to where it is used. Clearly, the upper
bound on the number of du-pathways in a
program is exponential to the number of
program statements. The lower bound on
the du-pathways is 1—that is, the tail of
each path touches the head of another path.
Note that as the du-paths shrink, the num-
ber of inputs required to reach part of the
program also shrinks. Figure 1 shows their
experimental results. At least for the system
Bieman and Schultz studied, in the over-
whelming majority of their modules, very
few inputs exercised all the du-pathways.

Harrold, Jones, and Rothermel also re-
ported simple shapes within C and Fortran
functions.7 They studied how control-flow
diagrams grow as programs grow. A con-
trol-flow diagram links program statements:
While, Repeat, and For statements intro-
duce loops into the control-flow graph be-
cause after these statements, program con-
trol can loop back to the start of the itera-
tion. In addition, a sequence of commands
becomes a single-parent tree in the control-
flow diagram. A worst-case control-flow
graph is one in which every statement links
to every other statement—the edges in the
graph grow with the square of the number
of statements. However, for over 4,000 For-
tran routines and 3,147 C functions, the
control-flow graph grows linearly with the
number of statements. That is, at least in the
system seen in Harrold, Jones, and Rother-
mel’s study, the control-flow diagram forms
almost a single-parent tree.7 Consider the
nodes 10% down such a tree. If a randomly
selected input struck such nodes, then 90%
of the system would be exercised. 

Horgan and Mathur reported that testing
often exhibits a saturation effect—most pro-
gram paths get exercised early with little fur-
ther improvement as testing continues.8 Sat-
uration is consistent with programs contain-
ing either many portions with simple

shapes—so the portions
are easily reached—or
many portions that are
so twisted in shape that
that we’ll never reach
them. 

If these three exam-
ples represent a general
case, then we can avoid
the pessimistic conclusions of the theory of
black-box testing.

The Average Shape of Software 
If we can show that our software usually

has the right shape, then we can declare that
we can usually test it quickly. By right shape,
we mean that either the program’s shape is
so complex that no amount of testing will
reach regions where the program will fail or
that the program’s shape is so simple that a
few randomly selected tests will reach re-
gions where the program will fail. In either
case, there is no point in conducting lengthy
and expensive testing because a limited test-
ing regime will yield as much information as
an elaborate testing procedure.

What then is the average shape of our
software—is it the right shape for easy test-
ing? To find out, we constructed a mathe-
matical model of building a pathway across
a program from randomly selected inputs to
some randomly selected state. By simulating
the model for a wide range of parameters,
we can infer that, on average, our programs
are indeed the right shape for simple testing.

To implement the model, we make some
assumptions about the tested program’s
structure.

Assumption 1
Programs are networks connecting system

concepts. For example, Figure 2 shows a net-
work of concepts inside a program. (We ex-
plain the use of no, yes, or, and and later).

This first assumption is hardly controver-
sial. Any optimizing compiler builds a net-
work (control and dataflow graphs) from the
code. Optimization is then a matter of reor-
ganizing the network to speed up the pro-
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gram. When a program executes, it starts at
the inputs and then runs over that network.
Again, it is not controversial to view execution
as the generation of trees from the program: 

■ An execution trace of a procedural pro-
gram shows what statements are exe-
cuted, which subroutines are called, and
in what order.

■ A general method for reasoning about
programs is to create a set of axioms de-
scribing, for example, preconditions
and postconditions. Any theorem proof
procedure over those axioms builds a
proof tree. Such a proof tree would
qualify as our execution tree. 

We view testing as just a special case of
execution in which we record the tree of
pathways followed over a network and ter-
minate the execution of testing when we ar-
rive at something interesting (a fault, for
example).

Assumption 2
A fault explanation tree is a tree whose

leaves are inputs and whose root is a fault.
Referring to Figure 2, suppose that we

never want our programmers to go to par-
ties. If we could generate a tree that arrives

at atParty=”yes”, then we would have
detected a fault. The shaded tree at the bot-
tom of Figure 2b shows that, indeed, our
programmers can get to parties—in other
words, there is a bug in our system.

Assumption 3
Generalizing the example in Figure 2, we

assume that testing is a process of trying to
generate a fault explanation tree from the
program network.

If we can’t generate such an explanation,
we gain confidence that there are no faults
in our program. 

Assumption 4 
An explanation tree has edges and nodes.

There are two kinds of nodes: and nodes
and or nodes. There are two kinds of edges:
yes edges and no edges.

And nodes model conditional statements.
For example, consider lines 2 and 3 of the
code shown in Figure 2. This conjunction
generates one and node with two parents:
one for tired=”no” and the other for the
test for weekend. Only if all the parents of
an and node are satisfied do we move to the
then part of the conditional statement
(lines 4 and 5).

Or nodes model the disjunction of state-
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1. procedure relax {
2.   if tired=="no" 
3.      AND weekend 
4.   then {gotoMall; 
5.         gotoParty;} 
6. } 
7. function weekend {
8.   return day=="saturday" 
9.          OR day=="sunday" 
10. } 
11. procedure gotoMall {
12.   if day=="sunday" 
13.   then... 
14. } 
15. procedure gotoParty {
16.   atParty="yes" 
17.   if time>2am 
18.   then {atParty="no"; 
19.          gotoHome 
20. } 
21.   else gotoParty; 
22. } 
23. procedure gotoHome {
24.   ...
25.}

Yes

Yes Yes

or
Yes

or

or
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is “no”
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“day is
sunday”
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time is > “2am” time is <= “2am”

... (line 13)

... (line 24)atParty is “no”
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Figure 2. (a) Conversion of procedural code to (b) a NAYO (no-and-yes-or) network. The blue shaded
tree is an explanation for how we might use this system to get to a system bug (in this case, letting our
programmers get to a party).



ments. For example, the statement day==
”saturday” OR day==”sunday” gener-
ates an or node with two parents. If any of
the parents of an or node are satisfied, then
we move to the then part of the conditional.

No edges model what can’t be believed 
at the same time. For example, we can’t 
believe that day==”saturday” and
day==”sunday”. Hence, we connect these
nodes with a no edge. No edges only con-
nect or nodes because and nodes have no
inconsistencies.

Yes edges denote where we can move
through the program (providing that our
trace does not include any pair of nodes
connected by no edges). For example, yes
edges connect the parents and children of
our and nodes and or nodes. 

We call a network of no, and, yes, and
or components a NAYO network. Now we
can provide a precise definition of testing.

Assumption 5
Testing is the process of extracting

NAYO trees (the explanations) from NAYO
networks (the program). 

Implementation
These assumptions are sufficient to sim-

ulate the construction of an explanation
tree across a program (see Figure 3). We
can approximately characterize the tree’s
shape by the number of tests N required to
reach that tree’s root to find a fault. Trees
with an overly complex shape require an
impractically large N to reach their root,
while trees with a simple shape require a
very small N (the number of tests) to reach
their root. More precisely,

We simulated this model 150,000 times
for a wide range of the parameters: 

■ up to V = 108 nodes,
■ up to in = 1,000 inputs, and
■ wildly varying frequency of and nodes

andf, or nodes orf, and parents
andp, and or parents orp. 

Table 1 shows the frequency distribution
of the N values calculated from the NAYO
model. We made two important observa-
tions from this frequency distribution. The
first is the 56% observation (which com-
bines the 36% simple shapes with the 20%
overly complex shapes): over half the simu-
lations found very simple or overly complex
shapes. Thus, over half the time, 100 ran-
dom tests will yield as much information as
a much more prolonged series of tests (up to
a million tests). The second observation is
the 75% observation (which combines the
results seen for simple (36%), moderate
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Given in inputs to a NAYO network with V nodes, the odds of hitting a
fault straight away from the inputs is

. (A)

The probability of reaching an and node with andp parents is the proba-
bility of reaching all its parents: 

(B)

where xi is the probability we computed in the prior step of the simulation
(and the base case of xi = 0 is computed from Equation A).

The probability of reaching an or node with orp parents is the proba-
bility of not missing any of its parents; that is,

xor = 1 − (1 − xi)orp. (C)

If the ratio of and nodes in a NAYO network is andf, then the ratio of or
nodes in the same network is or f = 1 – andf. The odds of reaching some
random node xj is the weighted sum of the probabilities of reaching and
nodes or or nodes:

xj = andf ∗ xand + orf ∗ xor . (D)

We can rearrange Equation 1 from the main text to isolate the number
of tests required to be 99% sure of finding a fault with probability xj:

y = 0.99 = 1 − ((1 − xj)N)
(E)

  
∴ = −

−
N

x j

log(1 0.99)
log(1 )

 x xand i
andp=

 
x

in
V0 =

Figure 3. An average case of testability.
For simplicity’s sake, this description
does not include certain details of the
full version of the model. For example,
this simple description makes no refer-
ence to NAYO graphs with nonuniform
structure, loop detection, or contradic-
tion detection. For full details, see the
full description.



(19%), and overly complex (20%) shapes):
in 75% of the simulations, 10,000 ran-
domly selected tests will probe the program
as much as a very prolonged series of tests
(up to a million tests) will.

F or software-in-the-small projects, a
cost-cutting heuristic might be to
avoid elaborate and expensive testing

regimes. The mathematics of black-box test-
ing (see Equation 1) pessimistically concludes
that this is a dangerous heuristic. According
to that math, the adequate testing of pro-
grams requires a prolonged series of tests.

Black-box mathematics is blind to the in-
ternal structures and shapes of our pro-
gram. If we include internal structure in
our analysis, the pessimistic conclusion of
black-box testing disappears. Furthermore,
our average case analysis of the shape of our
programs strongly suggests that simple and
inexpensive automatic random testing met-
hods can be quite valuable. 

Based on this analysis, we advise that
software-in-the-small projects should rou-
tinely execute overnight test runs in which
tens of thousands of test cases are generated
at random from the known legal ranges of
system input. It is important to stress that
these overnight testing runs must be truly
random. Biases in the selection of input data
would violate the assumption of random
search used in our NAYO model. Else-
where, we describe general principles for
managing really randomized probing.10,11

Our analysis describes general conclu-
sions for classes of programs (the simple-
shaped programs, the hard-shaped pro-
grams, and so forth). Our current research
goal is to apply this analysis to some partic-

ular program. To this end, we are extending
static code analysis tools to extract the pa-
rameters seen in our mathematical model
from real-world programs. Once we can do
that, we can monitor the evolution of a par-
ticular program and detect whether that
program has, for example, suddenly veered
away from simple, testable shapes. Further-
more, we hope to offer design guidelines
such that analysts can design their systems
to avoid hard-shaped programs that require
elaborate and expensive test regimes.
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Table 1 
Results from the Simulation Runs

Classification Threshold Percent

Simple 0 < N < 102 36
Moderate 102 ≤ N < 104 19
Hard 104 ≤ N < 106 25
Overly complex N ≥ 106 20


