
TestingNondeterminateSystems

Tim Menzies
NASA/WVU Software

ResearchLab,
Fairmont,USA

tim@menzies.com

BojanCukic
Dept.Com.Sci. & Elec.Eng.

WestVirginia University,
Morgantown, USA

cukic@csee.wvu.edu

HarhsinderSingh
Dept.of Statistics,

WestVirginiaUniversity
Morgantown, USA

hsingh@stat.wvu.edu

JohnPowell
Dept.Com.Sci. & Elec.Eng.

WestVirginiaUniversity,
jpowell@csee.wvu.edu

Abstract

Thebehaviorof nondeterminatesystemscanbehard to
predict,sincesimilar inputsat differenttimescangenerate
differentoutputs.In otherwords,thebehaviorseenduring
testingprocessmaynot beseenat runtime.

Due to the uncertaintiesassociatedwith nondetermin-
ism, the standard view is that we shouldavoid such non-
determinatesystems,especiallyfor systemsrequiring high
reliability. Whilethis is a valid guideline, at leastin twoap-
plicationareassuch nondeterminacyis unavoidable. Early
life cyclerequirementsandAI softwarearebecomingwidely
used. Yet both are impreciseand mayexhibit nondetermi-
natebehaviourif exploredrigorouslybya testdevice.

Basedon a literature review andsometheoretical stud-
ies, we argue that manystablepropertiesexist within the
spaceof all possiblenondeterminatebehaviors. However,
we also showthat seeminglytrivial changes to a nonde-
terministic systemcan turn an easily testablesysteminto
an impossiblyhard systemto test. Finally, we stressthat
this analysisdoesnot imply a correlation betweenstable
zonesof nondeterminatetestabilityand the ultimatemain-
tainability of nondeterminatesystems.Thatis, whileweare
optimisticabouttestingnondeterminatesystemsweremain
cautiousaboutthemaintenanceof such systems.

1. Intr oduction

Despite the problemswith determiningtheir reliabil-
ity, nondeterministicsystemsappearfrequentlyin modern
softwareapplications.By “nondeterministicsystems”,we
meanthosesystemswhich, whenpresentedwith the same

inputs at different times, may generatedifferent output.
That is, the outputof suchsystemsis not uniquely deter-
minedby theinputs.

It canbe very difficult to quantitatively assesssoftware
reliability from such systems. In a samplingmodel, for
example,software reliability is estimatedas the probabil-
ity of drawing a black ball (signifying a point in the input
spacewhichrevealsaprogramfailure)from anurncontain-
ing black balls and white balls (points in the input space
which reveal no failures)[16]. However, this view is in-
correctif thesameinput, dueto nondeterministicprogram
execution,mayresultin differentoutputs(corrector incor-
rect). The correctanalogyfor nondeterministicsystemsis
to view eachball as consistingof several fragments(say�

), eachof which canbe eitherblack or white. Further,
eachtime a ball is selected,only onefragmentcanbe ex-
amined. Under theseconditions,estimatingthe probabil-
ity of failure basedon this type of testingdoesnot follow
well establishedmathematicalmodels.Thesamereasoning
holds for all quality modelswhich treat the systemunder
testasa black box. The lack of determinismin the input-
outputbehavior of the programintroducesuncertainty. As
aconsequence,users,if givenachoice,preferto avoid such
implementations.

Nevertheless,we have observed an increasinguse of
nondeterministicsystems,particularly in the fields of re-
quirementsengineeringand artificial intelligenceapplica-
tions.Suchincreasesareoftenmandatedby economiccon-
siderations.For example,a repeatedobservationis that the
removal of defectsfrom requirementsdocumentsis orders
of magnitudecheaperthanremoving defectsfrom delivered
sourcelinesof code[19]. Becauseof thefinancialbenefits
of early testing,developersmay thusbe mandatedto test
their requirementsasearlyaspossible.Unfortunately, early

life-cycle requirementstendto beunder-specified,particu-
larly if they comefrom multiple stake holders[9]. Hence,
they arenondeterminatesincethe resultsthey specifymay
be contradictory. At the NASA IndependentVerification
and Validation facility, we witnessthesetype of require-
mentsfrequently, even thoughthe final productsof these
specificationsaresafetyandmissioncritical systems[19].

In AI, efficiency concerns also drive us to non-
deterministicsystems. Increasingly, AI applicationsuse
randomizedinference.For example,schedulingalgorithms
deriveschedulesthatcanbebuilt from someinitial random
guesses[7]. Surprisingly, larger problemscan be solved
with suchrandominferenceproceduresthanwith a more
thoroughsearch[7, 20]. Hence,whenprocessinglarge AI
systems,developersmaywantto userandomizedinference.
If theschedulingproblemallowsfor differentsolutions,the
randomizedsearchpicks one of thesesolutions. Under-
constrainedschedulingproblemsincreasethe probability
thattherandomsearchrevealsoneof thesesolutions,mak-
ing nondeterminacy desirable.However, beforerelying on
randomizedsearchengines,developersneedto assesstheir
behavior andtheimplicationswithin thecontext of thespe-
cific application.

The goal of this paper is to determinehow long we
shouldtest nondeterministicsystems. We will show that
testingnondeterminatesystemsis not necessarilymoredif-
ficult than testingdeterministicones. More precisely, we
will suggestthat the numberof testsrequiredto be (e.g.)
99%sureof exercisingall partsof a nondeterministicsys-
tem is not determinedjust by the presenceor absenceof
nondeterminism.Certainly, nondeterminismis one factor
in determiningtestsetsize. However, this factoris far less
critical thanothers,suchastheproportionof “and” nodesin
theprogramrepresentation,or theaveragenumberof paths
to somepartof a program.We will demonstratethis asfol-
lows:� We begin by defining an abstractmodel of program

executionin anondeterministicsystem;i.e. traversing
a NAYO graph(definedbelow).� We thenderive anexpressionfor theoddsof reaching
somepart of that systemfrom setsof randominputs.
This expressionletsuscompute

�
; i.e. thenumberof

randomlyselectedinputsneededto haveahighchance
of reaching thatpartof a nondeterministicsystem.� Next, by executingtheexpressionfor a wide rangeof
systems,we candeterminewhenthatpartof a nonde-
terministicsystemis very reachableor notveryreach-
ableat all. We will show that for a largeclassof sys-
tems,mostpartsof a nondeterministicsystemcanbe
exercisedby asmallnumberof randominputs.Thatis,
for easilyreachablenondeterministicsystems, we can
quickly sampleall of their behaviour.

diet(fatty).
diet(light).
happy :- tranquillity(hi).
happy :- rich , healthy.
healthy :- diet(light).
satiated :- diet(fatty).
tranquillity(hi) :- satiated.
tranquillity(hi) :- conscience(clear).

Figure 1. Some ground horn clauses.

As aresultof thiswork, weareoptimisticaboutourabil-
ity to quickly testnondeterministicAI systemsandrequire-
mentmodels.Our work shows thatthereexist largeclasses
of nondeterministicsystemsfor whichwecanquickly sam-
ple their spaceof behavioursusingrandominputs.

However, this work alsomakesuscautiousaboutmain-
taining nondeterministicsystems.We will show that that
minorchangesto programstructurecanhavemajorchanges
to reachability. For example, insteadof requiring (e.g.)
lessthan100randomtests,developersmaysuddenlyneed
1,000,000testsor moreto exploreall of their system.

1.1. Preamble

Beforebeginning,we will describesomeboundarieson
this analysis.

Firstly, we only commenton thosesystemsthat canbe
expressedin our NAYO graphs. This includestwo com-
monly usedtypesof systems:� Wewill show below thatthehornclausesusedin logic

programming,expertsystems,andmuchof AI canbe
expressedin our format. Horn clausesarealsooften
usedin logic-basedapproachesto requirementsengi-
neering.For anexampleof horn-clauses,seeFigure1.� Finite-statediagramscan be reducedto horn clauses
(seeFigure2) andhencecanbe expressedin our for-
mat. Finite-statediagramscanbefoundin many anal-
ysis methodsor canbe automaticallyderived from a
staticanalysisof a program.

Secondly, in thispaper, testingis viewedastheconstruc-
tion of pathwaysthat reach from inputsto someinteresting
zoneof a program. This zonecouldbe a bug or a desired
feature. In this reachability view, the goal of testingis to
show thata testsetuncoversno bugswhile reachingall de-
siredfeatures.This reachabilityview is consistentwith at
leasttwo testingregimesseenin the contemporarytesting
literature:� Model checkerssuchasSPIN[10] generatetracefiles

showing exactly how systemconstraintscan be vio-
lated. Suchtracesclearly indicatehow a programcan

Hornclausestake theform�������
	���
���������������������
���������� �"!������$#%#&#
which, in aProlognotation,wewould write as����� �('�)*
��������������,+-
���������� �"!�+�#&#&#
If thereexistsmorethanonemethodof demonstratingsome����� �

, theneachmethodis aseparateclause.
Finite-statediagrams(FSDs) contain transitionsbetween
states.Transitionsmaybeconditionalonsomeguard.States
maycontainnestedstates.
To translateFSDsto horn-clauses,createone variable for
eachstate. Createoneclausefor eachtransitionfrom state
-�

to

.!

. Eachclausewill take theform
.!/'�)*
-�,+.0�����1��
where

0���� 1��
comesfrom the conditional tests that acti-

vatethat transition. If a state

-�

containssub-states

-��#%�

,
-�,# !
,. . . thencreateclausesof theform
-��#%�2'�)*
-�
-��# !3'�)*
-�

, etc.

Figure 2. Translating finite-state diagrams to
horn clauses.

fail. Also, the tracefile canbe usedto explore meth-
odsof fixing thefault. In our framework, sucha trace
wouldbea treeextractedfrom thehornclauseswhose
root representedsomeerror.� One assessmentof the utility of a test suite is how
well it covers a program. Variousdefinitionsof cov-
erageexist andoneof thestrictestis DU-coverage; i.e.
coveringall pathwaysfrom wherea variableis setto
whereit is used[4]. In our example,a DU-pathover
horn clauseswould be a treeextractedfrom the horn
clauseswhoseroot containsthe usage. All the non-
root membersof thattreewould containvariablesthat
mustbe definedin order to reachthat root. That is,
reachabilitytheorycancomputethe oddsof generat-
ing aDU-pathway.

A third boundaryis that thusfar our analysishasnot let
usassessthetestabilityof a particular nondeterminatesys-
tem.Our reachabilitymodelrefersto many parametersthat
describea programand,at thetime of this writing, we lack
thetool setto extractthoseparametersfrom programs.The
creationof that tool set is the currentgoal of this project.
However, while we await thatcreation,we canstill discuss
classesof systems,evenif wecannotdiscussparticularsys-
tems.

happy tranquility(hi)
4

diet(light)
5and16

rich7
healthy

diet(fatty)
5satiated8

conscience(clear)9

Figure 3. The and-or graph within Figure 1.

2. Traversinga NAYO Graph

2.1. Intr oducingNAYO Graphs

Our theoreticalanalysisof testingnondeterminatesys-
temsassumesthat programexecutionandtestingis a pro-
cessof exploringaNAYO graph.Thissectiondescribesthe
characteristicsof NAYO graphs,while thenext sectionwill
describeexploringNAYO graphs.

A NAYO graphis a finite directedgraphcontainingtwo
typesof edgesandtwo typesof nodes:� Or-nodesstoreassignmentsof asinglevalueto a vari-

able. Only oneof the parentsof an or-nodeneedbe
reachedbeforewevisit theor-node.� And-nodesmodelmultiplepre-conditions.All thepar-
entsof anand-nodemustbe reachedbeforethis node
is visited.� No-edges representillegal pairs of inferences; i.e.
thingswecan’t believeat thesametime. For example,
wewould connecthappy andsad with a no-edge.� Yes-edgesrepresentlegal inferencesbetweenor-nodes
andand-nodes.

We can constructNAYO graphsfrom commonly-used
representationssuchasthehorn-clausesshown in Figure1.
Recallfrom theabovethathornclausesform aspecialkind
of systemwhereeachclausehasagoalandsub-goals.Thus:� To prove theclause’s goal,we mustrecursively prove

the items in the body. In Figure 1, we can prove
happy in oneor two ways. Onemethodis to prove
rich and healthy . Alternatively, we can prove
happy if we canprove tranquillity(hi) .� A clausewith an emptysetof sub-goalsis a fact; i.e.
we canbelieve it without further proof. In Figure1,
diet(light), and diet(fatty) arefacts.

To convert this exampleto a NAYO graph,we first add
oneor-nodefor every term in Figure1 plus oneand-node
for every non-emptybody. We next addoneedgefor every
bodytermconnectingbackto theheadterm.Thisprocedure
yieldsFigure3.

happy tranquility(hi)
4

diet(light)
5and1:

rich7
healthy

diet(fatty)
5 no

yes;
yes; yes;yes; yes;

satiated8 yes;
yes;

conscience(clear)9
yes;

Figure 4. Figure 3 rewritten as a NAYO graph.
All the nodes in this graph, except for and1
are or-nodes.

To completethe build of the NAYO graph,we addthe
yes-edgesand the no-edges.First, we label eachedgein
Figure3 with “yes”. Next, for eachincompatiblepair of
nodesuncoveredduringtheanalysis,a “no” edgeis added.
ThismethodconvertsFigure3 to Figure4.

2.2. Using a NAYO Graph

We saythatwhena programexecutes,it startsat thein-
puts,thenrunsoverthenodesof theNAYO graph.Oneway
to visualizetheexecutionis by growing thetreesacrossthe
theNAYO graph.Notethatasthisproof treegrows,it must
remainconsistent;i.e. it mustnot containtwo nodescon-
nectedby ano-edge.

In thetesting-as-reachabilityview describedabove,test-
ing asjust a specialcaseof executionin which:� We record the tree of pathsfollowed over a NAYO

graph.� We terminatetheexecutionof testingwhenthesearch
uncoversaninterestingnode(e.g.,a fault).

A fault explanationtreeis a treewhoseleavesareinputs
causingthe activationof a fault, andwhoseroot is a node
containingthefault. Sucha fault explanationtreeis a sub-
setof theprogramNAYO graph.Hence,testingis aprocess
of trying to generatefaultexplanationtree(s)from aNAYO
programnetwork. If no suchexplanationcanbegenerated,
thenwe gainconfidencethat thereareno faultsin our pro-
gram. Of course,aswith any testingmethod,the absence

of generatedfault explanationtreesdoesnot guaranteethat
theprogramis actuallyfault free.

Constructinga treeacrossa NAYO graphcanbea non-
determinateprocess. For example,considera searchen-
gine exploring Figure 4. This searchenginemust make
choiceswhenfacedwith options. For example,considera
searchenginetrying to provehappy . Sucha searchmight
spreadout to reachtranquillity(hi) andhealthy .
Which shouldit explorefirst? Notethat if it exploresboth,
it might have to later choosebetweendiet(light) and
diet(fatty) .

Notealsothatwithout theno-edges,asearchenginewill
not faceincompatiblechoices.That is, if theno edgesdis-
appearfrom a NAYO graph, then that systemwould no
longerbenecessarilynondeterminate.

3. AverageCaseNAYO-Graph Reachability

3.1. Defining the Model

Reachabilityanalysisdefinesanexpressionfor <>= ? @ be-
ing theprobabilitythatanexplanationtreewill coveranode
at height ? giventhat the numberof randomlyselectedin-
puts is ACB . The analysisbegins with the following defini-
tionsaboutNAYO graphssuchasFigure4:� TheNAYO graphcontainsa numberof nodesdenoted

by D . Somefraction of thesenodesare and-nodes
(E�B.FHG) and the rest are or-nodes(IKJ�G). Note thatIKJ�G>LME�B.FHGONQP .� In theNAYO graph:

– Or-nodeshave IKJ�R numberof parents(on aver-
age).

– And-nodeshave E�B.F�R numberof parents(onav-
erage).

– Or-nodescontradictB.I numberof otheror-nodes
(onaverage).

– No-edgesonly connectnodeswhicharefoundto
beincompatible.Hence,and-nodeswill neverbe
touchedby a no-edge.� The nodesthat connecta setof of inputs to a single

nodewill form a tree. Thesizeof the setof inputsis
denotedby ACB . In thattree:

– Eachand-nodehasat leastoneparentthat is an
or-node.

– Theroot of that treeis at height A , where A is the
longestpathfrom theroot to any leaf (input).

– Theinputsto thesystemareat height0. We de-
clarethatonly or-nodescanbeinputs.

– And-nodeswill have, on average,E�B.F�R parents
in thetree.

– Any or-nodeatheight?(ST?(U/V�W will haveatleast
oneparentin thetree.

– Up to height? , thetreewill containB�= ?�@ nodes.

– At any level, thetreecanhaveupto D nodes,i.e.,B�= ? @YX3D .

In the tree, any node at height ?ZS[?\U]V�W will have
oneparentat height A�N^?>_`P andotherparentsat heightVaX/A�Xb?$_3P . In our simulations,we assumethevalueof? betweenP and P�V�V . Variable A controlshow far backin
thegraphthenodemayhave its parents:AcN3deS�F�fgR�hjikWYlmS[?n_/P,W (1)A is the randomvariabledistributedaccordingto the oaf,hpE
distribution with the meanset to F�fgRqhji (V�rTP to V�r s in dif-
ferentsimulationruns). As F�fgR�hji decreases,parentscome
from furtherandfurtherbackin theNAYO graph.

To define<>= ? @ , wenotethatarandomlychoseninputhas
odds t that it will stumbleacrosssomefault. Further, this
input will missthat fault with odds SpPu_vt�W . If we conduct�

randomblack-boxprobes,thentheoddsof a failurenot
occurring(thusnot revealingthefault) is SpPw_vt�Wpx . Hence
theprobabilityof findingafault,hidingin anunknownnode
within the NAYO graph,in

�
randomtestsis Equation2

(andtheinverseis Equation3):R-SytYz � W{N P|_~}gSpPw_*tkW xm� (2)� S%RYz�tkW{N ��I,��SpP|_ORkW�����I,��SpP�_*tkW (3)

Or-nodesarereachedatheight? via oneparentatheightAmN^?�_�P . The probability <>= ? @y�j� of reachingan or-node
at height ?*U^V is the probabilityof not missingany of its
parents;i.e.

<>= ? @ �j� N^P|_/SjP|_*<3= ?$_/P�@yW.l �� ���p�K� �p���� SpP|_v<>= A�@yWH�� (4)

Similarly, theprobability <>= ? @"����� of reachinganand-node
at height ?bU�V is the probability that oneof its parentsis
reachedat height ?(_~P andthe restarereachedat heightP r[r[S[?$_/P,W ; i.e.

<>= ?�@y��� ��N`<3= ?$_/P�@�l �� ��� �j��� �p���� <>= A�@ �� (5)

The numberof parentsof an or-node (IKJ�R) is a ran-
domvariabledistributedaccordingto a gammadistribution� S��ez����W , where is themeanof IKJ�R (betweenP and P�V in
differentsimulations),and � is its ‘skew’ (P to P,¡ in dif-
ferentsimulations).Therangeof legal valuesthat IKJ�R may

assumeis VMX¢IKJ�R¤£Z¥ . As � decreases,the distribu-
tion becomesnarrower, meaningthatmoreor-nodesgetthe
sameor a similarnumberof parents.

Having E�B.F nodesand IKJ nodes,the probability <>= ? @
thatanodecanbereachedatheight? is thesumof <>= ? @ ��� �
and <>= ? @ �j� , weightedby thefrequency of E�B.F nodesand IKJ
nodes,i.e.,<>= ?�@¦N E�B.FHG§l�<>= ? @"��� �¨L2IKJ�G�l�<$©�= ?�@y��� (6)< © = ? @"���ªN <>= ? @"����l«<>= ? @¬� ��­T�g�H�®l«<>= ? @"� ��¯�­T��°p± (7)< © = ? @ ��� is similarto theoriginal <>= ? @ ��� , but it is modifiedby
Equation7, for thefollowing reasons.Recallthator-nodes
cancontradict,on theaverageB.I other IKJ nodes.Thepos-
itive valueof B.I variableimplies that thereis nondetermi-
nacy in themodel.When B.IaU3V , theinferenceenginewill
needto choosebetweencompetingpathsfrom timeto time.B.I is a randomvariablewhich follows gammadistribution
with mean B.I � (V�z�P�r�r�rH²) and skew B.I � (P z�³
zj²ur�r�r�P,¡).
Theprobability <>= ? @¬� ��¯�­T��°p± thata new nodecanbeadded
to aNAYO pathof size B�= ? @ at level ? is theprobabilitythat
this new nodewill not contradictany of theor-nodesin the
currentexplanationtree:<>= ? @ � ��¯�­T��°p± N ´ P|_ B.ID¶µ �
� �p�T·g���g¸ (8)

In this equation,D is thenumberof nodesin thewhole
graph(simulatedas P�V�V V�zg³�V�V V�z�r�r�rjP�z�V V�V�zgV V V).

Not only must a new node not contradictwith other
nodesin the explanationtree, it mustalsonot introducea
loop into thetree,sinceloopsdonotcontributeto revealing
unseennodes.<>= ? @ � ��­T�g�H� N ¹.P|_ PD»º ��� �p�T·�����¸ (9)

Observetheuseof B�= ? @Kl-IKJ�G in Equation8 andEquation9.
And-nodescontradictno other nodes;hencewe we only
needto considercontradictionsfor IKJ�G of thesystem.Also,
sinceevery and-nodehasan or-nodeasa parent,thenwe
needonly checkfor loopsamongsttheor-nodes.

Finally, we offer someinitial conditions. A�B is thenum-
ber of inputs to our system. Inputsare representedby or
nodes,sinceand-nodesalwayshavepre-conditions.Hence:<>= V�@ ��� � N V (10)<>= V�@y�j�ªN A�BD (11)

Theabovereachabilitymodelwasrun100,000timesus-
ing valuesfor all modelparametersrandomlyselectedfrom
therangesdescribedin this section.Theresultsareshown
below.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70 80 90 100

pr
ob

ab
ili

ty
 o

f r
ea

ch
in

g
j

¼
height j

10 runs (randomly selected from 100,000 runs)

Figure 5. Some randoml y selected runs from the reachability model.

3.2. Model Output

As we might expect, the behaviour of our reachabil-
ity model is quite variable: seethe ten randomlyselected
runs shown in Figure 5. Such variability is to be ex-
pected:themodelcontainsmany randomvariablessuchasIKJgR�z�E�B.F�RYz�E�B.FHGkzjB.I�z�A

However, significantregularitiescanbe seenif we ex-
aminenumerousruns. Recall that the numberof tests

�
requiredto be99%sureof reachinganodewith probability
of reaching<>= ? @ canbe calculatedfrom Equation3 usingt/N½V�r s�s and R3N½<>= ? @ . Somefrequency distributionsof
thecalculated

�
areshown in Figure6. Notetwo important

effects:

The ACB effect: For shallow probes,the numberof inputs
crucially determinesreachability. For example, at?¾N¿P�V and ACBÀNÂÁ�V , 1,000,000randomareneeded
to reach50% of the program;seeFigure 6.A. How-
ever, at ?ÃNÄP�V and ACBÅNÄP�V�V V , 10,000randomtests
suffice to reach50%of theprogram;seeFigure6.B.

The ? effect: As we probe deeperinto the program(in-
creasing?), more and more of the programcan be
reachedby a relatively small numberof randomlyse-
lectedinputs. For example,by ?/NÆs V (Figure6.F),
nearlyhalf of the programcanbe reachedusing100
randomlyselectedinputs,

The ACB effect hasbeenreportedpreviously in the litera-
tureby Rothermelet.al.[18]. In theirexperiments,reducing
testsuitesizesignificantlydecreasedthe numberof faults
detected.The sameeffect canbe seenin our simulations
outputs. As the input size is increasedfrom Figure 6.A
to Figure6.B, the nodesreachedby 10,000testsincreases
from 10% to 50%. Rothermelet.al. did not study the ?
effect. Our resultsstronglysuggestthat the ? effect domi-
natesthe ACB effect. By ?(N~s�V , increasingtheinput sizeby
a factorof 20 haslittle effect on thepercentageof thesys-
tem reachedby 100 randominputs(40% in Figure6.E vs

Figure6.A:Ç¬È
=1..50, É =1..10

1

100

10,000

1e+6

1e+14

0 25 50 75 100

N
 (

av
er

ag
e)Ê

%

Figure6.B:Ç¬È
=950..1000,É =1..10

1

100

10,000

1e+6

1e+14

0 25 50 75 100

N
 (

av
er

ag
e)Ê

%
Figure6.C:Ç¬È

=1..50, É =40..50

1

100

10,000

1e+6

1e+14

0 25 50 75 100

N
 (

av
er

ag
e)Ê

%

Figure6.D:Ç¬È
=950..1000,É =40..50

1

100

10,000

1e+6

1e+14

0 25 50 75 100

N
 (

av
er

ag
e)Ê

%
Figure6.E:Ç¬È

=1..50, É =90..100

1

100

10,000

1e+6

1e+14

0 25 50 75 100

N
 (

av
er

ag
e)Ê

%

Figure6.F:Ç¬È
=950..1000,É =90.100

1

100

10,000

1e+6

1e+14

0 25 50 75 100

N
 (

av
er

ag
e)Ê

%

Figure 6. Outputs from the reachability model,
restricted to cer tain rang es. Y-axis comes
from Equation 3; X-axis generated by sor ting
sim ulation outputs. Each plot represents 400
sim ulations using randoml y selected param-
eters for the reachability model.

50%in Figure6.F).Notethatsystemshaveto beverysmall
indeedto only support?>£~P�V .

Oneinterestingfeatureis thatfor awiderangeof NAYO
graphs,most of thosegraphsare reachableusing a small
numberof randomlygeneratedinputsdespiteNAYO com-
putationbeingnondeterminate.A recentliteraturereview

offers much evidence that this is a commonly observed
effect [12]. For example, researchersin AI and require-
mentsengineeringexploreinconsistentandnondeterminate
theories. A repeatedresult is that committing to a ran-
domly selectedresolutionto a conflict reachesasmuchof
a programascarefullyexploring all resolutionsto all con-
flicts [7,13,14,21]. This is consistentwith thesearchspace
within our programscontainingmany pathsto the same
point-aview veryconsistentwith Figure6.

Otherresultsfrom softwareengineeringandknowledge
engineeringliteraturesuggestthat the effectsderivedfrom
thereachabilitymodelhave beenwidely observed. An of-
ten repeatedobservation is that a small numberof inputs
canoftenreachsignificanterrorsin a program[4,12]. Var-
ious researchershave notedthat the portionsof a program
usedin normaloperationareasmallsubsetof thetotalpro-
gram[3,6], andthattestcoveragesuitesoftendo not target
theentireprogram[8,11]. A repeatedobservationin classi-
cal mutationtestingliteratureis thatmostprogrammutants
generatethesamebehaviour [2,5,15,22].

Theseempiricalobservationsareconsistentwith thehy-
pothesisthat programsinclude easily reachableand very
unreachablezones. The sameeffect can be seenin our
simulationoutputs. Recall that the y-axis of Figure6 is a
logarithmicscale:asour curvesriseon thatscale,they are
escalatinginto veryunreachablezones.

4. Nondeterminismand Maintenance

Basedon theabove resultsandliteraturereview, we ar-
gue that a large classof nondeterminatesystemscan be
probedwith a small numberof randominputs. Hence,we
areoptimisticaboutourability to quickly testnondetermin-
istic AI systemsandrequirementmodels.

However, we are more cautiousregardingthe mainte-
nanceof nondeterministicsystems. Figure 6 might give
the impressionthat thetransitionsbetweeneasilyandnon-
easily testablesystemsis quite gradual. As we shall see,
this is not thecase.

In studieswith decisiontreeslearntfrom thesimulation
outputs,we have learntthatsmall changesto a systemcan
dramaticallyalterthereachability. In thosestudies,eachof
the 100,000runsof the reachabilitymodelwereclassified
asfollows. Firstly, wecalculated<-��Ë , i.e. theaverageprob-
ability of reachingthenodeat any depthwithin thegraph:

<Ì��ËÍN Î~ÏHÐgÐ��Ñ Ð <>= ?�@P�V V r (12)

Next, the <Ì��Ë figureswereconvertedto numberof required

testsusingEquation3 andclassifiedasfollows:

ÒwÓ RqfÔN
ÕÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ× ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖØ

G�E�Ù�h
E�B.FÚ i�fKE,R AHG � S�V�r s s�zg<-��Ë,W�£~P�V � zG�E�Ù�h
E�B.FÛ I�F�f,JKE�hpfK� Óf�t�Rqf,BYÙ�ACÜ�f AHG � S�V�r s s�zg<-��Ë,W�£~P�V Ý�zÙ���IKÞnz�E�B.Ff�t�Rqf,BYÙ�ACÜ�f AHG � S�V�r s s�zg< ��Ë W�£~P�V�ß�zA Û RqI�ÙKÙ�Apà���f IKhji�f,JKÞwApÙ,f�r
For example,testinga particularNAYO graphis classified
as“f astandcheap”if werequirelessthan100randomtests
to be99%sureof reachingall of thegraph.Finally, to build
the decisiontrees,we usedan automaticmachinelearner
(C4.5[17]) to generateFigure7. The learnertook asinput
the100,000inputsclassifiedusingthe

ÒwÓ Rqf defineabove.
Thelearnergeneratedasoutputa treecorrelatingthevalues
of simulationparametersintroducedearlierin this section,
with the outcomeof the test classifications(the estimated
errorof thetreeon unseencasesis 28.3%).

The learnt tree clearly shows the cliffs of reachability:
thresholdswherethe reachabilityof a systemcanchange
dramatically. Onesuchclif f canbeseenin Figure8 which
contraststwo pathwaysthroughFigure7. The“A” pathway
requires P�V Ý to P�V�ß teststo be 99% surewe canprobeall
of the graph. The “B” pathway requires£áP,V V teststo be
99%surewe canprobeall of thegraph.Supposea NAYO
systemfalls into the “B” pathway; i.e. it is easilytestable.
Supposefurtherthat,duringmaintenance,theaveragenum-
ber of and-nodeparentsin that graphchangesfrom (e.g.)
3.75to 4.25.Thissinglechangecouldimply thatthegraph
switchesfrom the “B” pathto the “A” path; i.e. suddenly
that graphwould requireat least tensof thousandsmore
teststo be99%surewecanprobeall of thegraph.

5. Discussion

This article rejects that traditional view that the be-
haviour of nondeterminatesystemsmakesthemtoo unpre-
dictableto be testable.Basedon a mathematicalanalysis
of NAYO graphreachabilityand a literaturereview [12],
we havearguedthatwide rangeof nondeterminatesystems
have easyreachability; i.e. they can be adequatelyand
quickly probedwith a small numberof randomlyselected
tests.

However, while optimistic regarding the testability of
nondeterministicsystems,we aremorecautiousregarding
their maintainability. Small changesto a systemcansud-
denlyconvertaneasilytestablesystemto averysystemthat
is verydifficult to test.Weconcludethatanondeterministic

start

orpMean=<3

orpMean>3

fast and
moderately
expensive

fast and
cheap

slow and
expensive

impossible

orpMean=<1

orpMean>1

v=<250500

v>250500

andfMean>0.33

andfMean=<0.33

in=<46

in>46

andfMean=<0.4

andfMean>0.4

in=<11

in>11
andfMean>0.2

andfMean=<0.2

andpMean=<8

andpMean>8

in=<26

in>26 v=<265500

v>265500
andfMean=<0.67

andfMean>0.67

depth=<0.5

depth>0.5

andfMean=<0.5

andfMean>0.5

depth=<0.5

depth>0.5

andfMean=<0.25

andfMean>0.25

andpMean=<6

andpMean>6

noMean=<1

noMean>1

andfMean=<0.1

andfMean>0.1

noMean=<1

noMean>1

orpMean=<6

orpMean>6

andpMean=<4

andpMean>4

orpMean=<5

orpMean>5

andfMean=<0.2

andfMean>0.2

andpMean=<4

andpMean>4

in=<16

in>16

orpMean>6

orpMean=<6
noMean=<1

noMean>1

andfMean=<0.75

andfMean>0.75

in=<6

in>6
orpMean=<6

orpMean>6

noMean=<1

noMean>1

v=<214500

v>214500

in=<11

in>11

v=<269500

v>269500
depth>0.4

depth=<0.4

andfMean=<0.8

andfMean>0.8

Figure 7. Classifications seen from 100,000 runs of the reachability model. Tree generated using the
C4.5 algorithm [17].

Graph
A B

slow andexpensive fastandcheap
(requires

��â�ã,#&#%��â,ä
tests) (requireså ��â,æ

tests)��1jç
è éÃê é*ê��������è
0.2. . .0.5 0.2. . .0.5	y� ëM��ì

any����è
any

é2�������ç�è
any

ëÃí
Figure 8. Small chang es in a NAYO graphs
may impl y a large chang e in the number of
required tests.

systemmayrequireretestingafterseeminglytrivial changes
to thesystem.

Ouranalysisalsoshowsthattestingnondeterminatesys-
temsis not necessarilymoredifficult that testingdetermin-
istic ones.Figure7 shows a complex interactionof factors
thatdeterminethe testabilityof a system.Thecritical fac-
tors areshown nearthe root of the tree. Note that the the
meannumberof no-edgesis notcritical. Otherfactors,such
asthefrequency of theand-nodesaremorecritical. Thatis,
factorsrelatingto theoverall structureof theprogrammay
bemorecritical thannondeterminismin determiningover-
all systemtestability.

We arevery enthusiasticaboutthe potentialthis frame-
work hasfor software testing. This is a unifying frame-
work, bridgingthedifferencesbetweensoftwareparadigms
usedduringthedevelopment.In fact, it is suitablefor test-
ing early life-cycle artifactsaswell asprogramsreadyfor
release.The degreeto which the NAYO graphrevealsits
nodesmaybeusedasa testabilitymeasure.Differentpro-
gramswill havedifferenttestabilities.Testers,for example,
may want to attribute a higherdegreeof confidenceto the
testingresultsof atestableprogrambecauseit hidesless[1].
Sincerevealingnondeterminacy is oneof the goalsof this
framework, the probability that it will go unnoticedis re-
duced.This hasthepotentialfor increasingthereliability.

Thepreconditionfor investigatingany of thesetopicsis
thedevelopmentof anautomatedenvironmentfor building
NAYO graphsfrom the reasonableset of traditional pro-
gramrepresentations.Withoutsuchatool, wecanonly dis-
cussthegeneralpropertiesof classesof programs(e.g. the
discussionseenin thisarticle).With sucha tool, wewill be
ablethespecificreachability, hencetestability, of a specific
program.Wearecurrentlybuilding suchatool for thespec-
ificationlanguage(PROMELA) andthelogic programming
language(Prolog).

Acknowledgements

Thecommentsof theanonymousreviewersleadto asig-
nificantsimplificationandclarificationof this paper. Also,
thanksto HelenBurgessfor atimely review of thefinal draft
of this paper. This work waspartially supportedby NASA
throughcooperativeagreement#NCC2-979.

References

[1] L. S.A. Bertolino. On theuseof testabilitymeasuresfor de-
pendabilityassessment.IEEE Trans.Software Engineering,
22(2):97–108,Feb1996.

[2] A. Acree. On Mutations. PhD thesis,Schoolof Informa-
tion andComputerScience,Georgia Instituteof Technology,
1980.

[3] A. Avritzer, J.Ros,andE. Weyuker. Reliability of rule-based
systems.IEEE Software, pages76–82,September1996.

[4] J.BiemanandJ.Schultz.An empiricalevaluation(andspec-
ification)of theall-du-pathstestingcriterion. Software Engi-
neeringJournal, 7(1):43–51,1992.

[5] T. Budd.Mutationanalysisof programstestdata. PhDthesis,
YaleUniversity, 1980.

[6] R. Colomb. Representationof propositionalexpert sys-
temsaspartial functions. Artificial Intelligence(to appear),
1999.Availablefrom http://www.csee.uq.edu.au/
˜colomb/PartialFunctions.html .

[7] J.Crawford andA. Baker. Experimentalresultson theappli-
cationof satisfiabilityalgorithmsto schedulingproblems.In
AAAI ’94, 1994.

[8] N. E. FentonandS. Pfleeger. Software Metrics: A Rigorous
& PracticalApproach. InternationalThompsonPress,1997.

[9] A. Finkelstein,D. Gabbay, A. Hunter, J.Kramer, andB. Nu-
seibeh. Inconsistency handling in multi-perspective spec-
ification. IEEE Transactionson Software Engineering,
20(8):569–578,1994.

[10] G. Holzmann.Themodelchecker SPIN. IEEETransactions
onSoftware Engineering, 23(5):279–295,May 1997.

[11] J. HorganandA. Mathur. Software testingandreliability.
In M. R. Lyu, editor, TheHandbookof Software Reliability
Engineering, pages531–565,McGraw-Hill, 1996.

[12] T. MenziesandB. Cukic. Adequacy of limited testingfor
knowledgebasedsystems.InternationalJournalonArtificial
IntelligenceTools(IJAIT), June2000.(to appear).

[13] T. Menzies,S. Easterbrook,B. Nuseibeh,and S. Waugh.
An empirical investigationof multiple viewpoint reasoning
in requirementsengineering. In RE ’99, 1999. Available
from http://research.ivv.nasa.gov/docs/
techreports/1999/NASA- IVV- 99- 009.pdf .

[14] T. Menzies and C. Michael. Fewer slices of pie: Op-
timising mutation testing via abduction. In SEKE
’99, June 17-19, Kaiserslautern, Germany. Available
from http://research.ivv.nasa.gov/docs/
techreports/1999/NASA-IVV-99-007.pdf,
1999.

[15] C. Michael. On theuniformity of errorpropagationin soft-
ware. In Proceedingsof the 12th AnnualConfererenceon
ComputerAssurance (COMPASS’97) Gaithersburg, MD,
1997.

[16] K. Miller, L. J. Morell, R. E. Noonan,S. K. Park, D. M.
Nicol, B. W. Murrill, andJ. W. Voas. Estimatingtheproba-
bility of failurewhentestingrevealsnofailures.IEEETrans.
onSoftware Engineering, 18(1):33–44,Jan1992.

[17] J. Quinlan. Inductionof decisiontrees.Machine Learning,
1:81–106,1986.

[18] G. Rothermel,M. Harrold, J. Ostrin, and C. Hong. An
empirical study of the effects of minimizaton on the
fault-detectioncapabilitiesof test suites. In Proceedings
of International Conference on Software Maintenance
’98, pages 34–43, November 1998. Available from
http://www.cis.ohio- state.edu/˜harrold/
research/webpapers/icsm98- min.pd%f .

[19] F. Schneider, S. Easterbrook,J. Callahan,G. Holzmann,
W. Reinholtz,A. Ko, andM. Shahabuddin. Validating re-
quirementsfor fault tolerantsystemsusingmodelchecking.
In 3rd IEEE InternationalConferenceOn RequirementsEn-
gineering, 1998.

[20] B. Selman,H. Levesque,andD. Mitchell. A new method
for solving hardsatisfiabilityproblems. In AAAI ’92, pages
440–446,1992.

[21] B. Williams andP. Nayak. A model-basedapproachto re-
active self-configuringsystems. In Proceedings,AAAI ’96,
pages971–978,1996.

[22] W. WongandA. Mathur. Reducingthecostof mutationtest-
ing: An empiricalstudy. TheJournal of Systemsand Soft-
ware, 31(3):185–196,December1995.

