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Abstract

Thebehaviorof nondeterminatesystemsanbe hard to
predict, sincesimilar inputsat differenttimescangeneite
differentoutputs.In otherwords, the behaviorseenduring
testingprocesamaynot be seenat runtime

Due to the uncertaintiesassociatedwith nondetermin-
ism, the standad view is that we shouldavoid sud non-
determinatesystemsespeciallyfor systemsequiring high
reliability. Whilethisis a valid guideling at leastin two ap-
plication areassuc nondeterminacys unavoidable Early
life cyclerequirrmentandAl softwaearebecomingvidely
used. Yet both are impreciseand may exhibit nondetermi-
natebehaviourif exploredrigorouslyby a testdevice

Basedon a literature review and sometheotical stud-
ies, we argue that many stable propertiesexist within the
spaceof all possiblenondeterminatdehavios. However,
we also showthat seeminglytrivial changesto a nonde-
terministic systemcan turn an easily testablesysteminto
an impossiblyhard systento test. Finally, we stressthat
this analysisdoesnot imply a correlation betweenstable
zonesof nondeterminateestability and the ultimate main-
tainability of nondeterminatsystemsThatis, while weare
optimisticabouttestingnondeterminatasystemsve remain
cautiousaboutthe maintenanc®f sud systems.

1. Intr oduction

Despite the problemswith determiningtheir reliabil-
ity, nondeterministicsystemsappearfrequentlyin modern
software applications.By “nondeterministicsystems” we
meanthosesystemswhich, whenpresentedvith the same

inputs at different times, may generatedifferent output.
Thatis, the outputof suchsystemss not uniquely deter
minedby theinputs.

It canbe very difficult to quantitatvely assessoftware
reliability from such systems. In a samplingmodel, for
example, software reliability is estimatedas the probabil-
ity of drawing a black ball (signifying a pointin the input
spacewvhichrevealsaprogramfailure)from anurn contain-
ing black balls and white balls (pointsin the input space
which reveal no failures)[16]. However, this view is in-
correctif the sameinput, dueto nondeterministigorogram
execution,mayresultin differentoutputs(corrector incor-
rect). The correctanalogyfor nondeterministicsystemss
to view eachball as consistingof several fragments(say
N), eachof which canbe eitherblack or white. Further
eachtime a ball is selectedpnly one fragmentcanbe ex-
amined. Undertheseconditions,estimatingthe probabil-
ity of failure basedon this type of testingdoesnot follow
well establishednathematicamodels.The samereasoning
holdsfor all quality modelswhich treatthe systemunder
testasa black box. The lack of determinismin the input-
outputbehavior of the programintroducesuncertainty As
aconsequenceisersjf givenachoice preferto avoid such
implementations.

Nevertheless,we have obsened an increasinguse of
nondeterministicsystems,particularly in the fields of re-
guirementsengineeringand artificial intelligenceapplica-
tions. Suchincreaseareoftenmandatedy economiccon-
siderations For example,a repeatedbsenationis thatthe
removal of defectsfrom requirementglocumentss orders
of magnitudecheapethanremoving defectsdrom delivered
sourcelines of code[19]. Becausef thefinancialbenefits
of early testing, developersmay thus be mandatedo test
theirrequirementsisearlyaspossible Unfortunately early



life-cycle requirementsendto be underspecified particu-
larly if they comefrom multiple stale holders[9]. Hence,
they arenondeterminatsincethe resultsthey specifymay
be contradictory At the NASA Independenierification
and Validation facility, we witnessthesetype of require-
mentsfrequently even thoughthe final productsof these
specification@resafetyandmissioncritical systemg19].

In Al, efficiency concernsalso drive us to non-
deterministicsystems. Increasingly Al applicationsuse
randomizednference.For example,schedulingalgorithms
derive scheduleshatcanbe built from someinitial random
guesseg7]. Surprisingly larger problemscan be solved
with suchrandominferenceprocedureghanwith a more
thoroughsearch7, 20]. Hence,whenprocessindarge Al
systemsdeveloperamaywantto userandomizednference.
If theschedulingproblemallows for differentsolutions the
randomizedsearchpicks one of thesesolutions. Under
constrainedschedulingproblemsincreasethe probability
thattherandomsearchrevealsoneof thesesolutions,mak-
ing nondeterminayg desirable.However, beforerelying on
randomizedsearchenginesdevelopersneedto assessheir
behaior andtheimplicationswithin the context of the spe-
cific application.

The goal of this paperis to determinehow long we
shouldtest nondeterministicsystems. We will shav that
testingnondeterminatsystemss not necessarilynoredif-
ficult thantestingdeterministicones. More precisely we
will suggesthat the numberof testsrequiredto be (e.g.)
99% sureof exercisingall partsof a nondeterministicsys-
tem is not determinedust by the presenceor absenceof
nondeterminism.Certainly nondeterminismris one factor
in determiningtestsetsize. However, this factoris far less
critical thanothers suchasthe proportionof “and” nodesn
the programrepresentatiomr the averagenumberof paths
to somepartof aprogram.We will demonstrate¢his asfol-
lows:

e We bggin by defining an abstractmodel of program
executionin anondeterministicystemj.e. traveising
a NAYO graph (definedbelow).

e We thenderive anexpressiorfor the oddsof reaching
somepart of that systemfrom setsof randominputs.
This expressioretsuscomputeN; i.e. the numberof
randomlyselectednputsneededo have ahigh chance
of reaching thatpartof a nondeterministicystem.

e Next, by executingthe expressiorfor a wide rangeof
systemsywe candeterminevhenthatpartof a nonde-
terministicsystemis veryreatableor notveryreach-
ableat all. We will shav thatfor alarge classof sys-
tems, mostpartsof a nondeterministicsystemcanbe
exercisedoy asmallnumberof randominputs. Thatis,
for easilyreacdhablenondeterministicystemswe can
quickly sampleall of their behaiour.

diet(fatty).

diet(light).

happy - tranquillity( hi).
happy - rich healthy.
healthy - diet(light).

satiated diet(fatty).

tranquillity (hi) satiated.

tranquillity(hi) conscience(clear).

Figure 1. Some ground horn clauses.

As aresultof thiswork, we areoptimisticaboutour abil-
ity to quickly testnondeterministid\l systemsandrequire-
mentmodels.Ourwork shavs thatthereexist large classes
of nondeterministicystemdor whichwe canquickly sam-
ple their spaceof behaioursusingrandominputs.

However, this work alsomakesus cautiousaboutmain-
taining nondeterministicsystems. We will shaw that that
minorchangeso programstructurecanhave majorchanges
to reachability For example, insteadof requiring (e.g.)
lessthan100 randomtests,developersmay suddenlyneed
1,000,00Qestsor moreto exploreall of their system.

1.1 Preamble

Beforebeginning, we will describesomeboundarieon
this analysis.

Firstly, we only commenton thosesystemshat canbe
expressedn our NAYO graphs This includestwo com-
monly usedtypesof systems:

o Wewill shaw below thatthehornclausesusedin logic
programminggxpertsystemsandmuchof Al canbe
expressedn our format. Horn clausesare also often
usedin logic-basedapproacheso requirement®ngi-
neering.For anexampleof horn-clausesseeFigurel.

¢ Finite-statediagramscan be reducedto horn clauses
(seeFigure2) andhencecanbe expressedn our for-
mat. Finite-statediagramscanbefoundin mary anal-
ysis methodsor can be automaticallyderived from a
staticanalysisof a program.

Secondlyin this papertestingis viewedastheconstruc-
tion of pathwaysthatread from inputsto someinteresting
zoneof a program. This zonecould be a bug or a desired
feature. In this readability view, the goal of testingis to
shaw thatatestsetuncoversno bugswhile reachingall de-
siredfeatures. This reachabilityview is consistenwith at
leasttwo testingregimesseenin the contemporartesting
literature:

e Model checlerssuchasSPIN[10] generatdracefiles
shaving exactly how systemconstraintscan be vio-
lated. Suchtracesclearly indicatehow a programcan



Horn clausegake theform
Goal if SubGoall and SubGoal2 and ...
which, in aProlognotation,we would write as
Goal : — SubGoall, SubGoal2, ...

If thereexistsmorethanonemethodof demonstratingome
Goal, theneachmethodis a separatelause.
Finite-statediagrams(FSDs) contain transitions between
statesTransitionsmaybeconditionalon someguard.States
may containnestedstates.

To translateFSDsto horn-clausescreateone variable for
eachstate. Createoneclausefor eachtransitionfrom state
S1to S2. Eachclausewill take theform

S2 : — S1, gaurd

where guard comesfrom the conditional teststhat acti-
vatethat transition. If a stateS1 containssub-statesS1.1,
S1.2,...thencreateclause®f theform

S1.1 : - S1
512 : - S1

, etc.

Figure 2. Translating finite-state diagrams to
horn clauses.

fail. Also, thetracefile canbe usedto explore meth-
odsof fixing thefault. In our framework, suchatrace
would be a treeextractedfrom the hornclausesvhose
rootrepresentedomeerror.

e One assessmenf the utility of a test suite is how
well it covers a program. Variousdefinitionsof cov-
erageexist andoneof thestrictestis DU-coverage; i.e.
coveringall pathwaysfrom wherea variableis setto
whereit is used[4]. In our example,a DU-pathover
horn clauseswould be a tree extractedfrom the horn
clauseswvhoseroot containsthe usage. All the non-
rootmembersf thattreewould containvariablesthat
mustbe definedin orderto reachthatroot. Thatis,
reachabilitytheory can computethe oddsof generat-
ing aDU-pathway.

A third boundaryis thatthusfar our analysishasnot let
usassesshetestabilityof a particular nondeterminatsys-
tem. Ourreachabilitymodelrefersto mary parameterghat
describea programand,at thetime of this writing, we lack
thetool setto extractthoseparameterfrom programs.The
creationof thattool setis the currentgoal of this project.
However, while we await thatcreation we canstill discuss
classe®f systemsevenif we cannotdiscussarticularsys-
tems.

conscience(clear)

e

happy-— tranquility(hi)

andl < rich

\ healthy «——— diet(light)

satiatede—— diet(fatty)

Figure 3. The and-or graph within Figure 1.

2. Traversinga NAYO Graph
2.1 Intr oducing NAYO Graphs

Our theoreticalanalysisof testingnondeterminatesys-
temsassumedshat programexecutionandtestingis a pro-
cesf exploringaNAY O graph.This sectiondescribeshe
characteristicef NAY O graphswhile the next sectionwill
describeexploring NAY O graphs.

A NAY O graphis afinite directedgraphcontainingtwo
typesof edgesandtwo typesof nodes:

e Or-nodesstoreassignmentsf asinglevalueto a vari-
able. Only one of the parentsof an or-nodeneedbe
reachedeforewe visit the or-node.

¢ And-nodesnodelmultiple pre-conditionsAll thepar
entsof an and-nodanustbe reachedeforethis node
is visited.

e No-edgs representillegal pairs of inferences; i.e.
thingswe can't believe atthe sametime. For example,
we would connecthappy andsad with ano-edge.

e Yes-edgsrepresentegalinferencesdetweeror-nodes
andand-nodes.

We can constructNAYO graphsfrom commonly-used
representationsuchasthe horn-clauseshawn in Figurel.
Recallfrom theabove thathornclausedorm a speciakind
of systemwhereeachclausenasagoalandsub-goalsThus:

e To prove the clause$ goal, we mustrecursvely prove
the items in the body. In Figure 1, we can prove
happy in oneor two ways. One methodis to prove
rich and healthy Alternatively, we can prove
happy if we canprovetranquillity(hi)

e A clausewith anemptysetof sub-goalds a fact;i.e.
we canbelieve it without further proof. In Figurel,
diet(light), and diet(fatty) arefacts.



To corvert this exampleto a NAY O graph,we first add
oneor-nodefor every termin Figure 1 plus oneand-node
for every non-emptybody. We next addoneedgefor every
bodytermconnectinghackto theheadterm. Thisprocedure
yieldsFigure3.

conscience(clear)

'/yes

happy<=> tranquility (hi)

e es
y and1y<- rich

ye‘s\ healthy «—Y5_ diet(light)

no
satiatede— Y2 giet(fatty)

Figure 4. Figure 3 rewritten as a NAYO graph.
All the nodes in this graph, except for andl
are or-nodes.

To completethe build of the NAYO graph,we addthe
yes-edgesnd the no-edges.First, we label eachedgein
Figure 3 with “yes”. Next, for eachincompatiblepair of
nodesuncoveredduringthe analysisa “no” edgeis added.
This methodcorvertsFigure3 to Figure4.

2.2 Usinga NAYO Graph

We saythatwhena programexecutesijt startsatthein-
puts,thenrunsoverthenodesof theNAY O graph.Oneway
to visualizethe executionis by growing thetreesacrosghe
theNAY O graph.Notethatasthis prooftreegrows, it must
remainconsistentj.e. it mustnot containtwo nodescon-
nectedby ano-edge.

In thetesting-as-reachabilityiew describedabove, test-
ing asjust a specialcaseof executionin which:

e We recordthe tree of pathsfollowed over a NAYO
graph.

¢ \We terminatethe executionof testingwhenthe search
uncoversaninterestingnode(e.g.,afault).

A fault explanationtreeis atreewhoseleavesareinputs
causingthe activation of a fault, andwhoseroot is a node
containingthe fault. Sucha fault explanationtreeis a sub-
setof the programNAY O graph.Hence testingis aprocess
of trying to generatdault explanationtree(s)from aNAY O
programnetwork. If no suchexplanationcanbe generated,
thenwe gainconfidencehatthereareno faultsin our pro-
gram. Of course,aswith ary testingmethod,the absence

of generatedault explanationtreesdoesnot guaranteg¢hat
theprogramis actuallyfaultfree.

Constructinga treeacrossa NAY O graphcanbeanon-
determinateprocess. For example, considera searchen-
gine exploring Figure 4. This searchenginemust make
choiceswhenfacedwith options. For example,considera
searchenginetrying to prove happy . Suchasearchmight
spreadutto reachtranquillity(hi) andhealthy
Which shouldit explorefirst? Notethatif it exploresboth,
it might have to later choosebetweendiet(light ) and
diet(fatty)

Notealsothatwithoutthe no-edgesa searchenginewill
not faceincompatiblechoices.Thatis, if theno edgedis-
appearfrom a NAYO graph, then that systemwould no
longerbe necessarilynondeterminate.

3. AverageCaseNAYO-Graph Reachability
3.1 Defining the Model

Reachabilityanalysisdefinesan expressiorfor P[j] be-
ing theprobabilitythatanexplanationtreewill coveranode
at heightj giventhatthe numberof randomlyselectedn-
putsis in. The analysisbegins with the following defini-
tionsaboutNAY O graphssuchasFigure4:

¢ TheNAYO graphcontainsa numberof nodesdenoted
by V. Somefraction of thesenodesare and-nodes
(andf) and the rest are or-nodes(or f). Note that
orf +andf = 1.

¢ IntheNAYO graph:

— Or-nodeshave orp numberof parents(on aver
age).

— And-nodeshave andp numberof parentqon av-
erage).

— Or-nodescontradictno numberof otheror-nodes
(onaverage).

— No-edge®only connecinodeswhich arefoundto
beincompatible Hence and-nodesvill neverbe
touchedby ano-edge.

e The nodesthat connecta setof of inputsto a single
nodewill form a tree. The size of the setof inputsis
denotedby in. In thattree:

— Eachand-nodehasat leastone parentthatis an
or-node.

— Theroot of thattreeis at heighti, wherei is the
longestpathfrom therootto ary leaf (input).

— Theinputsto the systemareat height0. We de-
clarethatonly or-nodescanbeinputs.



— And-nodeswill have, on average,andp parents
in thetree.

— Any or-nodeatheightj (j > 0) will haveatleast
oneparentn thetree.

— Upto heighty, thetreewill containn[j] nodes.

— At ary level, thetreecanhaveupto V' nodesij.e.,
il < V.

In the tree, ary nodeat heightj (5 > 0) will have
oneparentat heighti = j — 1 andotherparentsat height
0 <i < j—1. In our simulationswe assumehe valueof
j betweenl and100. Variablei controlshow far backin
thegraphthenodemayhave its parents:

i = p(depth) * (j — 1) (1)

1 is the randomvariabledistributed accordingto the Beta
distribution with the meansetto depth (0.1 to 0.9 in dif-
ferentsimulationruns). As depth decreasegyarentscome
from furtherandfurtherbackin the NAY O graph.

To defineP[j], we notethatarandomlychoserinputhas
oddsz thatit will stumbleacrosssomefault. Further this
inputwill missthatfaultwith odds(1 — z). If we conduct
N randomblack-boxprobes thenthe oddsof afailure not
occurring(thusnot revealingthefault) is (1 — z)~. Hence
theprobabilityof findingafault, hidingin anunknavn node
within the NAYO graph,in N randomtestsis Equation2
(andtheinverseis Equation3):

1—(1-2)V) (2)
log(1 — p)/log(1 — z) (3)

Or-nodesarereachedat heightj via oneparentatheight
i = j — 1. The probability P[j],, of reachingan or-node
atheightj > 0 is the probability of not missingary of its
parentsj.e.

p(z,N) =
N(p,z) =

orplj]

Pljlor =1-(1-P[j - 1]) * (H (1—P[i])) (4)

2

Similarly, the probability P[j],.q4 Of reachinganand-node
at heightj > 0 is the probability that one of its parentsis

reachedat heightj — 1 andthe restarereachedat height
1..(j = 1); i.e.

andp(j]

P[j]andzp[j—ll*( 11 P[é]) (5)

2

The numberof parentsof an or-node (orp) is a ran-
domvariabledistributedaccordingto a gammeadistribution
v(a, £), wherey is the meanof orp (betweenl and10 in
differentsimulations),and « is its ‘skew’ (1 to 18 in dif-
ferentsimulations).The rangeof legal valuesthatorp may

assumdas 0 < orp < oco. As a decreaseghe distribu-
tion becomesarrover, meaninghatmoreor-nodesgetthe
sameor a similar numberof parents.

Having and nodesand or nodes,the probability P[j]
thatanodecanbereachedtheight; is the sumof P[j].na
andP[j],r, weightedby thefrequeny of and nodesandor
nodesij.e.,

andf * P[jlana + orf * P'[§]or (6)
P[j]or * P[j]noloop * P[j]noclash (7)

P[j]
Pl[j]or

P'[4],r is similarto theoriginal P[5],, butit is modifiedby
Equation?, for thefollowing reasonsRecallthator-nodes
cancontradict,on the averageno otheror nodes.The pos-
itive value of no variableimplies thatthereis nondetermi-
nag in themodel. Whenno > 0, theinferenceenginewill
needto choosebetweercompetingpathsfrom timeto time.
no is arandomvariablewhich follows gammadistribution
with meanno, (0,1...4) and skew no, (1,2,4...18).
The probability P[j]n, c1asn thatanew nodecanbe added
to aNAY O pathof sizen|[j] atlevel j is theprobabilitythat
this new nodewill notcontradictary of theor-nodesin the
currentexplanationtree:

(1 3 @) nljl*orf

> ®)

P[j]noclash

In this equation,V is the numberof nodesin thewhole
graph(simulatedas1000, 2000, . . . 1,000, 000).

Not only must a new node not contradictwith other

nodesin the explanationtree, it mustalsonot introducea

loopinto thetree,sinceloopsdo not contributeto revealing

unseemodes.
1 n[jlxorf
(2-7) ©

Obsenretheuseof n[j] x or f in Equation8 andEquation9.
And-nodescontradictno other nodes; hencewe we only
needto considercontradictiondor or f of the system Also,
sinceevery and-nodehasan or-nodeas a parent,thenwe
needonly checkfor loopsamongstheor-nodes.

Finally, we offer someinitial conditions.in is thenum-
ber of inputsto our system. Inputs are representedby or
nodessinceand-nodeslwayshave pre-conditionsHence:

P[j]noloop

Pl0gng = O (10)
Pl = 3 (12)

Theabovereachabilitymodelwasrun 100,000timesus-
ing valuesfor all modelparametersandomlyselectedrom
therangesdescribedn this section. Theresultsareshavn
below.



10 runs (randomly selected from 100,000 runs)

0.35 T T T T
03
0.25
0.2
0.15
0.1
0.05

probability of reaching j

0 10 20 30 40

50 60 70 80
height j

Figure 5. Some randoml y selected runs from the reachability model.

3.2 Model Output

As we might expect, the behaiour of our reachabil-
ity modelis quite variable: seethe ten randomlyselected
runs shavn in Figure 5. Such variability is to be ex-
pected:the modelcontainsmary randomvariablessuchas
orp, andp, andf,no, i

However, significantregularitiescanbe seenif we ex-
aminenumerousuns. Recallthat the numberof tests N
requiredto be 99% sureof reachinga nodewith probability
of reachingP|;j] canbe calculatedfrom Equation3 using
z = 0.99 andp = PJ[j]. Somefrequeng distributions of
thecalculatedV areshavnin Figure6. Notetwo important
effects:

The in effect: For shallov probes,the numberof inputs
crucially determinesreachability For example, at
j = 10 andin = 50, 1,000,000randomare needed
to reach50% of the program;seeFigure 6.A. How-
ever, at j = 10 andin = 1000, 10,000randomtests
suffice to reach50% of the program;seeFigure6.B.

The j effect: As we probe deeperinto the program(in-
creasingj), more and more of the programcan be
reachedy arelatively small numberof randomlyse-
lectedinputs. For example,by ;7 = 90 (Figure 6.F),
nearly half of the programcan be reachedusing 100
randomlyselectednputs,

Thein effect hasbeenreportedpreviously in the litera-
tureby Rothermekt.al.[18]. In theirexperimentsreducing
testsuite size significantly decreasedhe numberof faults
detected. The sameeffect canbe seenin our simulations
outputs. As the input size is increasedrom Figure 6.A
to Figure 6.B, the nodesreachedby 10,000testsincreases
from 10% to 50%. Rothermelet.al. did not study the j
effect. Our resultsstrongly suggesthatthe j effect domi-
natesthein effect. By j = 90, increasingheinput sizeby
afactorof 20 haslittle effect on the percentagef the sys-
tem reachedby 100 randominputs (40% in Figure 6.E vs

Figure6.A:
tn=1..50,5=1..10

let1af T T T ]

Q 7
o le+6
2 10000}
z 100 F

l 1 1 1

0 25 50 75 100
i %
Figure6.C:
in=1..50,5=40..50
— C T T T 7
o le+14 JE
o le+6
2 10000 —
z 100

1 L—" I I

0 25 50 75 100
) %
Figure6.E:

in=1..50,5=90..100

lev14f T T T 4

) ;
S le+6 <
£ 10,000 _

z 100 e

1
0 25 50 75 100
%

Figure6.B:
1m=950..1000,4=1..10
9 le+l4f T T T
g le+6
% 10,000
z 100 /

1’ 1 1 1

0 25 50 75 100

%

Figure6.D:

4n=950..1000,=40..50

letl4f T T T 4

1e+6
10,000 —

100
1 /I 1 1
0 25 50 75 100
%

N (average)

Figure6.F:
in=950..1000,=90.100

le+14F T T I

le+6 ~
10,000 <

100

N (average)
AN

1
0 25 50 75 100
%

Figure 6.Outputs from the reachability model,

restricted to certain ranges.

Y-axis comes

from Equation 3; X-axis generated by sorting
simulation outputs. Each plot represents 400
simulations using randoml y selected param-
eters for the reachability model.

50%in Figure6.F).Notethatsystemsave to bevery small
indeedto only supportj < 10.

Oneinterestingfeatureis thatfor awide rangeof NAYO

graphs,mostof thosegraphsare reachableusinga small
numberof randomlygeneratednputsdespiteNAY O com-
putationbeing nondeterminate A recentliteraturereview



offers much evidence that this is a commonly obsened
effect [12]. For example,researchersn Al and require-
mentsengineeringxploreinconsistenandnondeterminate
theories. A repeatedresultis that committing to a ran-
domly selectedesolutionto a conflict reachesas much of
a programas carefully exploring all resolutionsto all con-
flicts[7,13,14,21]. Thisis consistentvith the searctspace
within our programscontainingmary pathsto the same
point- aview very consistentvith Figure®6.

Otherresultsfrom softwareengineeringandknowledge
engineerinditeraturesuggesthatthe effectsderived from
the reachabilitymodelhave beenwidely obsened. An of-
ten repeatedobsenation is that a small numberof inputs
canoftenreachsignificanterrorsin a program[4, 12]. Var-
ious researcherbave notedthatthe portionsof a program
usedin normaloperatiorarea smallsubsebf thetotal pro-
gram[3, 6], andthattestcoveragesuitesoftendo not target
theentireprogram[8, 11]. A repeateabsenationin classi-
cal mutationtestingliteratureis thatmostprogrammutants
generatéhe samebehaviour [2,5,15,22].

Theseempiricalobsenationsareconsistentvith the hy-
pothesisthat programsinclude easily reachableand very
unreachablezones. The sameeffect can be seenin our
simulationoutputs. Recallthat the y-axis of Figure6 is a
logarithmicscale:asour curvesrise on thatscale they are
escalatingnto very unreachableones.

4. Nondeterminism and Maintenance

Basedon the above resultsandliteraturereview, we ar
gue that a large classof nondeterminatesystemscan be
probedwith a small numberof randominputs. Hence,we
areoptimisticaboutour ability to quickly testnondetermin-
istic Al systemsandrequiremenmodels.

However, we are more cautiousregardingthe mainte-
nanceof nondeterministicsystems. Figure 6 might give
theimpressiorthatthe transitionsbetweereasilyandnon-
easily testablesystemss quite gradual. As we shall see,
thisis notthe case.

In studieswith decisiontreeslearntfrom the simulation
outputs,we have learntthat small changego a systemcan
dramaticallyalterthe reachability In thosestudieseachof
the 100,000runs of the reachabilitymodelwere classified
asfollows. Firstly, we calculatedP,,, i.e. theaverageprob-
ability of reachingthenodeatarny depthwithin thegraph:

3520 Plil

P =
av 100

(12)

Next, the P,,, figureswerecorvertedto numberof required

testsusingEquation3 andclassifiedasfollows:

( fastand
cheap if N(0.99, P,,) < 102,
fastand
moderately

Type = < expensive if N(0.99,P,,) < 10,

slow, and
expensive  if N(0.99, P,,) < 10,

| impossible  otherwise.

For example,testinga particularNAY O graphis classified
as“fastandcheap’if werequirelessthan100randontests
to be99%sureof reachingall of thegraph.Finally, to build
the decisiontrees,we usedan automaticmachinelearner
(C4.5[17]) to generatd-igure7. Thelearnertook asinput
the 100,000inputsclassifiedusingthe T'ype defineabove.
Thelearnergeneratecdsoutputatreecorrelatingthevalues
of simulationparameteréntroducedearlierin this section,
with the outcomeof the test classificationgthe estimated
errorof thetreeon unseercasess 28.3%).

The learnttree clearly shows the cliffs of readability:
thresholdswherethe reachabilityof a systemcan change
dramatically Onesuchcliff canbe seenin Figure8 which
contrastgwo pathwaysthroughFigure7. The“A” pathway
requires10* to 106 teststo be 99% surewe can probeall
of thegraph. The “B” pathway requires< 100 teststo be
99% surewe canprobeall of the graph. Supposea NAYO
systemfalls into the “B” pathway; i.e. it is easilytestable.
Supposdurtherthat,duringmaintenancetheaveragenum-
ber of and-nodeparentsin that graphchangedrom (e.g.)
3.75t0 4.25. This singlechangecouldimply thatthe graph
switchesfrom the “B” pathto the “A” path;i.e. suddenly
that graphwould require at leasttens of thousandsmore
teststo be 99% surewe canprobeall of thegraph.

5. Discussion

This article rejects that traditional view that the be-
haviour of nondeterminatsystemanakesthemtoo unpre-
dictableto be testable. Basedon a mathematicaknalysis
of NAYO graphreachabilityand a literature review [12],
we have arguedthatwide rangeof nondeterminatsystems
have easyreachability; i.e. they can be adequatelyand
quickly probedwith a small numberof randomlyselected
tests.

However, while optimistic regarding the testability of
nondeterministicsystemswe are more cautiousregarding
their maintainability Small changedo a systemcan sud-
denlycorvertaneasilytestablesystento avery systenthat
is very difficult to test. We concludethatanondeterministic
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Figure 7. Classifications seen from 100,000 runs of the reachability model. Tree generated using the

C4.5 algorithm [17].
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systenmmayrequireretestingafterseeminghtrivial changes
to thesystem.

Ouranalysisalsoshavsthattestingnondeterminateys-
temsis not necessarilynoredifficult thattestingdetermin-
istic ones.Figure7 shovs a complex interactionof factors
thatdeterminethe testability of a system. The critical fac-
tors areshawvn nearthe root of the tree. Note that the the
meamumberof no-edgess notcritical. Otherfactors,such
asthefrequeng of theand-nodesiremorecritical. Thatis,
factorsrelatingto the overall structureof the programmay
be morecritical thannondeterminisnin determiningover
all systemtestability

We arevery enthusiasti@aboutthe potentialthis frame-
work hasfor softwaretesting. This is a unifying frame-
work, bridgingthe differencedetweersoftwareparadigms
usedduringthe development.In fact, it is suitablefor test-
ing early life-cycle artifactsaswell asprogramsreadyfor
release.The degreeto which the NAY O graphrevealsits
nodesmay be usedasa testability measure Differentpro-
gramswill have differenttestabilities.Testersfor example,
may wantto attribute a higherdegreeof confidenceo the
testingresultsof atestablgorogrambecausd hidesless[1].
Sincerevealingnondeterminag is oneof the goalsof this
framework, the probability thatit will go unnoticedis re-
duced.This hasthe potentialfor increasinghereliability.

The preconditionfor investigatingary of thesetopicsis
the developmeniof an automatedernvironmentfor building
NAY O graphsfrom the reasonableset of traditional pro-
gramrepresentationdVithoutsuchatool, we canonly dis-
cussthe generalpropertiesof classe®f programge.g. the
discussiorseenin thisarticle). With suchatool, we will be
ablethe specificreachability hencetestability of a specific
program.We arecurrentlybuilding suchatool for thespec-
ificationlanguag€PROMELA) andthelogic programming
languag€Prolog).
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