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Abstract

Modernsoftwae is oftenconstructedising“spir al spec-
ification”; i.e. the specificationis a dynamicdocumenthat
is altered by experiencewith the currentversion of the sys-
tem. Mathematically manyof the sub-taskswithin spiral
specificationbelongto the NP-completeclassof tasks. In
thetraditional view of computersciencesud tasksare fun-
damentallyintractableand only solvableusingincomplete
appoximatemethodthatcanbeundependableT histradi-
tional view suggeststhat we shouldroutinely expectspiral
specificationto alwaysbe performedvery poorly. This pa-
peris an antidoteto such pessimismContrary to thetradi-
tional view, we canexpectthat spiral specificatiorcanusu-
ally be performedadequatelyproviding that analystsaug-
menttheir currenttoolswith randomprobing

1. Intr oduction

How hardis our softwareto specify? Any experienced
analysthas horror stories of spaghettirequirementsthat
werefiendishly hardto untangle. Shouldwe routinely ex-
pectsuchhorrid casedo be the normalcase?In the usual
casejusthow difficult will it beto to specifyour software?

Onemight expectthatasmodernsoftwaresystemsyrow
moreandmorecomple, thatit will getharderandharder
to specify For exampleconsiderthe complexities of spec-
ifying a modern distributed information systemsuch as
the Teleservicesand Remote Medical Care System, or
TRMCS!. PatientsusingTRMCSliveathomeanduseauto-
matic monitoringequipmento watchover their condition.
In anemepeng, patientsor thefamily or patientsor even
the monitorsthemselescandownloadpatientdatato doc-
torsbasedat medicalcentersvia standardnternetlines.

Systemsdlike TRMCS cant be built assumingthat ev-
ery requirements pre-specifiedn the requirementphase.
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Rather suchsoftware mustbe built in an iteratve manner
usingsomethindik e Boehms spiralmodelof softwarede-
velopmen(1]. In thespiralmodel,versionl + 1 of thesys-
temis generate@ftercarefullyevaluatingarunningversion
1.

This paperusesthe term “spiral specification”to refer
to the iterative revisionsseenin systemspecificationasit
movesthroughthe spiralmodel. As with the spiralmodel,
the I+ 1 versionof thespecificatiorwill begeneratedbased
on issuesseenin a runningversionI. Mathematically it
will be shavn belov that TRMCS spiral specificationcon-
tainsNP-completesub-tasksin theview of traditionalcom-
puterscience suchtasksarefundamentallyintractableand
only solvable usingincompleteand approximatemethods
that may be undependablg¢24]. Hence,we might rou-
tinely expectthatspiralspecificatiorwill beperformedvery
poorly.

Contraryto this standardview, this papers conclusion
is very optimistic aboutour ability to perform high qual-
ity TRMCS spiral specification. It will be shovn that
within highly reacability systemsmary of issueswithin
a specificationcan be extractedusing a small numberof
non-shallowrandomizedprobes That is,while in theory
TRMCS-like spiral specificationis theoreticallyvery hard,
it neednot bevery hardin practice.

The rest of this paperlists the sub-taskswe seein
TRMCS-like spiralspecificatiorandshows thatthosetasks
areNP-complete Next, we presenexperimentalandtheo-
reticalevidencethatwe mayoftenassumehatour systermis
highly reachableAssuminghighreachabilitywe canapply
anew style of cost-efective minimal analysis.In this new
minimal style, whenfacedwith uncertaintyor specification
issuesanalystsanquickly exploretheir systemdor alim-
itedtime usingarandomizedsearctengine Assuminghigh
reachability thensucharandomizedsearchshouldquickly
discoverall theimportantfeaturesof thatspecification.



2. SomeSub-Tasksof Spiral Specification

We will infer thecompleity of spiralspecificatiorfrom
theanalysisof its sub-tasksThis sectionlists someof those
sub-tasks. This list is hardly completebut TRMCS-style
spiralspecifications atleastashardasthe sumof thecom-
plexity of thefollowing sub-tasks.

In spiral specificationthe next versionof the systemis
createdvia experiencewith the currentversion. The more
we canexercisethe currentversion the moreissueswe can
seeandthemorewe canimproveit. Hence the complexity
of theruntimetasksof TRMCS contributesto the complex-
ity of watchingandimproving the system.Threesuchrun-
time sub-tasksvithin TRMCS arediagnosis planning and
monitoring Diagnosigoolsarerequirecto definetreatment
regimesfor sick patients. TRMCS will alsoneedto gen-
eratemultiple alternateplans. Suchmultiple plansarere-
quiredto find the mostcost-efective methodfor delivering
healthcare.Onceaplanis selectedywe needto monitorthat
plan. Whennew dataarrivesfrom the patients monitoring
equipmentwe needto always checkthat our currentplan
is notinvalidatedby somenew circumstanceFor example,
an elevatedtemperaturenight imply an new infection that
requiredifferentantibiotics.

TRMCS specificationcould well require reasoningin
the presenceof inconsistencies With the spiral approach,
specificationamay not be written by a single authorat a
singletime. Hence the oddsof new specscontradictoryex-
isting specsis non-zero. In fact, we canalmostguarantee
that TRMCS specificationswill containcontradictiongdue
to thecompetingaspect®f the system:

e Family membergnay seekto maximizethe amountof
monitoringequipmenivhile patientamay seekto min-
imizethe expenseof theirilinessto their family.

e The TRMCS medicalcenterswho, accordingthe cur-
rent specification,must competeto service medical
emepgencies. Competitionsmust be judged and the
judgingcritieriawill probablybe keenlydebated,

e Thetreatmentroposeddy the medicalcentersmust
maximizefor patienthealthwhile minimizingthe re-
quired healthresourcessuchas unnecessargalls to
amhulanceservicesthe prescriptionof overly expen-
sive drugs,or thethe useof inappropriatesugical pro-
cedures.

Proponent®f formal logics suchasvan Lamsweerdd25]
arguethatinconsistencieshouldberemovedoncedetected.
Proponent®f non-standardogics suchas Nuseibehargue
corvincingly thatwe shouldretainour consistenciesince
they recordthe differencesetweenour staleholderg18].
The prematureresolutionand removal of inconsistencies
canalienatea staleholdergroup[7] Further withoutaccess

to therequirement®f a particularstaleholdergroup,inap-
propriatefuture designdecisionscouldbe made.

Safetycritical systemssuchas TRMCS requirevalida-
tion. TRMCS must meet certain certificationsstandards
suchas 24x7 availability, real time responserates, moni-
toring accurag of theequipmentgensuringthatatleastone
medical centerwill servicethe emegeng, and assessing
the quality of careofferedby eachcenter Further in the
TRMCS case,suchcertificationsmustbe madefor a sys-
temthatmay:

e Containinconsistencies;

e Beonly apartialprototypeof thefull system;

e Include cost cutting heuristicsand artificially intelli-
gentdiagnosisalgorithms;

e Changewhenpatientsrequiredifferentlevels of mon-
itoring (e.g. they arediagnosedvith new diseasespr
buy new equipmentwhena new treatmentbecomes
available,or whenthe specificatiorchanges.

3. Analyzing Sub-Task Complexity

The complexity of TRMCS-stylespiral specificationis
atleastascomplex asthe complexity of the sub-task®of di-
agnosisplanning,reasoningn the presencef inconsisten-
cies,andvalidation. This sectionexploresthe complexity
of thesesub-tasksand,hence of spiralspecification.

To computethe complexity of diagnosisplanning,etc,
we mapthesetasksinto logical abduction Abductionbe-
longsto the NP-completeclassof tasksand, hence,so to
doesspiralspecification.

This mapping from spiral specificationto the NP-
completetasksleadsa very negative resultconcerningthe
compleity of spiralspecificationj.e. it is asfundamentally
intractableasevery otherNP-completdask. Therestof this
sectiondefinesabductionand NP-completenes@&nd maps
our sub-taskgo abduction.

Note that our sequelwill reversethis pessimisnof this
proofof NP-completeness.

3.1 Intr oducing Abduction

Logical abductioncansupportthe sub-task®f TRMCS-
style spiral specificationdescribedabove. Abduction is
often informally definedas inferenceto the bestexplana-
tion [19]. This definition often leadsto the mistalen be-
lief that abductionis only usefulfor explanation. This is
not correct. Dozensof applicationsof abductionarelisted
in [10,12]. For a specificdiscussioron the applicationsof
TRMCS, seebelow.

Abductive inferencebuilds a world of belief W; from a
theoryT"

W;CT (1)



The world W; makes assumptionsA; that allow us to
achieze somegoalsG:

W;UA; -G (2

While thetheoryT; maycontaininconsistenciegthegener
atedworld mustnot:

W;UA; /L 3)

Thatis, aworld W; is the usefulpartof atheoryT which,
when combinedwith assumptions4;, leadto somegoal
G (Formula 2) without causingary contradictions(For-
mula3).

If multiple such worlds exist, then a domain specific
BEST operatoiis usedto returnthe preferredworld(s).

Wbest = BEST(W) (4)
Wiest C W (5)

Abductioncanreasonin the presenc®f inconsistencies.

It doesthis by finding the consistentslandswithin atheory
containinginconsistenciesThis is a usefultool for (e.g.)
exploring conflicts betweencompetingstaleholders. Sup-
posewe know who wrote eachportion of a specification.
Significantconflicts betweenuserscan be detectedwhen
differentpeoplesideasendup in differentworldsof belief.
Theseconflicts canthenbe neggotiatedby focusingon the
key conflicting assumptionshat split the worlds. Disputes
betweerfeudinguserscanbe adjudicatedasfollows:

e Focusonly onthekey disputeghatdivide theworlds;

e Declarethat the winning user offers theorieswhich
build worlds that canexplain mostof the desiredbe-
havior [16,26].

Abductionalso supportvalidation, diagnosis planning,
andmonitoring:

e Abductive validation asksthe question“What is the
maximumpercentagef known/desiredbehaior that
canbe explainedby sometheory?” This canbe im-
plementedusing a BEST that favors worlds with the
largestintersectionto someoutputgoal set. Abduc-
tive validationhasfound previously undetectedaults
in theoriescontaininginconsistenciese.g. qualitatve
theoriesof neuroendocrinologijl1,13,14].

e Many different approachedo diagnosishave previ-
ously beenmappedto a single abductie procedure
(seethediscussiorin [5]). For example,minimal fault
diagnosiscanbe implementedusinga BEST that fa-
vors worlds with the fewest possibleinputs and the
mostknown goals[20].

e Abductive planningusesa BEST that favors worlds
with the mostgoalsandthe leasttotal cost(e.g. least
numberof sumgical interventions).

e Abductive monitoringmeanscachingthe worlds gen-
eratedby abductve planning,thendeletingany world
whoseassumptionsontradictary newly arriving data.
Whatever worlds remainin the cacherepresenthe
spaceof possiblefuturesknown to the system.

3.2 NP-CompleteTasks

Abductioncanbe mappedto a classof tasksknown as
theNP-completdasks.No fastandcompletealgorithmhas
beenfound for the NP-completetasks,despitedecadeof
research.Therefore by showving a connectionfrom spiral
specificationto NP-completetasks,we alsohave a strong
theoreticalreasorfor doubtingour ability to reasoninghor-
oughly during the spiral specificationprocess.The restof
this sectionshavs thatabductionis NP-complete

Problemsare proved to be NP-completeif we canre-
duce(i.e. transform)that problemquickly (i.e. polyno-
mial time) to a known NP-completeproblem. SuchNP-
completeproblem can be solved by non-deterministical-
gorithm which may find an answerslowly (in exponential
time, worst case)but the solution can be verified quickly
(in polynomialtime). The upperboundon the runtime of
NP-completdasksis exponentialon problemsize.Moore’s
Law tells thatcomputersarespeedingip at anexponential
rate. However, this speedup is far too slow to catchup
with the worst caseexponentialruntimesof NP-complete
tasks. Hence,in the view of standarccomputerscience jf
a problemis NP-completehenthe bestwe canhopefor is
approximatesolutionsof indeterminablejuality.

We canreduceabductionto an NP-completgasksusing
asimpleresultfrom 1976(for otherreductionsse€[3,21]).
Gabaw et.al.[8] shavedthatbuilding pathwaysacrosspro-
gramswith impossiblepairs (e.g. somebooleanand its
negation)is NP-completédor all but thesimplestorograms.
Abductioncanbe mappedo building pathwaysacrosspro-
gramswith impossiblepairs. Considerthe caseof test-
ing Formula2 andFormula3 usinga proof procedurethat
builds proof treesacrosslogical rules. Rulescan share
terms; e.g. a post-conditionin onerule may be foundin
the pre-conditionof anotherule. This sharingof termscan
beviewedasadirectedgraph;e.g. Figurel. Notethe“no-
edges’in Figurel: ourrulescontaintermsthatmaycontra-
dict otherterms. Theseno-edgesare pairsof incompatible
nodes;i.e. the Gabav pre-conditionfor NP-completeness.
Any procedurghatbuilds a prooftreeacrossigurel (e.g.
to demonstraté-ormula2) which mustcontinuallytestfor
theseforbiddenpairs (e.g. to demonstratd~ormula 3) is
henceNP-complete.

2A programis very simpleif it is very small,or it is asimpletree,or it
hasadependencnetworkswith outdegree< 1.



diet(fatty).

diet(light).

happy tranquillity( hi).
happy rich,healthy.

healthy diet(light).

satiated diet(fatty).
tranquillity(hi):- satiated.
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Figure 1. A graph connecting terms within

some horn clauses.

3.3 Summary

Since spiral specificationsub-taskshave an abductve
mapping,and abductionis an NP-completeask, then spi-
ral specificationis NP-complete.Thatis, in the traditional
view of compleity theory spiralspecificatioris fundamen-
tally intractableand only possibleusing incomplete,ap-
proximatemethodsthat can be undependable Hence,in
thetraditionalview, we would routinely expectspiral spec-
ificationto alwaysbe performedvery poorly.

4. Searching an Indeterminate Space

This sectionis an antidoteto the pessimismoffered
above. Empirical and theoreticalresultsstrongly suggest
that, in the usualcase randomizedsearchingf this space
of incompatibilitiesis not ashard as suggestedy Gabav
et.al. Thisresultwill suggest new minimal style of speci-
ficationanalysis.In this new style, whenfacedwith uncer
tainty or specificationissues analystscanquickly explore
their systemdor alimited time usinga randomizedsearch
engine.

4.1 Empirical Results

A curiousexperimentalresultis that theoreticallyslow
NP-completeaskscanbe completedadequatelyin a very
shorttime. This sectiondescribessomeof thoseexper
iments. The next sectionarguesthat these experiments

TABLEAU: ISAMP:
full search partial,randomsearch
% Time % Time | Tries
Success| (sec) | Success| (sec)
A 90 255.4 100 10 7
B 100 104.8 100 13 15
C 70 79.2 100 11 13
D 100 90.6 100 21 45
E 80 66.3 100 19 52
F 100 81.7 100 68 252

Figure 2. Average performance of elabo-
rate search (TABLEA U) vs randomiz ed search
(ISAMP) on 6 scheduling problems (A..F) with
different levels of constraints and bottle-
necks. From [6].

for TRIES := 1 to MAX-TRIES
{set all vars to unassigned;
loop

{if everything assigned

then  return(assignments);

else pick any var v at random;
give v a randomly chosen value;
forward _chain _from(v);
if ~ contradiction exit loop;

fi

} return  failure

Figure 3. The ISAMP algorithm. From [6].

demonstratea generalprinciple; i.e. NP-completetasks
suchas spriral specificationcan be performedadequately
andquickly usingusingrandomizedsearch.

Figure 2 shovs Crawford and Baker's comparison
of a standarddepth first searchbacktrackingalgorithm
(TABLEAU) to a randomized search theorem prover
(ISAMP) [6]. Figure 3 describeshow ISAMP randomly
assignsa value to one variable, then infers someconse-
guenceausinga fastforward chainer After forward chain-
ing, if incomparableconclusionsverereached)SAMP re-
assignsall the variablesand tries again (giving up after
MAX-TRIES numberof times). Otherwise,ISAMP con-
tinuesloopingtill all variablesare assigned.Whenimple-
mented,Crawford and Baker found that ISAMP took less
time than TABLEAU to reachmore schedulingsolutions
using,usually justa smallnumberof TRIES.

Experimentswith randomizedabductve world genera-
tion shovedthatexploring a few worldsreturnednearlyas
muchinformation as a rigorousexploration of all worlds.
The HTO abductie algorithm[17] in Figure4 just returns
thefirst world it randomlyfindsusingtheprocesslescribed
in Figure5. In contrastto HTO, HT4 [11] carefully con-
structseverypossiblevorld. HT4’sruntimeswereobsened



% Test ors/amds in random order

X ror Y :- maybe -> (X)Y); (Y;X). %or

X rand Y :- maybe -> (X)Y); (Y,X). %and

maybe - 0 is random(2).

% Assuming that an object O's attribute Ais X

% is legal if this assumption does not conflict
% with previous  assumptions. Otherwise, make
% assume that O.A=X but remove it if ever we

% backtrack to this point.

A of Ois X : a(A0,0ld), I, Old = X

A of Ois X :- assert(a(A,O,X)).

A of Ois X :- retract(a(A,0,X)), fail.

% N times, zap assumptions, try the goal list
ht0(0,_) =L

htO(N0,GO0)

rememberBestCover(GO0),
retractall(a(_,_, )),
% Goals with lower
sort(GO, G1l),
maplist(prove,G1,G),

weights are tried first

Nis NO - 1,
htO(N,G).
% Lower/raise a goal's weight by a
% random amount if it fails/works respectively.

prove(In/Goal,Out/Goal):-
X is 1 + random(10°3)/10°6,
(call(Goal) -> Qut is In+X; Out is In-X).

% E.g: 5 times, random search for "sad" or ‘rich".
ht0(5,[1/sad,1/rich]).

Figure 4. HTO, simplified (handles acyclic
ground theories only). The full version con-
tains many more details such as how vari-
ables are bound within rand s and the imple-
mentation of rememberBestCover For full
details, see [17]. For brief notes, see Figure 5.

to be exponential: O(2V). We shouldexpectsuchexpo-
nentialruntimesfrom algorithmsperformingNP-complete
taskssuchas abduction. Surprisingly the randomsearch
of HTO performsnearlyaswell asthe morethoroughHT4
algorithm. Further when running on the sameproblems
asHT4, HTO's runtimeswere obsened to be muchfaster
(O(N?): seeFigure6). In the region wherethe two algo-
rithmsterminatecbnthesameproblemsHTO foundworlds
that covered98% of the outputsfound in the HT4 belief
sets. In otherexperimentswith an earlierversionof HTO,
Menzies EasterbrookNuseiberandWaughcomparedow
argumentsresole within a specification[16]. HTO style
reasoningvasusedto find oneargumentresolution picked
atrandom.Theseresultswerecomparedo resolutionggen-
eratedfrom the all-worlds searchof HT4. The averagedif-
ferencebetweerthetwo searchesvaslessthan6%.

The adequag of randomizedsearchhasalsobeenseen

HTO triesto prove alist of sortedgoals. Theassump-
tions madewhen trying to proving goal i must not

contradictthe assumptiongnadewhen proving goals
1...(¢ —1). During the proof of goali, when pro-

cessinga setof goalsin adisjunctionor aconjunction,
the orderof the processings selectedandomly If a

proof of goali fails, the systemdoesnot backtrackto

retryoneof goall... (i — 1). InsteadHTO lowersa

weightassociateavith goali andmovesonto try goal

i + 1. WhenHTO hasfinishedwith all the goals, it

wipesall the assumptionssortsthe goal list accord-
ing to theadjustedveights thentriesto provethemall

again.

Figure 5. Explanation of the HTO code in Fig-
ure 4.
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Figure 6. Runtimes: HT4 vs HTO

in extensve empiricalstudiesby the constraintsatishction
community;e.qg.[4,9,23]. Searchinga spaceof conflicting
constrainds NP-completeandthereforetheoreticallyvery
slow. However, experienceshaws that suchNP-complete
tasksare only truly slow in very narrav regions. For ex-
ample, Figure 7 shows the numberof times a particular
NP-completealgorithm hits a deadend and hasto back-
track. Outsideof a narrov zone,the algorithmcouldtermi-
natequickly withoutextensive backtracking Theslow zone
correspondso the phasetransitionzonebetweeranunder
constrainedzoneanda over constrainedzone. In the over
constrainedzones,the oddsof finding a solutionare very
low. Further if the over constraintsarevery tight, we can
quickly discover that no solution exists sinceour searches
areall quickly blocked. Figure7 is over constrainedbore
X = 6. In anunderconstrainegroblem,the oddsof find
a solution is very high since mary solutionsexist. Fig-
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Figure 7. A phase transition effect for map
coloring (no two adjacent countries on a map
should be the same color); adapted from [4].

ure 7 is underconstrainecbelov X = 5. Note thatun-
der constrainedoroblemscan be solved by simple meth-
odsandover constrainegproblemscant be solved by ary
method Hence,for problemsoutsidethe phasetransition
zone,simple searchenginescan solve problems. For ex-
ample,arandominitial selectionof variablesfollowing by
somecheapinferencing, is oftenused;e.g. ISAMP, HTO,
andGSAT [22]. GSAT hasprovedtheoremsn knowledge
base®neto two ordersof magnitudebiggerthaneverdone
before.

4.2 Theoretical Results

The above casestudiessuggesthe averagecostof For-
mula 3 is far lessthan the worst casecost. If this wasa
generalresult,thensoftware projectmanagersvould have
greaterconfidencan the practicalityof TRMCS-like spiral
specification.This sectionexploresthis issueof generality
andmakesthefollowing counterintuitive conclusion:

On average,a few randomlyselectedabductions
will find mostof the reachabldeaturesof a the-
ory, evenin theoriescontaininginconsistencies.

With Cukic and Singh, | have built an averagecase
reacability model that finds the average probability of
reachingarandomnodein adependenggraph,given“in”
numberof randomlyselectednputs[15]. This reachabil-
ity modelis a virtual machinefor abduction.Thatis, from

SException:if certainconstraintsarenothardconstraints(i.e. they can
berelaxed)thensomekind of over constrainegroblemscanbesolved[2].
In termsof Figure7, suchrelax-ableconstraintsvould drive aprobleminto
thesohvablezone.

a spaceof possiblycontradictoryideas,reachabilitytheory
findsthe averageoddsof reachingsomegoal without caus-
ing contradictionsj.e. Formula2 andFormula3.

Dependeng graphscan be generatedrom mary sys-
tems;e.g.

e Figurel shavedthetranslationof somehorn clauses
into adependenggraph.

e Finite state diagrams can be reduced to horn
clause$15] andhencecanbeexpresse@dsdependeng
graphs. Finite statediagramscan be found in mary
analysismethodsor canbeautomaticallyderivedfrom
a staticanalysisof a program

We will saythatdependeng graphshave V' nodeswhich
aredivided into and-nodesand or-nodeswith ratios andf
andor f respectiely (or f + andf = 1). RecallingFigurel,
we notethatthesenodesareconnectedy yes-edgeéwhich
denotevalid inferencespndno-edgegwhich denotethein-
consistencies).On average,eachnodeis touchedby no,
no-edgesWheninferencingacrosshesegraphs yvariables
canbe assignedat mostT differentvalues;i.e. a different
assignmenftor eachtime tick 7' in the execution (classic
propositionalsystemsassumel’ = 1; simulationsystems
assumel’ > 1). Nodesarereachedacrosshe dependeng
graphusinga network of height; wherethe inputsare at
heightj = 0. Thisnetwork represent$V; of Formulal and
Formula2.

In the reachabilitymodel,and-nodegndor-nodeshave
meanparentsandp, orp respectiely. Or-nodecontradict,
on average,no otheror-nodes. andp, orp,no arerandom
gamma variables with means andf,, andp,,, orp,,no,;
“skews” andpy, orpy,no,; andrangel < v < oco. andf
is a random beta variable with mean andf, and range
0 < B < 1. And-nodesarereachedat height; via onepar
entatheighti = 5 — 1 andall othersat height:

i = B(depth) x (j — 1) (6)

s00 < i < (j—1). Notethatasdepth decreasesnd-nodes
find their pre-conditioncloserandcloserto theinputs.

The probability P[j]ane Of reachingan and-nodeat
heightj > 0 is the probability that one of its parentsis
reachedat heightj — 1 andthe restare reachedat height
1..(j = 1); i.e.

andp(j]

II Pl (7)

2

P[j]and:P[j_l]*

Or-nodesarereachedat heightj via one parentat height
i = j — 1. The probability P[j],, of reachinganor-node
at heightj > 0 is the probability of not missingary of its
parentsj.e.

orplj]

II a-PEp| ®

2

P[j]orzl_(l_P[j_l])*
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Figure 8. Some frequenc y distrib utions of the
number of tests required to be 99% sure of
reaching a node at height j generated from
the Menzies-Cukic-Singh reachability model.

The probability P[] of reachingary nodeis hencethesum
of P[j]or and P[j].na Weightedby the frequencieof and-
nodesandor-nodesj.e.

P[J] = andf[]] * P[j]and + OT‘f[]] * P[j]OT 9)

Otherdetailsnotshavn above areloop detectionandthe
modelingof Formula3 (contradictiondetection).See[15]
for thefull details.

A simulationof the above systemof equationgs around
200lines of Prolog. This modelcanbe executedto gener
ate P[j]. Fromthis figure, we find the numberof testsN
requiredto be C' = 99% percentcertainof reachinga ran-
domnodein a dependeng graphusingrandomlyselected
inputs. N randomlyselectednputshascertainty

C=099=1-((1-P})") (10)
of reachinga nodein dependenggraph.Hence,

_ log(1—10.99)
~ log(1 - Plj))

The above modelwasrun for a wide rangeof the above
parametersp.g. up to 10® nodes,up to 1000 inputs, up
to 100 time ticks, wildly varying the frequeny and skew
of and-nodesopr-nodes,andno-edgesetc. The frequeny
distribution of the calculatedV valuesis shavn in Figure8
dividedaccordingto the j (proof height)value.

(11)

The simulationresultsshavs thatmuchof thereachable
partsof a systemcan be reachedvery quickly usingran-
domizedprobing. After searchingnto a theoryfor more
thana shallov depth(e.g. j > 50), nearly half the nodes
canbereachedvith probability of 99% usinglessthan100
randomlyselectednputs. Further tensto hundredf thou-
sandsof randomlyselectednputswill reachnearlyall the
nodes. Note that theseruns can be performedin parallel.
Giventhatthe standardlesktopmachineis nov a 500MHz
box, thenin mary situations, organizationscan perform
enoughrandominputsto implementFormula3.

What is surprisingaboutthis resultis that it holds for
supposedlyexponentiallyslov NP-completdaskslik e spi-
ral specificationRecallthatin this model,we searchacross
a dependeng graph containsno-edges. Theseno-edges
connectincompatiablegairsof nodes.The Gabaw et.al.re-
sult suggestghat buidling a proof tree acrossthis depen-
deng graphshouldbe very slow (sincethat taskis NP-
complete). However, on the contrary the simulationre-
sultsfrom the modelshav thatrandomizedsearchcanvery
quickly reachall that can be reachedeven for this NP-
completetask.

5. Discussion

If we manuallytrueto understanall partsof acomple
specificationsmuchof theirintricacy will escapeus. In the
caseof the TRMCSsystemthatunderstandingnpliesper
formingthesub-task®f reasoningn the presencef incon-
sistenciesyalidation,diagnosisplanning,monitoring,and
validation. This sub-taskdelongto a classof taskswhich,
in theworstcasejs intractable.

However, if we automaticallyexplore complex specifi-
cationsusing randomizedprobes thenon averagewe will
find out mostof what canbe found within thosespecifica-
tions. This is a counterintuitive result (to saythe least!).
Our pre-eperimentalintuition was that searchinga com-
plex spacecontaininginconsistenciesvould be very hard
indeed. However, if thoroughly exploring all the conse-
guence®f inconsistencies atheorywereashardaspre-
dicted by the theory of NP-completenesghenwe should
expect systemslike ISAMP, GSAT, and HTO to perform
very poorly. They don't. Hence,a small numberof ran-
domsearchesiroundinconsistentheorieswill samplethat
systemaswell assomeothernon-randonstrateyy.

This suggest® new style of specificationanalysis. Af-
ter someinitial manualtinkering, analystsshouldconnect
somemachinereadablgorm the specificationgo a Monte
Carlo simulator (which can generaterandominputs) or a
randomsearchenginelike HTO (which canperturbthein-
ternalexecutionof thesystemin mary differentdirections).
Suchrandomizedsearchprocedureshouldreveal mostof
whatcanberevealedevenin complex specifications.
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