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Abstract

Modernsoftwareis oftenconstructedusing“spir al spec-
ification”; i.e. thespecificationis a dynamicdocumentthat
is alteredby experiencewith thecurrentversionof thesys-
tem. Mathematically, manyof the sub-taskswithin spiral
specificationbelongto the NP-completeclassof tasks. In
thetraditionalview of computerscience, such tasksarefun-
damentallyintractableandonly solvableusingincomplete,
approximatemethodsthatcanbeundependable. Thistradi-
tional view suggeststhat we shouldroutinelyexpectspiral
specificationto alwaysbeperformedverypoorly. Thispa-
per is an antidoteto such pessimism.Contrary to thetradi-
tional view, wecanexpectthatspiral specificationcanusu-
ally beperformedadequately, providing that analystsaug-
menttheir currenttoolswith randomprobing.

1. Intr oduction

How hardis our softwareto specify? Any experienced
analysthas horror storiesof spaghettirequirementsthat
werefiendishlyhardto untangle.Shouldwe routinely ex-
pectsuchhorrid casesto be the normalcase?In the usual
case,just how difficult will it beto to specifyoursoftware?

Onemightexpectthatasmodernsoftwaresystemsgrow
moreandmorecomplex, that it will get harderandharder
to specify. For exampleconsiderthecomplexities of spec-
ifying a modern distributed information systemsuch as
the Teleservicesand Remote Medical Care System, or
TRMCS1. PatientsusingTRMCSliveathomeanduseauto-
maticmonitoringequipmentto watchover their condition.
In anemergency, patients,or thefamily or patients,or even
themonitorsthemselvescandownloadpatientdatato doc-
torsbasedatmedicalcentersvia standardinternetlines.

Systemslike TRMCS can’t be built assumingthat ev-
ery requirementis pre-specifiedin therequirementsphase.

1Described at http://www.ics.uci.edu/iwssd/
case- study.pdf .

Rather, suchsoftwaremustbe built in an iterative manner
usingsomethinglike Boehm’sspiralmodelof softwarede-
velopment[1]. In thespiralmodel,version

�����
of thesys-

temis generatedaftercarefullyevaluatingarunningversion�
.

This paperusesthe term “spiral specification”to refer
to the iterative revisionsseenin systemspecificationsasit
movesthroughthespiralmodel. As with thespiralmodel,
the
�����

versionof thespecificationwill begeneratedbased
on issuesseenin a runningversion

�
. Mathematically, it

will beshown below thatTRMCSspiralspecificationcon-
tainsNP-completesub-tasks.In theview of traditionalcom-
puterscience,suchtasksarefundamentallyintractableand
only solvableusing incompleteandapproximatemethods
that may be undependable[24]. Hence,we might rou-
tinely expectthatspiralspecificationwill beperformedvery
poorly.

Contraryto this standardview, this paper’s conclusion
is very optimistic aboutour ability to perform high qual-
ity TRMCS spiral specification. It will be shown that
within highly reachability systems,many of issueswithin
a specificationcan be extractedusing a small numberof
non-shallowrandomizedprobes That is,while in theory
TRMCS-like spiral specificationis theoreticallyvery hard,
it neednot beveryhardin practice.

The rest of this paper lists the sub-taskswe see in
TRMCS-likespiralspecificationandshows thatthosetasks
areNP-complete.Next, we presentexperimentalandtheo-
reticalevidencethatwemayoftenassumethatoursystemis
highly reachable.Assuminghighreachability, wecanapply
a new styleof cost-effective minimal analysis.In this new
minimalstyle,whenfacedwith uncertaintyor specification
issues,analystscanquickly exploretheir systemsfor a lim-
itedtimeusingarandomizedsearchengine.Assuminghigh
reachability, thensucha randomizedsearchshouldquickly
discoverall theimportantfeaturesof thatspecification.



2. SomeSub-Tasksof Spiral Specification

We will infer thecomplexity of spiralspecificationfrom
theanalysisof its sub-tasks.Thissectionlistssomeof those
sub-tasks.This list is hardly completebut TRMCS-style
spiralspecificationis at leastashardasthesumof thecom-
plexity of thefollowing sub-tasks.

In spiral specification,the next versionof the systemis
createdvia experiencewith the currentversion. The more
wecanexercisethecurrentversion,themoreissueswecan
seeandthemorewecanimproveit. Hence,thecomplexity
of theruntimetasksof TRMCScontributesto thecomplex-
ity of watchingandimproving thesystem.Threesuchrun-
timesub-taskswithin TRMCSarediagnosis, planning, and
monitoring. Diagnosistoolsarerequiredto definetreatment
regimesfor sick patients. TRMCS will alsoneedto gen-
eratemultiple alternateplans. Suchmultiple plansarere-
quiredto find themostcost-effectivemethodfor delivering
healthcare.Onceaplanis selected,weneedto monitorthat
plan. Whennew dataarrivesfrom thepatient’s monitoring
equipment,we needto alwayscheckthat our currentplan
is not invalidatedby somenew circumstance.For example,
anelevatedtemperaturemight imply an new infection that
requiresdifferentantibiotics.

TRMCS specificationcould well require reasoningin
the presenceof inconsistencies. With the spiral approach,
specificationsmay not be written by a single authorat a
singletime. Hence,theoddsof new specscontradictoryex-
isting specsis non-zero. In fact, we canalmostguarantee
thatTRMCSspecificationswill containcontradictionsdue
to thecompetingaspectsof thesystem:� Family membersmayseekto maximizetheamountof

monitoringequipmentwhile patientsmayseekto min-
imizetheexpenseof their illnessto their family.� TheTRMCSmedicalcenterswho, accordingthecur-
rent specification,must competeto servicemedical
emergencies. Competitionsmust be judgedand the
judgingcritieriawill probablybekeenlydebated,� The treatmentsproposedby the medicalcentersmust
maximizefor patienthealthwhile minimizing the re-
quired healthresourcessuchas unnecessarycalls to
ambulanceservices,the prescriptionof overly expen-
sivedrugs,or thetheuseof inappropriatesurgicalpro-
cedures.

Proponentsof formal logics suchasvanLamsweerde[25]
arguethatinconsistenciesshouldberemovedoncedetected.
Proponentsof non-standardlogics suchasNuseibehargue
convincingly that we shouldretainour consistenciessince
they recordthe differencesbetweenour stakeholders[18].
The prematureresolutionand removal of inconsistencies
canalienateastakeholdergroup[7] Further, withoutaccess

to therequirementsof a particularstakeholdergroup,inap-
propriatefuturedesigndecisionscouldbemade.

Safetycritical systemssuchasTRMCS requirevalida-
tion. TRMCS must meet certain certificationsstandards
suchas 24x7 availability, real time responserates,moni-
toring accuracy of theequipment,ensuringthatat leastone
medicalcenterwill servicethe emergency, and assessing
the quality of careofferedby eachcenter. Further, in the
TRMCS case,suchcertificationsmustbe madefor a sys-
temthatmay:� Containinconsistencies;� Beonly a partialprototypeof thefull system;� Include cost cutting heuristicsand artificially intelli-

gentdiagnosisalgorithms;� Changewhenpatientsrequiredifferentlevelsof mon-
itoring (e.g. they arediagnosedwith new diseases)or
buy new equipment,whena new treatmentbecomes
available,or whenthespecificationchanges.

3. Analyzing Sub-Task Complexity

The complexity of TRMCS-stylespiral specificationis
at leastascomplex asthecomplexity of thesub-tasksof di-
agnosis,planning,reasoningin thepresenceof inconsisten-
cies,andvalidation. This sectionexploresthe complexity
of thesesub-tasksand,hence,of spiralspecification.

To computethe complexity of diagnosis,planning,etc,
we mapthesetasksinto logical abduction. Abductionbe-
longs to the NP-completeclassof tasksand,hence,so to
doesspiralspecification.

This mapping from spiral specification to the NP-
completetasksleadsa very negative resultconcerningthe
complexity of spiralspecification;i.e. it is asfundamentally
intractableaseveryotherNP-completetask.Therestof this
sectiondefinesabductionandNP-completeness,andmaps
oursub-tasksto abduction.

Note that our sequelwill reversethis pessimismof this
proofof NP-completeness.

3.1. Intr oducingAbduction

Logicalabductioncansupportthesub-tasksof TRMCS-
style spiral specificationdescribedabove. Abduction is
often informally definedas inferenceto the bestexplana-
tion [19]. This definition often leadsto the mistaken be-
lief that abductionis only useful for explanation. This is
not correct. Dozensof applicationsof abductionarelisted
in [10,12]. For a specificdiscussionon theapplicationsof
TRMCS,seebelow.

Abductive inferencebuilds a world of belief �
	 from a
theory � : � 	� � (1)



The world � 	 makes assumptions� 	 that allow us to
achievesomegoals� : � 	�� � 	�� � (2)

While thetheory � 	 maycontaininconsistencies,thegener-
atedworld mustnot: � 	�� � 	����� (3)

That is, a world � 	 is theusefulpartof a theory � which,
when combinedwith assumptions��	 , lead to somegoal� (Formula 2) without causingany contradictions(For-
mula3).

If multiple such worlds exist, then a domain specific
BESToperatoris usedto returnthepreferredworld(s).�������! #" $&%(')�&*+�-, (4)�������! � � (5)

Abductioncanreasonin thepresenceof inconsistencies.
It doesthisby finding theconsistentislandswithin a theory
containinginconsistencies.This is a useful tool for (e.g.)
exploring conflictsbetweencompetingstakeholders.Sup-
posewe know who wrote eachportion of a specification.
Significantconflicts betweenuserscan be detectedwhen
differentpeople’s ideasendup in differentworldsof belief.
Theseconflictscanthenbe negotiatedby focusingon the
key conflictingassumptionsthatsplit theworlds. Disputes
betweenfeudinguserscanbeadjudicatedasfollows:� Focusonly on thekey disputesthatdivide theworlds;� Declarethat the winning user offers theorieswhich

build worlds that canexplain mostof the desiredbe-
havior [16,26].

Abductionalsosupportvalidation,diagnosis,planning,
andmonitoring:� Abductive validation asksthe question“What is the

maximumpercentageof known/desiredbehavior that
canbe explainedby sometheory?” This canbe im-
plementedusinga BEST that favors worlds with the
largestintersectionto someoutput goal set. Abduc-
tive validationhasfound previously undetectedfaults
in theoriescontaininginconsistencies;e.g. qualitative
theoriesof neuroendocrinology[11,13,14].� Many different approachesto diagnosishave previ-
ously beenmappedto a single abductive procedure
(seethediscussionin [5]). For example,minimal fault
diagnosiscanbe implementedusinga BEST that fa-
vors worlds with the fewest possibleinputs and the
mostknown goals[20].� Abductive planningusesa BEST that favors worlds
with the mostgoalsandthe leasttotal cost(e.g. least
numberof surgical interventions).

� Abductive monitoringmeanscachingtheworldsgen-
eratedby abductive planning,thendeletingany world
whoseassumptionscontradictany newly arriving data.
Whatever worlds remain in the cacherepresentthe
spaceof possiblefuturesknown to thesystem.

3.2. NP-CompleteTasks

Abductioncanbe mappedto a classof tasksknown as
theNP-completetasks.No fastandcompletealgorithmhas
beenfound for the NP-completetasks,despitedecadesof
research.Therefore,by showing a connectionfrom spiral
specificationto NP-completetasks,we alsohave a strong
theoreticalreasonfor doubtingourability to reasoningthor-
oughly during the spiral specificationprocess.The restof
this sectionshows thatabductionis NP-complete

Problemsare proved to be NP-completeif we can re-
duce (i.e. transform)that problemquickly (i.e. polyno-
mial time) to a known NP-completeproblem. SuchNP-
completeproblemcan be solved by non-deterministical-
gorithm which may find an answerslowly (in exponential
time, worst case)but the solution can be verified quickly
(in polynomial time). The upperboundon the runtimeof
NP-completetasksis exponentialonproblemsize.Moore’s
Law tells thatcomputersarespeedingup at anexponential
rate. However, this speedup is far too slow to catchup
with the worst caseexponentialruntimesof NP-complete
tasks.Hence,in the view of standardcomputerscience,if
a problemis NP-completethenthebestwe canhopefor is
approximatesolutionsof indeterminablequality.

We canreduceabductionto anNP-completetasksusing
asimpleresultfrom 1976(for otherreductions,see[3,21]).
Gabow et.al.[8] showedthatbuilding pathwaysacrosspro-
gramswith impossiblepairs (e.g. somebooleanand its
negation)is NP-completefor all but thesimplestprograms2.
Abductioncanbemappedto building pathwaysacrosspro-
gramswith impossiblepairs. Considerthe caseof test-
ing Formula2 andFormula3 usinga proof procedurethat
builds proof treesacrosslogical rules. Rules can share
terms;e.g. a post-conditionin one rule may be found in
thepre-conditionof anotherrule. Thissharingof termscan
beviewedasa directedgraph;e.g.Figure1. Notethe“no-
edges”in Figure1: ourrulescontaintermsthatmaycontra-
dict otherterms.Theseno-edgesarepairsof incompatible
nodes;i.e. theGabow pre-conditionfor NP-completeness.
Any procedurethatbuilds a proof treeacrossFigure1 (e.g.
to demonstrateFormula2) which mustcontinuallytestfor
theseforbiddenpairs (e.g. to demonstrateFormula 3) is
henceNP-complete.

2A programis very simpleif it is verysmall,or it is asimpletree,or it
hasadependency networkswith out degree .0/ .



diet(fatty).
diet(light).
happy :- tranquillity( hi).
happy :- rich,healthy.
healthy :- diet(light).
satiated :- diet(fatty).
tranquillity(hi):- satiated.
tranquillity(hi):- conscience(clear).

happy
1

tranquility(hi)
2

diet(light)

and1 rich3
healthy
1

diet(fatty)
no

yesyes

yesyes

yes

satiated yes

yes

conscience(clear)

yes

Figure 1. A graph connecting terms within
some horn clauses.

3.3. Summary

Since spiral specificationsub-taskshave an abductive
mapping,andabductionis an NP-completetask,thenspi-
ral specificationis NP-complete.That is, in the traditional
view of complexity theory, spiralspecificationis fundamen-
tally intractableand only possibleusing incomplete,ap-
proximatemethodsthat can be undependable.Hence,in
thetraditionalview, we would routinelyexpectspiralspec-
ification to alwaysbeperformedverypoorly.

4. Searching an Indeterminate Space

This section is an antidote to the pessimismoffered
above. Empirical and theoreticalresultsstrongly suggest
that, in the usualcase,randomizedsearchingof this space
of incompatibilitiesis not ashardassuggestedby Gabow
et.al.This resultwill suggesta new minimal styleof speci-
ficationanalysis.In this new style,whenfacedwith uncer-
tainty or specificationissues,analystscanquickly explore
their systemsfor a limited time usinga randomizedsearch
engine.

4.1. Empirical Results

A curiousexperimentalresult is that theoreticallyslow
NP-completetaskscanbe completedadequatelyin a very
short time. This sectiondescribessomeof thoseexper-
iments. The next sectionargues that theseexperiments

TABLEAU: ISAMP:
full search partial,randomsearch

% Time % Time Tries
Success (sec) Success (sec)

A 90 255.4 100 10 7
B 100 104.8 100 13 15
C 70 79.2 100 11 13
D 100 90.6 100 21 45
E 80 66.3 100 19 52
F 100 81.7 100 68 252

Figure 2. Average perf ormance of elabo-
rate search (TABLEA U) vs randomiz ed search
(ISAMP) on 6 scheduling problems (A..F) with
diff erent levels of constraints and bottle-
necks. From [6].

for TRIES := 1 to MAX-TRIES4
set all vars to unassigned;
loop4

if everything assigned
then return(assignments);
else pick any var v at random;

give v a randomly chosen value;
forward chain from(v);
if contradiction exit loop;

fi55
return failure

Figure 3. The ISAMP algorithm. From [6].

demonstratea generalprinciple; i.e. NP-completetasks
suchas spriral specificationcan be performedadequately
andquickly usingusingrandomizedsearch.

Figure 2 shows Crawford and Baker’s comparison
of a standarddepth first searchbacktrackingalgorithm
(TABLEAU) to a randomized search theorem prover
(ISAMP) [6]. Figure 3 describeshow ISAMP randomly
assignsa value to one variable, then infers someconse-
quencesusinga fastforwardchainer. After forwardchain-
ing, if incomparableconclusionswerereached,ISAMP re-
assignsall the variablesand tries again (giving up after
MAX-TRIES numberof times). Otherwise,ISAMP con-
tinueslooping till all variablesareassigned.Whenimple-
mented,Crawford andBaker found that ISAMP took less
time than TABLEAU to reachmore schedulingsolutions
using,usually, just a smallnumberof TRIES.

Experimentswith randomizedabductive world genera-
tion showedthatexploring a few worldsreturnednearlyas
much informationasa rigorousexplorationof all worlds.
The HT0 abductive algorithm[17] in Figure4 just returns
thefirst world it randomlyfindsusingtheprocessdescribed
in Figure 5. In contrastto HT0, HT4 [11] carefully con-
structseverypossibleworld. HT4’sruntimeswereobserved



% Test ors/amds in random order
X ror Y :- maybe -> (X;Y); (Y;X). %or
X rand Y :- maybe -> (X,Y); (Y,X). %and
maybe :- 0 is random(2).

% Assuming that an object O’s attribute A is X
% is legal if this assumption does not conflict
% with previous assumptions. Otherwise, make
% assume that O.A=X but remove it if ever we
% backtrack to this point.
A of O is X :- a(A,O,Old), !, Old = X.
A of O is X :- assert(a(A,O,X)).
A of O is X :- retract(a(A,O,X)), fail.

% N times, zap assumptions, try the goal list
ht0(0,_) :-!.
ht0(N0,G0) :-

rememberBestCover(G0),
retractall(a(_,_,_)),
% Goals with lower weights are tried first
sort(G0, G1),
maplist(prove,G1,G),
N is N0 - 1,
ht0(N,G).

% Lower/raise a goal’s weight by a
% random amount if it fails/works respectively.
prove(In/Goal,Out/Goal):-

X is 1 + random(10ˆ3)/10ˆ6,
(call(Goal) -> Out is In+X; Out is In-X).

% E.g: 5 times, random search for "sad" or "rich".
:- ht0(5,[1/sad,1/rich]).

Figure 4. HT0, simplified (handles acyclic
ground theories onl y). The full version con-
tains many more details suc h as how vari-
ables are bound within rand s and the imple-
mentation of rememberBestCover . For full
details, see [17]. For brief notes, see Figure 5.

to be exponential: 67*+8:9;, . We shouldexpect suchexpo-
nentialruntimesfrom algorithmsperformingNP-complete
taskssuchasabduction. Surprisingly, the randomsearch
of HT0 performsnearlyaswell asthemorethoroughHT4
algorithm. Further, when running on the sameproblems
asHT4, HT0’s runtimeswereobserved to be muchfaster
( 67*+<>=?, : seeFigure6). In the region wherethe two algo-
rithmsterminatedonthesameproblems,HT0 foundworlds
that covered98% of the outputsfound in the HT4 belief
sets. In otherexperimentswith an earlierversionof HT0,
Menzies,Easterbrook,NuseibehandWaughcomparedhow
argumentsresolve within a specification[16]. HT0 style
reasoningwasusedto find oneargumentresolution,picked
atrandom.Theseresultswerecomparedto resolutionsgen-
eratedfrom theall-worldssearchof HT4. Theaveragedif-
ferencebetweenthetwo searcheswaslessthan @BA .

The adequacy of randomizedsearchhasalsobeenseen

HT0 triesto prove a list of sortedgoals.Theassump-
tions madewhen trying to proving goal C must not
contradictthe assumptionsmadewhenproving goals�EDFD?D *GCIH � , . During the proof of goal C , when pro-
cessingasetof goalsin adisjunctionor aconjunction,
the orderof the processingis selectedrandomly. If a
proof of goal C fails, thesystemdoesnot backtrackto
retry oneof goal

�EDFD?D *GC�H � , . Instead,HT0 lowersa
weightassociatedwith goal C andmoveson to try goalC �J� . WhenHT0 hasfinishedwith all the goals, it
wipesall the assumptions,sortsthe goal list accord-
ing to theadjustedweights,thentriesto provethemall
again.

Figure 5. Explanation of the HT0 code in Fig-
ure 4.
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Figure 6. Runtimes: HT4 vs HT0

in extensive empiricalstudiesby theconstraintsatisfaction
community;e.g.[4,9,23]. Searchinga spaceof conflicting
constrainsis NP-completeandthereforetheoreticallyvery
slow. However, experienceshows that suchNP-complete
tasksareonly truly slow in very narrow regions. For ex-
ample, Figure 7 shows the numberof times a particular
NP-completealgorithm hits a deadend and has to back-
track.Outsideof a narrow zone,thealgorithmcouldtermi-
natequickly withoutextensivebacktracking.Theslow zone
correspondsto thephasetransitionzonebetweenanunder
constrainedzoneanda over constrainedzone. In the over
constrainedzones,the oddsof finding a solutionarevery
low. Further, if the over constraintsarevery tight, we can
quickly discover that no solutionexists sinceour searches
areall quickly blocked. Figure7 is over constrainedaboveK "L@ . In anunderconstrainedproblem,theoddsof find
a solution is very high sincemany solutionsexist. Fig-
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Figure 7. A phase transition effect for map
coloring (no two adjacent countries on a map
should be the same color); adapted from [4].

ure 7 is underconstrainedbelow
K "NM . Note that un-

der constrainedproblemscan be solved by simple meth-
odsandover constrainedproblemscan’t be solvedby any
method3 Hence,for problemsoutsidethe phasetransition
zone,simple searchenginescansolve problems. For ex-
ample,a randominitial selectionof variables,following by
somecheapinferencing, is oftenused;e.g. ISAMP, HT0,
andGSAT [22]. GSAT hasprovedtheoremsin knowledge
basesoneto two ordersof magnitudebiggerthaneverdone
before.

4.2. Theoretical Results

Theabove casestudiessuggesttheaveragecostof For-
mula 3 is far lessthan the worst casecost. If this wasa
generalresult,thensoftwareprojectmanagerswould have
greaterconfidencein thepracticalityof TRMCS-like spiral
specification.This sectionexploresthis issueof generality
andmakesthefollowing counter-intuitiveconclusion:

On average,a few randomlyselectedabductions
will find mostof the reachablefeaturesof a the-
ory, evenin theoriescontaininginconsistencies.

With Cukic and Singh, I have built an averagecase
reachability model that finds the averageprobability of
reachinga randomnodein a dependency graph,given“ C!O ”
numberof randomlyselectedinputs [15]. This reachabil-
ity modelis a virtual machinefor abduction.That is, from

3Exception:if certainconstraintsarenothardconstraints,(i.e. they can
berelaxed)thensomekind of overconstrainedproblemscanbesolved[2].
In termsof Figure7,suchrelax-ableconstraintswoulddriveaprobleminto
thesolvablezone.

a spaceof possiblycontradictoryideas,reachabilitytheory
findstheaverageoddsof reachingsomegoalwithout caus-
ing contradictions;i.e. Formula2 andFormula3.

Dependency graphscan be generatedfrom many sys-
tems;e.g.� Figure1 showed the translationof somehorn clauses

into adependency graph.� Finite state diagrams can be reduced to horn
clauses[15] andhencecanbeexpressedasdependency
graphs. Finite statediagramscan be found in many
analysismethodsor canbeautomaticallyderivedfrom
a staticanalysisof aprogram

We will say that dependency graphshave P nodeswhich
aredivided into and-nodesandor-nodeswith ratios QRO�SUT
and VXW:T respectively ( VXWYT � QRO�SUT�" � ). RecallingFigure1,
wenotethatthesenodesareconnectedby yes-edges(which
denotevalid inferences)andno-edges(whichdenotethein-
consistencies).On average,eachnodeis touchedby O�VYZ
no-edges.Wheninferencingacrossthesegraphs,variables
canbeassigned,at most � differentvalues;i.e. a different
assignmentfor eachtime tick � in the execution(classic
propositionalsystemsassume�[" �

; simulationsystems
assume�]\ �

). Nodesarereachedacrossthedependency
graphusinga network of height ^ wherethe inputsareat
height̂("`_ . Thisnetwork represents�a	 of Formula1 and
Formula2.

In the reachabilitymodel,and-nodesandor-nodeshave
meanparentsQbO�S?cedfVXWgc respectively. Or-nodecontradict,
on average,O�V otheror-nodes. QRO�S?cedfVXWfcId�O�V arerandom
gamma variables with means QRO�SUTYZ�dhQRO�S?c�ZidhVXWgciZ�d�O�VYZ ;
“skews” QbO�S?cij�dhVXWgcijed�O�V:j ; andrange_
kJlmkLn . QRO�SUT
is a random beta variable with mean QRO�SUTYZ and range_okqp�k � . And-nodesarereachedat height ^ via onepar-
entat height C)"r^sH � andall othersat height:C"tpu*vSRwhc�x�y�,Iz{*|^;H � , (6)

so _okqCuk}*~^�H � , . Notethatas SRwfc�x�y decreases,and-nodes
find their pre-conditionscloserandcloserto theinputs.

The probability ��� ^:�G����� of reachingan and-nodeat
height ^J��_ is the probability that one of its parentsis
reachedat height ^�H � andthe restarereachedat height��D~D *~^;H � , ; i.e.

��� ^������b��"t��� ^;H � ��z �� �������Y� ���� = ��� C����� (7)

Or-nodesare reachedat height ^ via oneparentat heightC{"J^�H � . The probability ��� ^��G��� of reachingan or-node
at height ^��J_ is theprobabilityof not missingany of its
parents;i.e.

��� ^:�G�h��" � H�* � H��m� ^;H � �G,ez �� �����Y� ���� = * � H���� C+�G,U�� (8)
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Figure 8. Some frequenc y distrib utions of the
number of tests required to be 99% sure of
reaching a node at height ^ generated from
the Menzies-Cukic-Singh reachability model.

Theprobability ��� ^�� of reachingany nodeis hencethesum
of ��� ^:�G�h� and ��� ^:�G����� weightedby thefrequenciesof and-
nodesandor-nodes;i.e.��� ^���"�QRO�S!T)� ^���z���� ^�� ���b� � VXWYT)� ^���z���� ^�� �h� (9)

Otherdetailsnotshown aboveareloopdetectionandthe
modelingof Formula3 (contradictiondetection).See[15]
for thefull details.

A simulationof theabovesystemof equationsis around
200 linesof Prolog. This modelcanbeexecutedto gener-
ate ��� ^�� . From this figure, we find the numberof tests <
requiredto be �L" �b�RA percentcertainof reachinga ran-
domnodein a dependency graphusingrandomlyselected
inputs. < randomlyselectedinputshascertainty�¡"�_ D �b�;" � H£¢f* � H���� ^���, 9{¤ (10)

of reachinga nodein dependency graph.Hence,

<¥"§¦ V©¨ª* � H«_ D ���b,¦ V©¨�* � H���� ^���, (11)

Theabove modelwasrun for a wide rangeof theabove
parameters;e.g. up to

� _b¬ nodes,up to 1000 inputs, up
to 100 time ticks, wildly varying the frequency andskew
of and-nodes,or-nodes,andno-edges,etc. The frequency
distributionof thecalculated< valuesis shown in Figure8
dividedaccordingto the ^ (proofheight)value.

Thesimulationresultsshows thatmuchof thereachable
partsof a systemcan be reachedvery quickly using ran-
domizedprobing. After searchinginto a theory for more
thana shallow depth(e.g. ^q\M:_ ), nearlyhalf the nodes
canbereachedwith probabilityof 99%usinglessthan100
randomlyselectedinputs.Further, tensto hundredsof thou-
sandsof randomlyselectedinputswill reachnearlyall the
nodes. Note that theserunscanbe performedin parallel.
Giventhatthestandarddesktopmachineis now a 500MHz
box, then in many situations,organizationscan perform
enoughrandominputsto implementFormula3.

What is surprisingaboutthis result is that it holds for
supposedlyexponentiallyslow NP-completetaskslike spi-
ral specification.Recallthatin thismodel,wesearchacross
a dependency graph containsno-edges. Theseno-edges
connectincompatiablepairsof nodes.TheGabow et.al.re-
sult suggeststhat buidling a proof tree acrossthis depen-
dency graphshouldbe very slow (since that task is NP-
complete). However, on the contrary, the simulationre-
sultsfrom themodelshow thatrandomizedsearchcanvery
quickly reachall that can be reachedeven for this NP-
completetask.

5. Discussion

If we manuallytrueto understandall partsof a complex
specifications,muchof their intricacy will escapeus. In the
caseof theTRMCSsystem,thatunderstandingimpliesper-
formingthesub-tasksof reasoningin thepresenceof incon-
sistencies,validation,diagnosis,planning,monitoring,and
validation.This sub-tasksbelongto a classof taskswhich,
in theworstcase,is intractable.

However, if we automaticallyexplore complex specifi-
cationsusingrandomizedprobes,thenon averagewe will
find out mostof whatcanbe foundwithin thosespecifica-
tions. This is a counterintuitive result (to say the least!).
Our pre-experimentalintuition was that searchinga com-
plex spacecontaininginconsistencieswould be very hard
indeed. However, if thoroughlyexploring all the conse-
quencesof inconsistenciesin a theorywereashardaspre-
dictedby the theoryof NP-completeness,thenwe should
expect systemslike ISAMP, GSAT, and HT0 to perform
very poorly. They don’t. Hence,a small numberof ran-
domsearchesaroundinconsistenttheorieswill samplethat
systemaswell assomeothernon-randomstrategy.

This suggestsa new style of specificationanalysis.Af-
ter someinitial manualtinkering, analystsshouldconnect
somemachinereadableform thespecificationsto a Monte
Carlo simulator(which can generaterandominputs) or a
randomsearchenginelike HT0 (which canperturbthe in-
ternalexecutionof thesystemin many differentdirections).
Suchrandomizedsearchproceduresshouldrevealmostof
whatcanberevealed,evenin complex specifications.
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