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What is KM?

Knowledge maintenance (KM) of knowledge-based systems =

� Insight + reflect + change + preserve

Insight = seeing bug or enhancements

Reflect = searching the dependencies between concepts

Change = the easiest thing to do badly, the hardest thing to do
correctly.

Preserve = changes that address new insights do not introduce
bugs into older concepts.
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What is not KM?

An ability to rapidly build or change a system:

� The “rapid acquire assumption”.

� Insufficient unless “build” or “change” supports “preserve”.

An ability to watch knowledge execute:

� The “operationalisation KM assumption”.

� Insufficient without “behavioural knowledge” (see below)

An ability to check a KB using meta-knowledge:

� The “recursive maintenance problem”).

� Insufficient unless the meta-knowledge can be maintained
as well.
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Tutorial: summary #1

� Survey of KM techniques

� Challenge issues for KM research (see page 2).

� A call-to-arms: certain incorrect assumptions in modern KM
research.
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Tutorial: summary #2

Trite sound bites summarizing my views:

� Knowledge does not stabilise.

� Experts don’t agree.

� Modeling is ok, but models aren’t.

– Useful: building models

– Useless: carving them in stone

� Reuse:

– Likely: reuse=productivity=myth.

– Unlikely: me reuse your ideas.

� Maintain the process, not the product.
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A Quick KM Primer

KM state-of-the-art [Menzies, 1999] (see this reference for more
details on the material in this tutorial).

KM tools supporting preserve:

� Logic-based: [Debenham, 1998,Compton and Jansen, 1990]

� Network-based: [Menzies, 1996,Menzies and Compton, 1997]

� Procedures-based: [Gil and Tallis, 1997,Tallis, 1998]

Meta-knowledge to support KM: [Bachant and McDermott, 1984,
Marcus et al., 1987]

KM without meta-knowledge: [Richards and Compton, 1997]

Who needs KM? Just rebuild! [Marques et al., 1992]

General texts:

� Empirical artificial intelligence [Cohen, 1995]

� Advice from SE [Fenton and Pfleeger, 1997]
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Tutorial: Objective

Many factors have combined to reduce our belief that we can
know the “truth” (in some absolute sense) about our world. If we
doubt that our initial specification of a system will be incomplete,
and routinely expect those systems to change significantly over
their life time, then we must move the focus of knowledge engi-
neering and software engineering from acquisition and analysis
to maintenance.

To facilitate this change, we offer here a review of the state-of-
the-art in the emerging field of knowledge maintenance (KM).
Techniques from many different communities (e.g. software en-
gineering, requirements modeling, the verification & validation
community, case-based reasoning, machine learning, object-oriented
databases) will be shown to all contribute to addressing the KM
problem.
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Tutorial: Brief Description

In the software and knowledge engineering literature we can see
maintenance strategies offered to maintain seven main types of
knowledge and five main ways these are processed.

This tutorial will review dozen of software systems that contribute
to these 7*5=35 types of knowledge maintenance to make the
following conclusions:

� Open issues with the current maintenance research are
identified. These include (a) areas that are not being ad-
dressed by any researcher; (b) the “recursive maintenance
problem”; and (c) drawbacks with “rapid acquire systems”
and the “operationalisation KM assumption”.

� A process is described for commissioning a new mainte-
nance tool.

� A general common principle for maintenance (search-space
reflection) is isolated.
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Tutorial: Audience

Practicing software engineers interested in using or assessing
leading edge technologies; software managers reviewing the state
of the art in their field; software engineering and knowledge en-
gineering researchers; graduate students preparing literature re-
views of their field.
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Dr. Tim Menzies holds a Ph.D. in artificial intelligence from the
University of New South Wales, Australia, and works at the NASA/
WVU Software Independent Verification and Validation Facility,
Fairmont West Virginia. In that position, he explores logical meth-
ods for improving our ability to reason about the products of soft-
ware engineering (specs, code, design documents).

At the time of this writing, Dr. Menzies has 67 publications,
dozens of which are in international refereed forums�. Much of
this work is an analysis of where our current generation of soft-
ware engineering and knowledge engineering techniques stop
working.

He is also an active figure in the knowledge acquisition (KA) com-
munity and is one of the co-chairs of the evaluation of knowledge
engineering methodologies track at the annual international KA
workshop

�See http://www.cse.unsw.edu.au/˜timm/pub/docs .
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Expectation Management
(the FAQ)

“You skipped lots of slides.” Can’t cover all this material in 3
hours.

“Some material was rushed” or “I wanted more details on XYZ”
This is an overview only:

� Every page is someone’s research life- can’t show it all.

� If we pique(*) your interest in XYZ, and you know XYZ
is connected to ABC, we have succeeded.

� For more details, see [Menzies, 1999].

(*)Pique nPique n,v. t. To excite to action by causing resentment
or jealousy; to stimulate; to prick; as, to pique ambition, or
curiosity.
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Biases of the Author

The majority Euro-view of KA/KM:

� Understand and adapt KBs via meta-knowledge of cliched
terms and inference procedures (a.k.a. ontologies and prob-
lem solving methods).

� e.g. KADS [Wielinga et al., 1992a]

The minority Australian-view of KA/KM (includes author):

� Meta-knowledge only delays the KM problem (how do you
maintain the meta-K?).

� Alternative: maintain via syntactic structures such as con-
text (RDR) or dependency graphs (knowledge normaliza-
tion).

� e.g. RDR, p60 [Preston et al., 1993,Richards and Compton,
1997,Menzies, 1998];

� e.g. knowledge normalization,p 51 [Debenham, 1998]:
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True or False?

The explicit and high-level expression of knowledge in a KBS
makes them easy to maintain.
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False!

XCON:

� Half of its thousands of rules changed every year [Soloway
et al., 1987].

� ?? due to changing environment (XCON configured com-
puters for DEC computers and DEC keeps releasing new
computers).

Garvin ES-1:

� KBS change occurs in even static domains [Compton et al.,
1989]

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

K
ilo

by
te

s

Months in maintenance

Observed
Linear fit; r^2=0.91

Logarithmic fit; r^2=0.89

Looks linear;
i.e. change will
be forever; i.e.
maintenance
=forever.

15



A Garvin ES-1 Rule (originally)

RULE(22310.01) IF (bhthy or
utsh_bhft4 or
vhthy) and not on_t4

and not surgery
and (antithyroid or

hyperthyroid)
THEN DIAGNOSIS("...thyrotoxicosis")
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Three years later...

RULE(22310.01) IF ((((T3 is missing)
or (T3 is low and

T3_BORD is low))
and TSH is missing
and vhthy
and not (query_t4 or on_t4 or

or surgery or tumour
or antithyroid
or hypothyroid
or hyperthyroid))

or ((((utsh_bhft4 or
(Hythe and T4 is missing

and TSH is missing))
and (antithyroid or

hyperthyroid))
or utsh_bhft4
or ((Hythe or borthy)

and T3 is missing
and (TSH is undetect

or TSH is low)))
and not on_t4 and not

(tumour or surgery)))
and (TT4 isnt low or T4U isnt low)

THEN DIAGNOSIS("...thyrotoxicosis")

[Compton et al., 1989]
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Experts Disagreeing

[Shaw, 1988]: used repertory grids to compare the meaning of
terms used by different experts on a common geology problem.

A. The calibrating experiment: 12 weeks later, self-review.
These figures given baseline expected agreement figures for

this instrument.

Expert %understands %agrees
E1 62.5 81.2
E2 77.8 94.4
E3 85.7 78.6

B. The real experiment. Note E1,E3: very low levels of
agreement.

Expertpairs %understands %agrees
E1, E2 62.5 33.3
E2,E1 61.1 26.7
E1,E3 31.2 8.3
E3,E1 42.9 33.3
E2,E3 44.4 20.0
E3,E2 71.4 33.3
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Does Knowledge Stabilize?

[Catlett, 1991]: use C4.5 [Quinlan, 1986] to learn decision trees
for 20 problems using either:

� all the N=3000..5000 training cases or

� half the cases (randomly selected)

In all but 1 case (demon, first row), more experience meant sig-
nificantly less errors, but larger theories,

domain � tree size � error
demon 0.97 0.51
wave 1.91 0.95
diff 1.46 0.69

othello 1.68 0.8
heart 1.61 0.65
sleep 1.73 0.91
hyper 1.74 0.83
hypo 1.45 0.85

binding 1.51 0.82
replace 1.38 0.8
euthy 1.33 0.61
mean 1.52 0.77
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Does Knowledge Stabilize? (2)

Situated cognition:

� Using knowledge changes knowledge [Menzies and Clancey,
1998].

For example, [Shalin et al., 1997]:

� Experts do modify their behaviour according to community
standards of “accepted practice”.

� But its only novices who slavishly re-apply that accepted
practice.

� Experts adapt accepted practice when they apply it:

– Partially match current problem to libraries of accepted
practice.

– Implement an acceptance test for their adaptation.

– Modify the accepted practice library if acceptance fail-
ure.
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Reuse: The Reality
Use of “reusable” terms (the upper ontology or UO) stable or de-
creased as spec changed(SQ!TQA!TQC). Also, groups used
their own local and recent extensions terms far more (the ALL
terms). Data from 2 groups (SRI or Cyccorp/Tecknowledge) in
the HPKB project [Cohen et al., 1999].
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Reuse levels in SE constant and low (exception: telecommunica-
tions industry). Reuse not correlated to technology (COBOL to
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Reuse & Productivity

Q: Is old knowledge (that we can adapt) still a productivity tool
for new apps?

A1: YES if adaptations small (< 12:5%). Otherwise, overall
cost benefits not impressive. Data from 2954 NASA SE mod-
ules [Abts et al., 1998, p21].
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A2: Maybe not. Decades-old diagnosis models give same pro-
duction benefits as models invented very quickly. And no model
gives higher production benefits. Data from KA experts reading
patient-doctor transcripts [Corbridge et al., 1995]

Reuse Model % disorders
identified

% knowledge frag-
ments identified

Straw man: invented
very quickly

50 28

KADS diagnosis model:
decades of work

55 34

No model 75 41
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So, What Role for Models?

My argument is:

� Building new models is useful:

– Unites a community.

– Reflection over models let us plan for events we have
not/cannot directly experience.

� Holding on to old models may not be useful:

– While I may reuse some of my old ideas;

– I doubt that I will reuse yours we belong to the same
clan.
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Summary

KM is here to stay.

Not because of:

� Sloppy analysis

� Lack of formal rigor (e.g. formal methods)

� Poor management practices

� The wrong tools

� etc etc

But because of:

� The fundamental nature of expert knowledge.

� Using “it” changes “it”.

� Hitting the nail changes your grip on the hammer.

� Exercising knowledge makes you refine that knowledge

Pressing and urgent issue: how to improve KM?
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7 Kinds of Knowledge
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The KM Space

In the literature, I can see 7 kinds of knowledge being maintained
using 5 activities [Menzies, 1999].

Ptype:Knowledge
Processing Activity

Ktype:
Knowledge
type

Acquire Operation-
alise

Fault Fix Preserve

WordK all most few few few
SentenceK
(ontologies)

most most many many few

BehaviouralK some few few few none
PSMs some many few few few
QualityK few few none none none
FixK few many none none none
SocialK few none none none none

Comments:

� KM needs knowledge acquisition (KA). To maintain “it”, first
you have to get “it”. Next you might have to update “it”.

� Not all parts of the 7*5 points in the KM space are covered.

� Large space to explore. High points only at this tutorial.
See [Menzies, 1999] for more details.

� Must explain the Ktypes before the Ptypes.
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7 Knowledge Types

Current focus: execution KBs which acquire and operationalise
wordK (e.g. atomic terms) and sentenceK (e.g. rules and ontolo-
gies) using problem solving methods (PSMs)

Emerging focus: maintenance KBs which contain: behaviouralK
storing the known or desired behaviour of the KB; socialK repre-
senting the social context; fixK representing KB repair strategies;
qualityK representing how the quality of the KB will be assessed.

maintained

maintenanceKB

executionKB

by a second

X

W

Y 

Z
FixK

SocialK

QualityK

Processing
Activity

MaintenanceKB

PSM

Ontology

Y isa X

Z may use
X (and

visa versa)

KEY

W can be
partOf X

ExecutionKB

SentenceKWordK

BehaviouralK

focus of most of current KA
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K-type: WordK

WordK: the things we can’t divide any further. E.g.

� Logic programming: wordK=propositions

� OO high-level design wordK=method names

� Functional systems: word=simple functions (e.g. a compar-
ison age(patient)=old ).

� Rule-based systems: wordK=atoms; e.g.:

if infection is meningitis and
infection is bacterial and
patient has undergone surgery and
the patient has had neurosurgery and
neurosurgery-time was < 2 months ago and
patient got a ventricular-urethral-shunt

then infection = eColi (.8) or klebsiella (.75)

[Clancey, 1992]
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K-type: SentenceK

The rule on page 28 is sentenceK connecting that connect wordKs.

Meta-knowledge of legal sentence types=ontology:“an explicit spec-
ification of a conceptualization” [Gruber, 1993]. E.g. here is an
ontology of design discussions [Ramesh and Dhar, 1992].

implies

Constraint

Issue
dependsOnqualifies

supports/refutes

suggests

repsondsTo

generalises questions

modifies leads to

suggests

dependsOngeneralises

selects

Decision

Assumption

Position
Argument

Requirement

Design object

creates/removes/modifiesdepends on

In an ontology, abstract terms often appear high in some isa hi-
erarchy while specific domain terms appear lower down the hier-
archy; e.g. recall the 7 types of knowledge on page 27.
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K-type: BehaviouralK

Knowledge of known or desired or past behaviour.

phone rings

answer phone

ringing stops

caller lifts receiver

dial tone ends

dial(1)

ringing tone

dial tone begins
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612 :Phone Line
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on exertion
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BehaviouralK in OO anal-
ysis [Booch et al., 1997]

BehaviouralK in case-
based reasoning [Kolod-
ner, 1991, Kolodner,
1993]: new situations are
managed by retrieving
and modifying previously
see cases.
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K-type: BehaviouralK & HT4 (2)

[Menzies and Compton, 1997]

A hypothetical economics theory world W.1 world W.2

current
account
balance

trade
deficit

--

investor
confidence

--

foreign
sales

company
profits

++

public
confidence

++

domestic
sales

++

corporate
spending

++

++

wages
restraint

-- ++

inflation

--

--

foreign
sales=up

company
profits=up

++

public
confidence=up

++

 

corporate
spending=up

++

wages
restraint=up

--

investor
confidence=up

++

inflation=down

--

--

foreign
sales=up

public
confidence=up

++

domestic
sales=down

company
profits=down

++

corporate
spending=down

++

wages
restraint=up

--

inflation=down

--

--

Ins foreignSales=up, domesticSales=down
goals G investorConfidence=up, inflation=down, wageRe-

straint=up
P.1 foreignSales=up, ?companyProfits=up, ?corporate-

Spending=up, investorConfidence=up.
P.2 domesticSales=down, ?companyProfits=down, ?cor-

porateSpending=down, wageRestraint=up.
... ...

?X= assumptions; by the way: NP-hard

Can find interesting errors in published theories of neuroendocrinol-
ogy that were invisible to journal reviewers and paper authors
and mathematical analysis.
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K-type: BehaviouralK (3)

Coverage tools = SE behaviouralK

� All branches coverage

� All usages coverage

� All decision points coverage

� All ... coverage

Desired behaviour specified as global constraints:

� Succinct expression

� Can be checked directly using model-checkers [Clarke et al.,
1986]

� Can be checked via theorem-provers: ground, then negate
constraints. Error detected if the negated constraints are
reachable,
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Operationalisation KM
Assumption

”If we can watch a program execute, then we can understand it.”

Definitions:

� Test cases : < input; output >

� Anomaly: expected(output) 6= actual(output)

� Mere program running: < input; expected(output) = ; >,
i.e. no behaviouralK.

Output can be voluminous, too slow to process (HT4=NP hard):
need heuristic agents to find significant outputs

� Compare with desired (HT4- page 31)

� Code coverage

� Model checkers

DON’T ask the developer to evaluate via program watching:

� “Halo effect”

� “What we need is not opinions or impressions, but relatively
objective measures of performance.” [Cohen, 1995, p74].
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Ktype: PSMs:
Problem Solving Methods

[Clancey, 1992]. Recall this rule:

if infection is meningitis and
infection is bacterial and
patient has undergone surgery and
the patient has had neurosurgery and
neurosurgery-time was < 2 months ago and
patient got a ventricular-urethral-shunt

then infection = eColi (.8) or klebsiella (.75)

This rule blurs the true heuristic ...

if patient got a ventricular-urethral-shunt
then infection = e.coli (.8) or klebsiella (.75)

... with more general problem solving method knowledge:

Strategy Description
exploreAndRefine Explore super-types before sub-types.

findOut If an hypothesis is subsumed by other findings
which are not present in this case then that hy-
pothesis is wrong.

testHypothesis Test causal connections before mere circum-
stantial evidence.
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Ktype: PSMs (2)
Inside a medical diagno-
sis system...

HEURISTIC

Compromised Host
infection

Gram-negative

Immunnosuppressed

GENERALISATION

GENERALISATION

Leukopenia

DEFINITIONAL

Low WBC

QUALITATIVE

WBC < 25

E. coli Infections

SUBTYPE

Abstract schema

Patient Data Disease

REFINEMENTABSTRACTION
DATA

Patient Abstractions Disease Classes

HEURISTIC MATCH

Example

...and a fault system
for electrical circuits...

HEURISTIC

DATA

HEURISTIC MATCH

of Ports
Qualitative value

ABSTRACTION

Qualtitative
Circuit Behaviour

Circuit Behaviour
Measurements

Behaviour at Some Port
of Some Module in
Behavior Lattice

REFINEMENT

Component Fault

Abstract schema

QUALITATIVE

Variable Voltage(Voltage N11 N14)
Reference is High

or OK
is High

Q5 Collector Open

CAUSE

(Voltage N11 N14)

> 31 V

Example

... is the same inference
cliche: heuristic classifi-
cation [Clancey, 1985].

Data abstractions Solution abstractions

HEURISTIC MATCH

ABSTRACTION
DATA

Data Solutions

REFINEMENT
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Ktype -PSMs (3)

Solo PSM:

� Controlled traversal through nested “operator spaces” (SOAR-
PSCM [Newell, 1993, Yost and Newell, 1989, Yost, 1993]);
customizable abductive choice operators [Menzies and Mahi-
dadia, 1997].

Multiple PSMs:

� SPARK/BURN/FIREFIGHTER (SBF) [Marques et al., 1992];
generic tasks [Chandrasekaran et al., 1992]; configurable
role-limiting methods [Swartout and Gill, 1996,Gil and Melz,
1996]; model construction operators [Clancey, 1992]; Com-
monKADS [Wielinga et al., 1992a, Schreiber et al., 1994];
the Method-To-Task approach [Eriksson et al., 1995]; com-
ponents of expertise [Steels, 1990]; MIKE [Angele et al.,
1996]); TINA [Benjamins, 1995]. Libraries of PSMs are de-
scribed in [Benjamins, 1995, Breuker and de Velde (eds),
1994,Chandrasekaran et al., 1992,Motta and Zdrahal, 1996,
Tansley and Hayball, 1993].

� PSM approaches contrasted in the Related Work section
of [Wielinga et al., 1992a]
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Ktype: PSMs (4):
success stories

SALT KB editor for VT (elevator configuration):

� PSM meta-knowledge restricted the dialogues to only those
terms relevant for the propose-and-revise PSM used in VT [Mar-
cus and McDermott, 1989].

� (2130=3062 � 70%) of VT’s rules were auto-generated by
SALT

SPARK/BURN/FIREFIGHTER [Marques et al., 1992]:

� 9 applications (hardware configuration).

� Intelligent editor to explore distinguishing features between
PSM.

� Auto-configuration of executable from PSM library.

� Development times = one to 17 days (using SBF)

� Development times = to 63 to 250 days (without using SBF)

� High-water mark in reported productivity increases in soft-
ware or knowledge engineering.
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Digression: PSMs, Ontologies,
and Patterns

[Menzies, 1997] argues that OO patterns of design [Gamma
et al., 1995] and architecture [Buschmann et al., 1996,Shaw and
Garlan, 1996] are analogous to PSMs and ontologies:

� Both recent abstract descriptions of supposedly common
parts of many designs.

� OO patterns are typically structural; exceptions: some of
the patterns in [Fowler, 1997]

� PSMs patterns are typically functional (recall page 35).

� Ontologies are very compatible with the patterns literature.

KA has building PSMs since at least 1983 [Chandrasekaran,
1983] and ontologies [Neches et al., 1991] since at least 1991:

� Current problems with PSMs/ontologies will be encountered
in the future by patterns research
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Problems with PSMs

(Caution: minority view, recall page 12.)

PSMs are not stable over time:

PSM primitives offered by Clancey [Clancey, 1992], KADS [Wielinga
et al., 1992b], and SBF are different.

The number and nature of the PSMs not fixed. Often, new do-
main = new PSMs [Linster and Musen, 1992].

Diagnosis PSM, has not stabilized, may not do so in the near
future:

� [Menzies, 1997] describes eight different models of diagno-
sis (four from the problem solving method community, four
from elsewhere).

� Some common features,

� But, they reflect fundamentally divergent different views on
how to perform diagnosis.

Ditto for ontologies (recall Cohen results on page 21- reuse re-
sults not impressive).
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Ktype: QualityK

QualityK = some manner of generating an opinion about the
value of the KB.

E.G. using behaviouralK:

� HT4 qualityK (page 31)- a good theory can generate worlds
containing known or desired behaviour

E.G. using non-functional requirements:

� e.g. portability, evolvability, development affordability, secu-
rity, privacy, or reusability:

Monitoring

instrumentation

Control

limits

improves performance in
long term via tuning

&

Algorithms

Assurance

++

++

++
++

monitoring

avoids

undesirable

states

pre-conditions

Temporary
++

++

++
needs additional
processing
in short term

and control

Performance

Timeliness

Affordability

More effort to specify,
develop, verify

-- --

[Boehm, 1996]
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Ktype: QualityK (2) via
Critical Success Metrics (CSMs)

[Menzies, 2000]

Domain-specific; obvious in retrospect (can take weeks of anal-
ysis to uncover) may require extra data capture; reflect the con-
tribution of the software to a particular business context, hence:

� Typically do not refer to internal properties of a program.

� Cannot be developed by programmers without from busi-
ness users.

� Can only be collected once the program is running in its
target context.

E.G. CSMs for a pig-farm management system [Menzies et al.,
1992]:

� NOT the European vs Australian protein unification model

� Rather, profit per M2 per day

0

100

200

1 3 5 7

% pro�t increase

Simulation run number

expert �

�

�

�
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expert system +
+

+
+ ++

+
+
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Ktype: QualityK (3) via Product-
Oriented Assessment

House of quality [Shaw and Garlan, 1996].

Syntactic anomaly knowledge [Preece and Shinghal, 1992]:
Redundant rules Duplicate rules

Subsumed rules

Redundancy

Anomaly

Deficiency

Unusable rules

Missing rules

Missing values

Circularity (inference loops)

Conflicting sets of rulesAmbivalence

And, by the way, fielded expert systems have these anomalies [Preece
and Shinghal, 1992] (Errors=Anomalies):

MMU TAPES NEURON DISPLAN DMS1
Size (literals) 105 150 190 350 540
Logical sub-
sumption
errors

0 5=5 0 4=9 5

Missing rule
errors

0 16=16 0 17=59 0

Circularities
in reasoning
errors

0 0 0 20=24 0
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ETM: a Product-Oriented Assess-
ment Tool

ETM= the EXPECT transactions manager [Gil and Tallis, 1997].

� Detects errors in PSMs in a LOOM representation via a par-
tial evaluation of methods.

– This partial evaluation is driven by a particular example
(a.k.a. an item in the behaviouralK).

� Errors are detected if a method cannot fire because the
types of the input parameters to the methods are not avail-
able (formally, this is a variant on PSB “unusable rules” from
page 42).

� The completeness of this error detector is a function of the
completeness of the behaviouralK used to drive the partial
evaluator.
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Ktype: QualityK subtype:
InconsistencyK

What is a conflict?

� General answer: oops(X, not X).

Other answers for different representations:

� HT4 (page 31) variables have one and one only state as-
signment:

oops(Var1/State1, Var1/State2):-

not(State1 = State2).

� Class hierarchies: sub-class constraints should be violated
by a super-class (the substitution principle).

� State-transistion diagrams from 2 authors. Conflicts if [East-
erbrook and Nuseibeh, 1996]:

– A transition exists between two states in one diagram;

– Those two states appear in the other diagram;

– The transition does not appear in the other diagram.
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Ktype: QualityK subtype:
InconsistencyK (2)

InconsistencyK for WordK using repertory grids [Gaines and Shaw,
1989]

� Consensus: same item, same categorisations;

� Correspondence: (a.k.a. synonyms) items with different
names, but the same categorisation;

� True conflict: same items, different categorisations;

� Contrast: different items, different categorisations
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Ktype: FixK

How to correct errors.

SEEK [Politakis, 1985]

seekDiagnosisRule
if majorSymptoms and

minorSymptoms and
tests and
not exclusions

then diagnosis is true
with confidence

[definitely
or probably
or possibly]

SEEK2 [Ginsberg et al.,
1988]

seekFixRule
if the number of cases

suggesting
generalisation is
greater than
the number of cases
suggesting
specialisation

and the most frequently
missing component
is the major symptoms

then delete some major
symptoms
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Ktype: SocialK

Knowledge cannot be understood with understanding its social
context [Winograd and Flores, 1987,Clancey et al., 1996].

Paper approaches that informally describe the organizational con-
text of a system:

� The organizational model of KADS [Wielinga et al., 1992b]

� The stakeholders of the Olle-126 [Olle et al., 1991].

Operationalized socialK:

� Clancey et.al.’s BRAHMS system [Clancey et al., 1996]:
macro-workflow of an organization is an emergent process
that is inferred from all the micro-behaviour of the agents in
an organization.

� Design rationales are a record of why a community decided
to change some aspect of a system [Moran and Carroll,
1996]. E.g. REMAP (page 29):

– Logs design discussions.

– Can track the impact of a change of mind to the con-
straints on the development.

– Can replay previous discussions to generate historical
understanding of how some decision was achieved.
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The Recursive
Maintenance Problem

Who shaves the barber? Who guards the guardians? How do we
maintain the maintenance knowledge (QualityK, FixK, SocialK,
Ontologies, PSMs)?

If we use KB2 to build and assess KB1, do we need KB3 to b&a
KB2 and KB4 to b&a KB3 and .̇.

Theory: don’t need to maintain KB2. So succinct, errors obvious.
Wrong!

Results from the Sisyphus-II experiments (re-implement VT us-
ing your favorite KE approach). 13/25 elevator configurations
failed due to basic flaw in all the Sisyphus-II implementations�

[Zdrahal and Motta, 1996]. This problem was reported in only
one of the other Sisyphus-II contributions:

ft

min
Capacity ( lbs) 200 250 300 350 400

2000
p p � p p

2500 � � p p p
3000 � p p p p
3500

p � � � �
4000 � � � � �

�Sisyphus-II propose-and-revise is a local greedy search. Local
hill-climbing may ignore solutions which are initially unpromis-
ing, but lead later on to better solutions.
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5 Processing Activities

Ptype:Knowledge
Processing Activity

Ktype:
Knowledge
type

Acquire Operation-
alise

Fault Fix Preserve

WordK all most few few few
SentenceK
(ontologies)

most most many many few

BehaviouralK some few few few none
PSMs some many few few few
QualityK few few none none none
FixK few many none none none
SocialK few none none none none

� Gathering “it”: a.k.a. acquire

� Making “it” run: a.k.a. operationalise

� Finding bugs in “it”: a.k.a. fault (or realizing an enhance-
ment is required).

� Fixing “it’s” errors (or implementing the enhancement)

� Ensuring that new fixes don’t damage old fixes: a.k.a. pre-
serve
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Rapid Acquire Assumption

1997 survey of readers of the comp.ai news group.

Q: What is your maintenance technique?

A: Rapid acquire systems (RAS):

� high-level environment

� maybe point-and-click graphical editors

� maybe operationalisation support.

The RAS assumption:

� If knowledge is expressed at a sufficiently high-level...

� then its flaws are obvious and quick to change.

� Yeah, right...
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RAS: Valid?

Merely browsing knowledge may not reveal how the inference
engine will use it at runtime.

Merely watching a program execute may not reveal subtleties in
its behaviour (the operationalisation KM assumption, page 33).

Very short descriptions of knowledge may contain invisible faults
( examples below).
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Small Models with Few Errors

Population growth:

� [Levins and Puccia, 1985]:

dN

dT
= rN

T = time, N = population, r > 0; r < 0 if environment
benign, hostile respectively.

� Error #1: dN=dT = 0 when N at C, the maximum carrying
capacity of the environment

� Population growth (again):

dN

dT
= rN

�
1�

N

C

�

� Error #2: Over-population (N > C), hostile environment
r < 0, population increases (huh?)

Myers [Myers, 1977]: controlled experiments with 63 lines of
PL/1

� 59 experienced data processing professionals

� Unlimited time

� 5 of the 15 errors found
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Ptype: Acquire

Manual, unstructured, or semi-structured approaches.

Most SE/KE methodologies offer some of the following:

� A notation; e.g. ER [Date, 1995], Harel state charts [Harel,
1995], UML [Booch et al., 1997].

� Tool support drawing with (sometimes) operationalisation;
e.g. RATIONAL-ROSE [Corporation, 1997], CAKE [Rich
and Feldman, 1992];

� Representation of different stakeholders’ opinions, goals (e.g.
[Olle et al., 1991]) and combination rules (e.g. [Easterbrook
and Nuseibeh, 1996]).

� Hints and tips:

– On what data structures to collect; e.g. [Wielinga et al.,
1992a,Olle et al., 1991,Gamma et al., 1995,Buschmann
et al., 1996,Fowler, 1997,Coad et al., 1997]

– On software process; e.g. [Booch, 1996].
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Ptype: Acquire (2)

Manual or semi-automatic, structured techniques, e.g. database
normalization [Date, 1995] or knowledge normalization [Deben-
ham, 1998]. Conceptual model: items connected by objects to
describe-

� Data are simple variables.

� Information are relations connecting variables.

� Knowledge that execute over the relations.

Decomposable item: may be constructed from other items or
objects. Knowledge normalization = discard decomposable data,
information, knowledge [Debenham, 1995].

[part/sale-price, part/cost-price, mark-up]

mark up-rule

part

part/cost-price machine/costprice part/sale-price

mark-uppricemachine

cost-price sale-price

costscosts sells-for

cost-type sale-type
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Acquire Using PSM Knowledge

Use formal methods to map from informal to formal knowledge [van
Harmelen and Aben, 1996].

Restrict questioning to just those issues required to

� Select between PSMs

� Define PSM’s ontological commitments (required data types)

� Refine selected PSM; e.g. if PSM=diagnosis, then ask about
permissible obs in this domain.

abstractdata obs

abstraction rules

hypothesise hyp

causal rules

E.G. SHELLEY [Wielinga et al., 1992a], MOLE [Kahn et al., 1985],
SBF [Marques et al., 1992], SALT [Marcus and McDermott, 1989],
RIME [Bachant and McDermott, 1984], PROTEGE-II [Eriksson
et al., 1995]...

Some offer open-ended PSM definitions: PROTEGE-II, ?SBF

Others are harder to customize for a new PSM; e.g. SALT

Debatable point: are single-PSM tools (e.g. RIME based on
SOAR, page 36) more or less flexible?

56

Other Acquire Techniques

Index on post-conditions [van Harmelen and Aben, 1996]

Expert critiquing systems:

: : : programs that first cause their user to maximize
the falsifiability of their statements and then proceed
to check to see if errors exist. A good critic program
doubts and traps its user into revealing his or her er-
rors. It then attempts to help the user make the nec-
essary repairs [Silverman, 1992].

Critics offer cues to the user:

� Coaxes the user from useless issues they are considering
to useful issues that they are ignoring.

� E.G. Help text, special colors for highlights, “Wizards” in PC
applications.

Two types or critics:

� Influencers cue: prevents an error happening.

� Debiaser cues: fixes after errors have happened (see the
Fix activity, below). Debiasers less useful without positive
feedback (influencers) [Silverman and Wenig, 1993].
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Ptype: Acquire for Specialised
KTypes

QARCC [Boehm, 1996] goal graphs [Mylopoulos et al., 1999]
the acquiring of non-functional requirements quality knowledge
(recall page 40).

VIEWER [Easterbrook and Nuseibeh, 1996] allows for the ex-
pression of inconsistencyK.

HT4 [Menzies and Compton, 1997]: tables for storing behaviouralK
from experiments in the literature.

Case-based reasoning: builds behaviouralK via the incremental
caching of parts of previous inferences (page 30).

Test generation tools: explore dependencies looking for inputs
that exercise (e.g.) all branches: [Ginsberg, 1990,Zlatareva, 1992].

RDR: behaviouralK via incremental capture. In context of spe-
cific error, collect new knowledge. Remember the case that
caused that error [Compton and Jansen, 1990].

BRAHMS: storage and organization of such socialK [Clancey
et al., 1996].
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Ptype: Operationalisation

“Operationalisation”: the process of executing a KB either by di-
rect interpretation or via compilation to some internal form.

E.g. SBF, PROTEGE-II, ....., TINA [Benjamins, 1994]. TINA KB:

rule1:diagnosis
when prime_diagnostic_method

then symptom_detection and hypothesis_generation and
hypothesis_discrimination.

rule2:symptom_detection
when ask_user_method

then apply_user_judgment.

rule3:symptom_detection
when compare_symptom or detection_method

then generate_expectation and compare.

rule4:hypothesis_generation
when empirical_hypothesis_generation_method

then associate and prediction_filter.

rule5:hypothesis_generation
when model_based_hypothesis_method

then find_contributors and transform_to_hypothesis_set
and prediction_based_filtering.

rule6:hypothesis_generation
when hypothesis_generation_method

then select_hypothesis and collect_data
and interpret_data.
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Ptype: Operationalisation (2)

TINA output (after some queries to the user’s db regarding the
rules on the previous page).

model_based_hypothesis_generation_method f
trace_back_method;
intersection_method;
corroboration g

trace_back_method f
find_upstream g

intersection_method f
intersection g

corroboration_method f
select_random;
simulate_hypothesis;
compare;
delete g
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Ptype: Fault

“Fault”: recognizing that an operationalized KB has produced a
behaviour that needs changing (bugs or enhancements).

Fault techniques for wordK: see repertory grids, page 45.

Fault techniques for sentenceK and PSMs:

� Expert inspection: use knowledge not captured in the 7
Ktypes

� BehaviouralK

� Using QualityK, inconsistencyK

– Heuristic knowledge, may need maintenance.

– No research known into how to fault qualityK, inconsis-
tencyK (the recursive maintenance problem, see page 48).

Fault techniques for behaviouralK:

1. (Via the recursive maintenance problem): use some KB2 to
model expectations of values in KB1’s behaviouralK.

2. Use some algorithm to detect if new data does not fit into
old data; e.g. [Colomb, 1999].

3. Via coverage of some feature X. Demand extensions to be-
haviouralK if coverage inadequate?
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Ptype: Fault, subtype:
Browse-around

Let the user manually generate their own explanations of why a
variable was/was not set via:

� Fault localization (see below).

� MYCIN’s “how” and “why” queries.

– How= path to this point.

– Why= current goal of backward chaining.

� SALT’s “how” and “why not” and “what if”.

– “Why not X”= given conclusion Y, find a path to X blocked
by some contribution to Y.

– “What If X”= A hypothetical look downstream of some
temporary setting. Variables set in what-if mode must
be reset. ?HT4 a better approach (page 31).

– No “why” since SALT was a forward-chainer.
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Ptype: Fault, subtype:
Browse-around (2)

Fensel & Schoenegge PSM assumption browser [Fensel and
Schoenegge, 1997,Fensel and Schonegge, 1997]

� KIV (an interactive theorem prover) cannot solve a problem
using a PSM.

� Identify, automatically, the missing logical formula that blocks
PSM completion.

� Offer same to user as an assumption A.

� Let a user browse-around a first-order theory representing
the PSMs in a “what if A”?
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Ptype: Fault, subtype:
Fault localization

Via backwards search of wordK dependencies (sentenceK):

� Used in the MYCIN rule editor [Davis, 1976], Darden’s the-
ory anomaly localization [Darden, 1990], model-based di-
agnosis [Hamscher et al., 1992], RDR [Compton and Jansen,
1990],...

� Important technique

RDR (ripple down rules): optimized for fault localization and re-
pair (see below) in KBS without PSMs [Compton et al., 1989,
Compton and Jansen, 1990, Compton et al., 1992, Gaines and
Compton, 1992, Mulholland et al., 1996, Preston et al., 1993,
Richards and Compton, 1997,Richards and Menzies, 1997]

� Patch tree of rules

� Each rule has an unless patch (which is another rule and
so on recursively).

� Patches stored with case that prompted patch creation.

� Final conclusion= conclusion of the last satisfied rule.

� Fault= the path over the patch tree to that rule.

Note: little or no recursive maintenance problem in RDR.
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An RDR Tree

null

null

thenrule if

thenrule if

thenrule if

1 a&b x1

2 c x2

x3d3

else
unless

unlesselse
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Ptype: Fix

“Fix”: the process of removing a fault in an operationalized KB.

� Special class of “fix”=conflict resolution for knowledge col-
lected from different sources.

Some general mechanisms for fixing:

� Ripple-down rules

� Conflict negotiation

� Specialization and/or generalization

� Machine learning

� Case-based reasoning

� KA scripts

� Others as described in [Menzies, 1999].
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Fix via
Ripple-down-rules

RDR = fault localization + repair:

� Current case = C= Feature1; Feature2; ::

� Path to faulty rule = P = Feature3; Feature4; :::

� Candidates for repair = difference list = C - P.

� Show difference list to an oracle of repair. Oracle picks X
items off the difference list. These are added to new patch.

Patch only in the context of the last error? Crazy! Crazy?

� PIERS: St. Vincent’s Hospital, Sydney,

� Modeled 20% of human biochemistry sufficiently well to
make diagnoses that are 99% accurate [Preston et al., 1993].

� Development blended seamlessly with maintenance

� 2000-rule system, maintenance = a few minutes each day
by domain experts.
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RDR: Pros, Cons

Advantages:

� Practical implementation technique for the reflective [Schon,
1983] or situated cognition view [Menzies and Clancey, 1998]:

– Design mostly happens when some concrete artifact
talks back to the designer- typically by failing in some
important situation.

– Less concerned with the creation of some initial artifact
than the on-going re-interpretation and adjustment of
that artifact.

� Supports “preserve”: new fixes don’t break old fixes.

� Mostly avoids the recursive maintenance problem.

� Contrast with [de Brug et al., 1986]: large expert systems
are notoriously hard to maintain.

Disadvantages:

� RDR tree not compatible with other common representation
types (e.g. isa hierarchies, state charts)- but see [Richards
and Compton, 1997,Lee and Compton, 1996,Colomb, 1999].

� Can’t process meta-knowledge such as PSMs - but see
[Menzies and Mahidadia, 1997].
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Fix via Negotiation

Explicitly represent the different viewpoints of different users.

Automatically detect conflicts between these viewpoints.

� Each inconsistency detection rule has an associated repair
action.

Offer tools for resolution support.

Side effect of resolution = knowledge refinement [Easterbrook
and Nuseibeh, 1996].

Note: conflicts may not be resolvable now.

� Need to be able to reason onwards in the presence of in-
consistency.

� E.G. HT4, page 31.
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Fixing via
Case-Based Reasoning

Recall our heart attach patient, page 30 [Kolodner, 1993, p419]

New case: Dashed= added edges. Deleted: “murmur of as”.

Limited

cardiac

output

Dyspnea

on exertion

General

flow

deficit

Unstable

angina

Unstable

angina

Chest pain

Aortic

valve

disease

Aortic

stenosis

Fixed high

outflow

resistance

Slow

ejection

High

LV press

chronic

LV hyper-

trophy

EKG:

LV strain

Aortic

valve

calcification

Pulse has

slow rise

Within hours

anginal

chest pain

Mitral

valve

disease

Mitral

calcification

Syncope

near

syncope

on exertion
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CBR: Pros/Cons

CBR: strong on fixing cases (behaviouralK); weak on maintain-
ing:

� Maintaining fixK: algorithms for turning old into new;

� SentenceK: the background causal knowledge or cardiac
behaviour used above.
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Fixing via specialization/ gen-
eralization

[Shapiro, 1983]. Undesired behaviours can be removed by spe-
cializing a pre-condition;

� e.g. increasing the number of tests in a conjunction.

Desired behaviour which was not achieved can be reached via
generalizing a pre-condition;

� e.g. decreasing the number of tests in a conjunction.

Human-in-the-loop spec/gen:

� RDR: start with ultimate generalization: true. Specialize
with each patch.

� SEEK: specialized by adding tests/symptoms or deleting
exclusions or decreasing its confidence level. Generalized
by removing tests/symptoms or adding exclusions or in-
creasing its confidence level.

Fully automatic spec/gen:

� SEEK2 (page 46).

� Machine learning
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Fix via Machine Learning

Machine learning (ML) algorithms [Michalski, 1993]:

� Input:

– BehaviouralK: positive and negative examples (E+,E�)
of what you want, don’t want.

– Background theory (B) which may be empty

� Output:

– A new theory which covers more of E+ or less of E�

than the initial background theory.

� Two types: inductive and deductive.
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Inductive Learners

E.G. genetic algorithms, neural nets, decision tree learners, be-
lief networks

Create a summary theory from the behaviouralK presented to
them.

Data hungry: best with large E (100s to 1,000s)

Problems with very large E (10;000s): need pre-processors to
prep the data (the data mining problem).

Typically ignore background knowledge (exception: inductive logic
programming [Muggleton, 1991]):

� A user may be presented with a totally novel theory at the
end of an inductive learning session.

– BAD IDEA?

– Users treasure their favorite portions of their KB (typi-
cally, the bits they defended from all critics).

– Learners should not scribble all over treasured knowl-
edge.
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Deductive Learners

E.G. explanation-based generalization [van Harmelen and Bundy,
1988,Mitchell et al., 1986], chunking in rule-based systems [Laird
et al., 1986]

Deductive learners input the steps taken by some inference en-
gine and output a better set of inference steps.

� May cull the middle portions of a long inference procedure
to connect inputs directly to outputs.

No scribble problem.

Less data hungry and make extensive use of the background
theory.

� BAD IDEA?

� Less information to learn from = ? local minima.
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Machine Learning and KM

Deductive learning less reliable than inductive (the local minima
problem).

Inductive learners have practical drawbacks:

� The scribble problem (see above).

� Data hungry = more expensive. May take months to collect
data.

Manual KA using RDR < inductive learning when E > 1000s
[Mansuri et al., 1991]
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Fixing via KA Scripts

Databases: transaction management ensures completion of all
table updates/deletes.

Knowledge bases: EXPECT Transaction Manager (ETM) en-
sures completion of all PSM knowledge updates/deletes:

� Triggered when EXPECT’s partial evaluation strategy de-
tects a fault.

Simple task #1 Harder task #2
no ETM with ETM no ETM with ETM

S4 S1 S2 S3 S2 S 3 S1 S2
Total time
(min)

25 22 19 15 74 53 40 41

Time com-
pleting trans-
actions

16 11 9 9 53 32 17 20

Total changes 3 3 3 3 7 8 10 9
Changes
made auto-
matically

n/a n/a 2 2 n/a n/a 7 8

Recursive maintenance problem: how to check the KA scripts?
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Ptype: Preserve

Stop a change for issue D from introducing problems into changes
to made for A,B,C, : : :

Logic-based preserve:

� Initially, structure to support preserve.

� E.G. RDR (page 64), database and knowledge normaliza-
tion (page 55).

Network-based preserve

� At all times, have access to the dependency network to
check implications of a change.

� E.G. HT4, page 31.

Procedural-based preserve:

� Use a transaction manager to ensure completions

� E.G. KA scripts, page 77.
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Other Preserve Tools

Design rationale [Moran and Carroll, 1996]:

� An annotation that describes the reasons for a fix.

� Current state-of-the-art:

– Annotation tools for wordK and sentenceK only.

– Creating such argumentation structures very costly to
build. Interesting approach: Use CBR as a secretary to
compare enrich new arguments by reflecting over old
arguments [Fischer et al., 1996]

Data schema evolution (DSE).

� After some change to the logical model of the program,
some parts of the program comply to the former version
of the schema.

� Pressing problem in OODBMS (complex structures).

� Future problem for OO KBs (ontologies)

� Chain different schema versions, class to class.

� Coercion functions map instances along the versions.

� Current commercial state-of-the-art: can’t handle changes
that transcend class boundaries [Odberg, 1995, chpt2].
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Discussion:
How to Commission a KM Tool

Pagep
Executive
Summary

1-5

p
Preliminaries : Tutorial:

� Objective
� Brief Description
� Audience

Expectation management
About the author
Author biases

6

p
Motivation : Change: the only constant 13p
The KM space : 7 types of knowledge 25p

: 5 processing activities 49
) Discussion : How to commission a new KM

tool.
80

References 83

80

4 Issues

1. Where in the 5*7 points of KM space does this system
work?

2. What tools are offered for maintaining the maintenance KB?
(the recursive maintenance problem).

3. Theoretically: Does the tool support preserve?

4. Practically, check that:

� QualityK can assess the KB;

� We can track dQ

dT
(quality): very useful for project man-

agement.
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Search-Space Reflection

“Browse-around” core technique for KM. Used everywhere:

� Normalization = browse the dependency network

� Fault-localization

� “How”, “why”, “why not” and “what if” = browse dependen-
cies around some word.

� Deductive learners = browse and edit pathways leading to
a conclusion.

� CBR = browse which bits of the KB were used before.

� HT4=browse around and sort out what can be believed to-
gether.

� Requirements engineering= browse around to find fixes to
stake-holder conflicts. ...

Does the tool support browse-around?
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