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Abstract

At the core of soft computingis the intuition that from
impreciseknowled@, we can still male reasonablenfer-
encesThispaperoffersexperimentabndmathematicaév-
idencefor this intuition. Basedon a literature review and
a newly developedmathematicof "r eachability”, it is ar-
guedthat seachesthrougha spacecontaininguncertain-
ties, mostof the reachableconclusionawill be readedvia
a small numberof "master variables” in a "narr ow fun-
nel”. Sud narrow funnelscan be foundusingvery simple
randomizedsearch methods.ConsequentlywhenusingN
softreasoningools, it is bestto at leaststart with the sim-
plestand only complicateyour softreasoneiif and only if
thatinitial simpletool somehowails you (andreadability
theorypredictsthatit won't oftenfail you)..

1 Intr oduction

Someintuitions, while compelling,may not be correct.
For example,considerZadehs intuition that:

as the compleity of a systemincrease
our ability to male preciseand yet significant
statementsboutits behaviordiminishesuntil a
thresholdis reachedbeyondwhich precisionand
significance(or relevance)becomelmostmutu-
ally exclusiveproperties.

—Lofti Zadeh[37]

My own pre-experimentahotionswasthatthis intuition
wasessentiallycorrect.It seemedlearto methatthe more
we say the lesswe arecertainon whatwe say As theory
compleity increasesthe certainty of that theory’s asser
tionsdecreaseaswe struggleto fill detailswhich we may
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never have explored before. One way in which comple
theoriesgetimpreciseis the presenceof “many maybes”;
i.e. multiple pointswhereit is unclearwhich mutually in-
compatibleassertiorshouldbe made. This maybe assim-
ple as a disputebetweendifferent designersover the size
of a numericconstanin an equation.Alternatively it may
beascomple asa qualitative reasonethatgenerategnu-
merablepossibleconclusionspnefor eachsetof consistent
possibilitieswithin alargespaceof contradictionsin either
case the problemis the same:assertionsboutsomepoint
arecontradictory

However, after reviewing the available evidence,these
intuitions mustbe revised. A repeatedbsenationis that
within the current generationof software, many maybes
mostlymeanthesamehing. Thatis, if we asksoftwarecon-
tainingcontradictoryassertionso reporton all thewayswe
achieve certaingoals,thenthereemepe certaingoalsthat
are alwaystrue, or alwaysfalse,acrossthe wide spaceof
“maybes”. For thesestableinferencesywe canmake precise
and categorical statementsn the presencesf complex and
possibleuncertainassertions.Supposeheseexperimental
obsenationsare a generalresult, and not just a result of
a quirky selectionof casestudies. If sothenwe have an
explanationfor the succes®f fuzzy logic [37], genetical-
gorithms[11], neuralnets[33], qualitative reasoning20],
heuristicprogrammind6], stochastiénference(e.g.antin-
telligence[14], ISAMP [12], HTO [28] GSAT [32], black-
box testing[17]) and mary otherapproximatesoft reason-
ing techniquesThesetechniquesvork notbecausef their
intrinsic power, but becausenary probesacrossa spaceof
uncertaintiesill achieve the sameresult.

This article teststhe generalityof the experimentalob-
senation that mary maybesmostly meanthe samething.
At issueis how much effort we shouldspendon the con-
structionof elaboratesoft computingtools. We will offer
experimentaland theoreticalevidencethat, in the general
case,very simpletools suchasthe randomsearchof HTO
(describedbelon) shouldsufiice for soft computingtasks
thatreasorabouta spaceof uncertainties.



Thetheoreticalcasethatmary maybesmeanmostlythe
samething is basedon the “funnel theory” of Menzies,
Easterbrook,Nuseibehand Waugh [27]. Funneltheory
as presentedn §2, hasan intuitive appealand explains
the counterintuitive experimentalbbsenationslistedin §3.
However, until this article,funneltheoryhadno formal ba-
sis. Basedon a mathematicahrgument,it will be shavn
thatwe canroutinely expectour softwareto containnarrov
funnels. This mathswill be presentedn two parts. Firstly,
in §4, an averagecasereaability modelis presentedhat
computeghe oddsof reachingsomerandomlyselectegart
usingatheorythatcontainscontradictionsThis modelhas
an odd behavior: the numberof contradictionsper literal
doesnot greatly effect the output of the model. This odd
behaior promptedhe developmentsecondnodel.Based
on a simulationof an abstractmodelof funnels,§5 argues
thatif someconclusioncanbereachedria a narrav funnel
andawide funnel,thenarandomsearchwill tendto usethe
narraver funnel. The argumentis recursve: given a nar
row funnelanda narroverfunnel,randomsearchwill favor
thenarroverfunneloverthenarrown funnel. Hence thenar
rowest funnelsact like strangeattractorsin chaostheory,
pulling in all thearguments Sincetheseargumentswill use

narrav funnels,therewill be few pointsof disagreement.

Hence the netresultof mostof the disagreementwill be
very similar thatmostmaybeswill meanthe samething.

2 Funnel Theory

Accordingto funnel theory argumentswithin software
are pathways through a spaceof possiblecontradictions.
Eachpathway leadsto somedesiredgoalsand containsa
setof assignment$o variables.Givena setof goals,if we
build prooftreesfor eachgoal separatelythenit is possible
thattheseproofswill demanddifferentassignmentso the
samevariables.Thatis, theproofsarecontradictoryaround
thosevariables.The setof variableswith contradictoryas-
signmentsarecalledthe funnelof anargument. The cardi-
nality of this setis a measureof how muchthe conclusions
from thistheorycanvary. GivenandS argumentsaboutthe
assignmentto N variablesn thefunnel,thenthereare S™
combinationf prooftreesthatwe canbelieve atthe same
time. Dependingon which assignmentve endorsediffer-
entprooftreeswill be endorsedanddifferentgoalswill be
reachable.

As the funnel size N shrinks, thenthereare exponen-
tially lessdifferentwaysto resole the contradictionsn a
theoryand exponentiallylessmethodsfor reachingdiffer-
entgoals. Funneltheoryclaimsthatmostsearcheshrough
aspaceof contradictoryoptionswill leadto the samegoals
if the pathwayscrossvery narrow funnels Narrown funnels
have two propertiessuggestinghatmary maybeswill lead
to the sameconsequenceskirstly, narrov funnelsdictate

funnel

Figure 1.

how argumentsmustbe resoled aroundthe funnel. If an
argumentmustmake it througha funnelin orderto reacha
goal,thenthatargumentmustadapttself to the shapeof the
funnel. Secondly narrowv funnelslet usignore certaindis-
agreementsConsidertwo arguments:onearounda narrov
funnelandanothewvery peripherako thatfunnel. Thefun-
nel argumentcould be resoled quickly sinceonly certain
resolutionswill passthroughthe funnel. Further we need
not spendmuchtime on the peripheralargumentsinceit is
likely thatmostpathwayswill neverusethatperipherabpart
of themodel.

To understandhe effectsof funnelsconsidersomeants
at the neck of Figure 1 arguing abouthow to bestcrawl
down to thefeet. Eachant’s algumentrelatesto onepossi-
ble pathway acrosghe skeleton.Notethatour searctspace
hasfunnels: all the pathways must passthroughthe lum-
barspinejust above the hips. Our antsmight have different
disputesaboutthe bestway to handlefingers,ribs, andthe
lumbarspine. Someof theseargumentsareirrelevant. For
example arguingabouthow to traverseafingeris irrelevant
to the goal of reachingthe feet sinceno pathway through
the fingerstakesus to the groundwithout returningto our
currentposition at the neck. Also, with respectto some
statedgoal, the presenceof funnelsensureghat someof
theseargumentsonly have one possibleresolution.For ex-
ample,supposeneof our antsprefersnotto crawl around
thelumbarspinesincethebonesherearetoo pointy. Given
the goal of vertical motion to the feet acrossthe skeleton,
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Figure 2. Number of tests used to certify ex-
pert systems.

that ant must surrendetto the inevitable andtravel across
the pointy lumbar spine. Clearly if the software contains
thesamenarrav funnelsasFigurel, thenwe would expect
that the net effect of the contradictorypossibilitieswithin
thatsoftwarewould bethe same.

3 Experimental Evidence

This sectionreviews empiricalevidencethatnarraw fun-
nelsarecommonin softwaresystems Elsavhere,Menzies
and Cukic [25] have catalogedhe numberof testsusedto
certify expertsystems.In theory probinga spaceto find a
bug with probability 10~* takes4.6 x 10 teststo be 99%
sureof finding thatevent. To shaw this, notethat N ran-
domly selectednputshascertainty

CZ].—((].—.’IJ)N)

of finding someeventwith probabilityz. Hence,ata 99%
certainty C' = 0.99 andthis equationbecomes:

In(1-0.99)  —46

N= In(1-2)  In(l—2) @)

If thespacds beingprobedby anondeterminatsearcten-
gine,asoftenusedin a heuristic-basedxpertsystemthen
4.6x10% wouldbeatheoreticalowerboundontherequired
numberof tests.Neverthelesanoftenrepeatedbsenation
is thata small numberof inputscanoftenreachsignificant
errorsin aprogram(seeFigure?2). Oneexplanationfor this
surprisingobsenation is that narrov funnelsvery quickly
drive a small numberof test casestowardsthe reachable
failures.

Similarly, in corventionalsoftware,surprisinglyfew ran-
domprobeswill detectsignificanterrorsin asystem.Leve-
son heuristically applied partial descriptionsof software
fault treesto ADA code. She claims that this heuristic
searchdetectedas mary errorsin her studiedsystemasa
muchlonger, andmuchmoreformal, analysig22]. If con-
ventionalsoftwarecontainecharron funnels thatwould ex-
plain how Levesons heuristicpartial probingwas so suc-
cessfulsincearny argument,generateckither by formal or
informal methodswould both be sucled towardsthe fun-
nels.
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Figure 3. Path found in software modules by
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Anothermethodof probinga systemis mutationtesting.
In mutationtesting,a testsuiteis assessedia its ability to
distinguisha programfrom somemutationof thatprogram.
Numerousresearcherg1 mutationtestingreportthat most
mutationsgive rise to the samenominal and off-nominal
behaiors[1,7,29,35]. Thisresultcanbe explainedassum-
ing narrov funnels. Mutatorsare appliedrandomlyandif
the funnelsare small, it is unlikely that the mutatorswill
stumbleacrosshem.

Another reasonto believe in narrov funnelsis that
the overall structure of our programsmay not support
wide chainsof alguments.Biemanand Schultz[3] report
thata seeminglycomplex naturallanguageprocessingys-
tem contains,on average,a small numberof narrov du-
pathways A du-pathis alink from wherea variableis de-
finedto whereit is used Clearly, the upperboundon the
numberof du-pathvaysin a programis exponentialon the
numberof programstatementsThelower boundonthedu-
pathwaysis 1; i.e. thetail of eachpathtouchesthe head
of anothempath.Figure3 shavsthe BiemanandSchultzre-
sults: 95.1%o0f themodulesn their systemheldlessthat50
du-pathvays. Analogousresultshasbeenseenin procedu-
ral code.In oneanalysisof 4000FORTRAN functionsand
3147“C” functions,the control flow graphof thosefunc-
tions grows linearly with the numberof statementg19].
Thatis, thecontrol-flov diagramformsa single-parentree.
Argumentsxtractedfrom single-parentreeswould bevery
narrav indeed.

Thereis muchevidencethat the averagesize of a fun-
nel in Al-basedsystemsis very narrav. Researcherin
Al andrequirementengineeringexplore inconsistenthe-
ories. A repeatedresult consistentwith narrav funnels
is that committing to a randomly selectedresolutionto a
conflict reachesasmuchof a programascarefully explor-
ing all resolutionsto all conflicts. For example, Figure5
shavs Crawford and Baker’s [12] comparisonof a stan-
darddepthfirst searctbacktrackingalgorithm(TABLEAU)
to ISAMP, arandomizedsearchtheoremprover (shavn in
Figure4). ISAMP randomlyassignsa value to one vari-
able, theninfers someconsequencessing a fast forward
chainer After forward chaining,if incomparableconclu-



for TRIES :=
{set all vars
loop
{if everything assigned
then  return(assignments);
else pick any var v at random;
set Vv's value at random;
forwardChainFrom(v);
if contradiction
then exit loop;
fi

1 to MAX-TRIES
to unassigned;

fi

}
} return  failure
Figure 4. The ISAMP algorithm [12]
TABLEAU: ISAMP:
full search partial,randomsearch
% Time % Time | Tries
Success| (sec) | Success| (sec)
A 90 255.4 100 10 7
B 100 104.8 100 13 15
¢ 70 79.2 100 11 13
D 100 90.6 100 21 45
E 80 66.3 100 19 52
F 100 81.7 100 68 252

Figure 5. Average performance of elabo-
rate search (TABLEA U) vs randomiz ed search
(ISAMP) on 6 scheduling problems (A..F) with
different levels of constraints and bottle-
necks.

sionswerereached|SAMP re-assignsll thevariablesand
triesagain(giving up after MAX-TRIES numberof times).
Otherwise,ISAMP continueslooping till all variablesare
assigned.Whenimplemented Crawford and Baker found
that ISAMP took lesstime than TABLEAU to reachmore
schedulingsolutionsusing, usually just a small number
of TRIES. Crawnford and Baker offer a speculationwhy
ISAMP was so successfultheir systemscontainedmostly
“dependent’variableswhich are setby a small numberof
“control” variables. Note that this dependent-contrahe-
ory is consistentwith narrov funnels: the small number
of control variablesare those found in the narrov fun-

nels. TABLEAU failedsinceit’ s rigoroussearchdemanded

theresolutionof unimportantargumentoutsidethe narrov
funnels.

Experimentsvith randomizednultiple-worldsinference
enginessupportthethesisthatnarronv funnelsarecommon.
If multiple worlds of belief are createdvia very wide fun-
nels,thenwe would expecta large numberof worlds cre-
atedwith eachworld condoningpossibly different infer-

% est ‘ors’ in a random order
Xror Y : maybe -> (XY); (Y;X).

% est 'ands’ in a random order

X rand Y :- maybe -> (X)Y); (Y,X).
maybe - 0 is random(2).

% Assumi ng that an object Os attribute

%Ais X is legal if this assunption does

% not conflict wth previous assunptions.

% Otherwi se, make assune that O A=X but
%renmove it if ever we backtrack to this point.

A of Ois X :- a(A0,0ld), I, Old = X

A of Ois X :- assert(a(A,0,X)).

A of Ois X :- retract(a(A,0,X)), fail.

% N times, zap assunptions, try the goal Ilist.
ht0(0,_) - L

htO(NO,GO) :- rememberBestCover(G0),

retractall(a(_,_, )),

% Goal s with | ower weights
Y% are tried first

sort(GO,  G1),
maplist(prove,G1,G),

Nis NO - 1,

htO(N,G).

% Lower/rai se a goal’s weight by a random anmount
%if it fails/works respectively.
prove(In/Goal,Out/Goal):-

X'is 1 + random(10°3)/1076,

(call(Goal) -

> Qut is In+X; Out is In-X).

%E g: 5times, randomsearch for "sad" or "rich".
- htO(5,[1/sad,1/rich]).

Figure 6. HTO, simplified (handles acyclic
ground theories only). The full version con-
tains many more details such as how vari-
ables are bound within rand s and the imple-
mentation of rememberBestCover For full
details, see [28].

ences. However, if suchworlds are createdthrough nar

row funnels,thenwe would seethat only a small number
of worlds are created. Further since there are few dis-

agreementbetweertheworlds, it is likely thatthe created
worldswould condonesimilarinferencesIn resultsconsis-
tentwith narrav funnels,Menzies,EasterbrookNuseibeh
and Waugh [27] report that exploring a few set-cavering
worlds returnednearly as muchinformation as a rigorous
explorationof all worlds. Thatexperimentis describede-
low.

The Menzies,EasterbrookNuseibehand Waugh study
comparedthe behaior of two multiple-world reasoners:
HTO andHT4. HT4 generatesll pathwaysfrom inputsto
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Figure 7. HT4 (solid line) vs HTO (dashed line).
U% denotes what percentage of the available
domain data was ignored in each run.

goalsandsortstheminto consistenworlds of belief [23].
HTO justreturnsthefirst world it findsrandomly[28]. HTO
randomizeghe orderin which it searchesor proofs. Dur-
ing the proof of goal i, whenprocessinga setof goalsin
a disjunctionor a conjunction,the orderof the processing
is selectedandomly(seerand/2,  ror/2 in Figure6).
If a proof of goal fails, the systemdoesnot backtrackto
retryoneof goall ... (i — 1). Instead HTO lowersaweight
associateavith goal: andmovesonto try goali + 1 (see
prove/2 in Figure6). WhenHTO hasfinishedwith all
thegoals,it wipesall theassumptionssortsthegoallist ac-
cordingto the adjustedveights,thentriesto prove themall
again(seeht0/2 in Figure6). WhenHTO andHT4 were
run on the sameexamples,HT4's runtimeswere obsened
to beexponentiawhile HTO waslessthancubic[28]. Also,
and mostimportantfor our discussionthe randomsearch
of HTO reachesearlyasmary goalsastherigoroussearch
of HT4. Menzies,EasterbrookNuseibehand Waugh ex-
ecutedthousand®f modelsusingHTO andHT4. To gen-
eratethesemodels,mutatorswould corruptinfluencesin a
theory;e.g.proportionakignswereflippedto inverselypro-
portionalandvisaversa,influencesvereaddedat random,
andlessandlessdatawasofferedto thereasonerin aresult
consistentvith mostmaybesneanthesamething, theaver-
agedifferencein coveredgoalsbetweerthe randompartial

searchof HTO andtherigoroussearchof HT4 waslessthan
6% (seeFigure?).

4 Generalizing HTO with Reachability The-
ory

Did HTO work becauseof quirksin its casestudy? Or
wasit an exampleof a generalprinciple? This sectionar-
guesthatHTO’s resultsarequite general:the averageodds
of reachinga goal acrossa spacecontainingcontradictions
is quite high. Theseaverage-caseddscan be calculated
usingthereadability analysis[26] describedelow.

Reachabilitystudiesthe oddsof reachinga randompart
of NAYO graphslike Figure8. SuchNAYO graphscon-
tain No-edges And-nodesYes-edgs andOr-nodes Yes-
edgesdenotevalid inferencesandno-edgesienoteincom-
patibilities “maybes”. The V' nodesof a NAYO graph
aredivided into and-nodesand or-nodeswith ratios andf
andorf respectiely (orf + andf = 1). In the reach-
ability model, and-nodesand or-nodeshave mean par
entsandp, orp respectrely. Or-nodecontradict,on aver-
age,no otheror-nodes.andp, orp, no arerandomgamma
variableswith meansandf,,, andp,,, orp,,no,; “skews”
andpqy,, 0rpa,no,; andrangel < v < co. andf is aran-
dom betavariablewith meanandf, andrange) < g < 1.
And-nodesarereachedat height; via one parentat height
1 = 7 — 1 andall othersat height:

i = B(depth) x (j — 1) )

s00 < i < (j—1). Notethatasdepth decreasesnd-nodes
find their pre-conditioncloserandcloserto theinputs.

The probability P[j]ang Of reachingan and-nodeat
heightj > 0 is the probability that one of its parentsis
reachedat heightj — 1 andthe restare reachedat height
1..(j —1);ie.

andp(j]

P[j]and ZP[J_ 1] * ( H P[Z]> (3)

2

Or-nodesarereachedat heightj via one parentat height
i = j — 1. Theprobability P[j],, of reachingan or-node
at heightj > 0 is the probability of not missingary of its
parentsj.e.

orp|j]

Pljlor =1-(1-P[j —1]) * (H (1—P[i])> (4)

2

From P[j], we computeP'[j],, by modifying P[j] with
two factors:onefor the oddsof not enteringinto an infer-
encingloop, andonefor the oddsof not causingcontradic-
tions:

n[j]xorf
2" ©)

P[j]no contradiction — (]- - V
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Figure 8. A NAYO graph (shown right) connecting terms within some theory (shown left).

1 n[jlxorf

P[j]noloop (1 - V) (6)
wheren[j] is a guesstimatef the sizeof the proof treeto
depthj. Obsere theuseof n[j] x orf in Equation5 and
Equation6. And-nodescontradictno othernodeshencewe
only needto considercontradictiondor or f of the system.
Also, sinceevery and-nodéhasanor-nodeasa parentthen
we needonly checkfor loopsamongstheor-nodes.

The probability P[j] of reachingary nodeis hencethe
sumof P'[j],» and P[j]anqa Weightedby thefrequencieof
and-nodesndor-nodesj.e.

Plj] =
Pl[j]or =

andf * P[jlana + orf * P'[j]or (7)
P[j]or * P[j]noloop * P[j]noconﬁadictiz{ﬁ)

A simulationof the above systemof equationgs around
200 lines of Prolog. This modelcan be executedto gen-
erate P[j]. Fromthis figure, we find the numberof tests
N requiredto be C' = 99% percentcertainof reachinga
randomnodein adependenggraphusingEquationl.

The abose modelwasrun for a wide rangeof input pa-
rametersge.g. up to 10% nodes,up to 1000inputs, wildly
varying the frequeng and skew of and-nodesor-nodes,
andno-edgesegtc. The frequeng distribution of the gen-
eratedN valuesis shavn in Figure9 divided accordingto
thej (proofheight)value. Thesimulationresultsshavsthat
HTO’ssuccessvasnotaquirk of themodelsin its domains.
Ratherif we exploreaNAY O graphto morethanashallav
depth(j > 50) thenin the usualcase ,we canreachmost
partsof thattheorywith smallnumberof randominputs.

The resultsof the simulationof the reachabilitymodel
reproducethe HTO results: despitethe presence®f con-
tradictory optionsin atheory the oddsof reachinga goal
canbe quite high. However, thereachabilityanalysisraises
more questionshanin answers. A strangefeatureof the
reachabilitymodelis thatits conclusionsrebarelyeffected
by the numberof contradictionsn atheory This lack-of-
effect was detectedusing a machinelearner (C4.5 [30])

and the following sensitvity analysis. Outputsfrom the
reachabilitymodel can be classifiedusing Equation1 as
follows:

fast and cheap if N <10
Class = fast and moderately expensive if N < 10%,

slow and expensive if N <108,

impossible otherwise.

Decisiontreesto predict theseclassificationswere built
usingthreedifferentsubsetsf the model parametergsee
Figure 10). For eachsubset)earnerswere given example
setsof differentsizes: 150 examples,1500 examples,and

@
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Figure 9. Some frequenc y distrib utions of the
number of tests required to be 99% sure of
reaching a node at height j generated from
the Menzies-Cukic-Singh reachability model.
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Figure 10. Parameters used in the reachabil-
ity model, divided into three sets: All, Some,
Least

150000examples. A baselinefor classifieraccuray was
generateddy building a classifierusing All 13 model pa-
rametersA nearlysimilar classifiercouldbebuilt by ignor-
ing numerougparametergevidence:compareheAll curve
to the Somecurwve in Figure11). However, if we blocked
accesdy the machinelearnerto andf, the the accurag of
theclassifierfeel by 15-20%(evidence:comparehe Some
curveto the Least curve in Figure11). Hence the param-
etersincludedin All-Some areclearly not the main deter
minersof reachability Note thatthe setAll-Some includes
informationaboutthefrequeng of contradictionsn theory
(noy, nog).

The lack of sensitvity of reachabilityto contradictions
is moststrange.The pre-experimentaintuition wasthatas
the numberof contradictorypossibilitiesincreasethenthe

oddsof reachinga particularconclusionshoulddecrease.

This intuition turnsout to beincorrect,bothin specificex-
amplesshavnin §3 andin thegenerakasedescribedy the
reachabilitymodel. To explain this insensitvity, we must
returnto funneltheory

5 Formal Funnel Theory

A formal analysisof funnel theory explains why the
oddsof reachingsomerandomlyselectedoart of a theory
is barely effectedby the numberof contradictionsin that
theory In this section,a mathematicakimulationdemon-
strateghatgiventhechoiceof anarrav or awide funnelsto
reachagoal,arandomsearchenginewill selectthenarrav
funnel. Thatis, evenif atheorysupportanary arguments,
randomizedsearchwill favor thelesscontentiougartsof a

theory
Supposesomegoal canbe reachedby a narrov funnel
M orawidefunnel N asfollows:

b
( Nl(—l
b
ﬂ)Ml ZV2<_2
a2 b
— M. d 2
2 % =5 goal; +— < N3<b_
. N4 2
- Mm ...
b
\ Nn<_

Under what circumstancewill the narrav funnel be fa-

voredover the wide funnel? More precisely whenarethe
oddsof reachinggoal; via the narrov funnelmuchgreater
thatthe oddsof reachinggoal; via thewide funnel?To an-
swerthis questionwe begin with thefollowing definitions.
Let the M funnel usem variablesandthe N funnel use
n variables.Eachmemberof M is reachedsia a pathwith

probabilitya; while eachmembeiof N is reached/ia apath
with probabilityb;. Two pathsexist from thefunnelsto this

goal: onefrom the narrov neckwith probabilityc andone
from the wide neckwith probability d. The probability of

reachingthe goalvia thetwo pathwaysis:

narrow = cHai (9)
i=1

wide = d]] b (10)
i=1

For comparisonpurposes,we expressthe size of the
widerfunnelasaratio o of thenarraverfunnel;i.e.

% Estimated error

45
40
35
30 |+
25
20 |
15
10 -

All(13) —+— ]
Some (6) —x—
Least (5) —x— |

150 1500 15000

Samples

150000

Figure 11. Accurac y of classifier s learnt us-
ing the All, Some, Least sets defined in Fig-
ure 10. Note that the error in the classifier is
not chang ed much by using the Someset.



n=am (11)

Assumingthat the goal is reachedthentherearethree
waysto do so. Firstly, we canreachthe goal using both
funnels:

narrow A wide = narrow.wide (12)

Secondly we canreachthe goal using the narrav funnel
andnotthewiderfunnel:

narrow A ~wide = narrow(l — wide) (13)

Thirdly, we canreachthe goal usingthe wider funneland
notthenarrav funnel.

—narrow A wide = (1 — narrow)wide (14)

Let g be probability of reachinggoal;. Clearly, g is the
sumof Equation12,andEquation13, Equationl4;i.e.

g = narrow + wide — narrow.wide (15)

Giventhegoalis reachedthenthe conditionalprobabil-
ities of reachingthe goal; via two our funnelsis:

narrow

P _ {16

(narrow|g) narrow + wide — narrow.wide )
id

P (widelg) = i ")

narrow + wide — narrow.wide

The oddsof aneventwith probability P(X) is theratio
P(X)

of thateventto it's complement;j.e. TP Hence,the
oddsof Equationl6is:
narrow _
OddS narrow — narrow+wide—narrow.wide
( |g) 1— ( narrow )
narrow+wide—narrow.wide
narrow
= (18)

wide (1 — narrow)
Similarly, the oddsof Equationl7is:

wide
. _ 1
Odds (wide|g) narrow (1 — wide) (19)

We divide Equation18 by Equation19 to computethe
ratio R of the conditionaloddsof reachinggoal; via the
narrav or thewide funnel:

R_ (n(%rro;u)2 (1 — wide) (20)
(wide)” (1 — narrow)

Our pre-conditionfor useof the narrown funnelis:

R>1 (21)

In generalusingthe narrav funnelis muchmorelikely if
Risverylarge,i.e. biggerthansomethresholdvaluet

R>t (22)

wheret is somenumbermuchlargerthanl.

We can now define a procedurefor finding situations
whenarandomsearctenginewill favor narrav funnelsover
wide funnels:

e Forawiderangeof valuesof a;, b;, ¢, d, m, a, ...
e Look for situationswhenEquation22 is satisfied.
We applythis procedurebelow, twice:

e In thefirst application,we make somesimplifying as-
sumptionssuchasa; andb; comefrom uniform prob-
ability distributions. Thesesimplifying assumptions
let us derive expressiondor the ratiosof ¢ andd that
would satisfyEquation22.

e In the secondapplication,we reject the simplifying
assumptionsand describea simulationthat handlesa
wider rangeof cases.

In both applications,it is clearthat if we grow the wide
funnelwider, thenEquation22 is oftensatisfied.

5.1 The Uniform Case

Considerthe simplecasethata; andb; comefrom uni-
form probabilitydistributions,i.e.

m
Zai =1
i=1

1
S.a; = —
m

) (usingEquation9) (23)

S|~

sonarrow = c(
Similarly
", .

widezd(ﬁ) (usingEquationl10) (24)

Thus,by Equation21, narrov funnelis morelikely when:
narrow® (1 — wide) > wide®(1 — narrow)
whichwe canrearrangeo
(narrow — wide) (narrow + wide — narrow.wide) > 0
(25)

Equation25 containstwo terms, the secondof which is
Equation15 which is always positive. Hence,Equation25



is positve when 22722 > 1. Substitutingin Equation23
andEquation24, yields:

narrow _ c(&)"
wide = a()” 29

Recallthatn = am, i.e. Equation26 will hold when:

(am)*™m~™ > %l (27)

Considerthe caseof two funnels,onetwice asbig asthe
other;i.e. @ = 2. Equation27 canberearrangedo shav
that 227 > 1 js truewhen

wide

(4m)™ > (28)

ol

At m = 2, Equation28 becomesd < 64c. Thatis, to
accesgoal; from the wider funnel,the pathway d mustbe
64 timesmorelikely thanthe pathway ¢. Thisis not highly
likely andthis becomedesslikely asthe narrover funnel
grows. By the samereasoningatm = 3, to accesgjoal;
from the wider funnel, the pathway d mustbe 1728times
morelik ely thanthe narraver pathway c. Thatis, underthe
assumption®f this uniform case,asthe wide funnel gets
wider, it becomedessandlesslikely thatit will beused.

5.2 The Non-Uniform Case

We have seernthatthetwo assumptionsf
1. low thresholdvalueof t = 1 and

2. uniform probability distributions for the funnel pre-
conditions

meansthat the narrov funnel is far more likely than the
widerfunnel. This sectionrelaxesthesetwo assumptionso
usevery large valuesof ¢t andwildly varying valuesfor a;
andb;. A smallsimulatoris usedto computeEquation22
asfollows. The meany and standarddeviation o of the
logarithmof thevariablesa;, b;, ¢, d werepickedatrandom
from thefollowing ranges:

p € {1,2,...10} (29)
spread € {0.05,0.1,0.2,0.4,0.8} (30)

w1 andspread wherethencorvertedinto probability asfol-
lows:
o = spread*

pTOb(lethy — 1071*n07'mDist(p,o) (31)

100,000 runs for each value of t

100

75

0 t=1 e N
t=1,000,000 —¢—
t=|10,0(|)0,00|0,009 ,,,,, o

1 2 3 4 5 6 7 8 9 10
alpha

% runswwhen R > t

Figure 12. Outputs from 100000 runs of the
funnel simulator. The Y-axis shows what per-
centage of the runs satisfies Equation 22 as «
increases. On the plot, ais shown as “alpha”.

Note that this methodproducesnon-uniformprobabili-
tiesfor a; andb;. Next, m anda were picked at random
fromtheranges:

m € {1,2,...10} (32)
a € {1,1.25/15,...10} (33)

R wasthen calculatedand the numberof times R ex-
ceededdifferent valuesfor t is shovn in Figure12. As
might be expected,att = 1,a = 1 the funnelsarethe
samesizeandthe oddsof usingoneof themis 50%. As «
increasesthenincreasinglyEquation22 is satisfiedandthe
narraver funnelwill be preferredto the wider funnel. The
effectis quite pronouncedFor example,in 82%of oursim-
ulatedruns,randomsearchwill be 10,000,000,00@imesas
likely asto usefunnels% smallerthanalternatewider fun-
nels(seethea = 3 results).

In summaryin boththe uniform andnon-uniformcase,
mary maybesmostly meanthe samething. Perhapshe
reasorfor this is asa funnelwidens,it becomesxponen-
tially lesslikely thata randomsearchenginewill find all
the membersof the wider funnel. What ever the underly-
ing causetheeffectis clear:the narrov funnelwill usually
be favoredandthe numberof agumentghatcaneffect the
reachableyoalswill bereduced.

6 SomeDetails

This sectionclarifiessomedetailsof this discussion.

Our casehas beenthat most maybesmeanthe same
thing, not thatall maybesmeanthe samething. As shavn
above in Figure 9, thereexist discretesystemsfor which
mary maybegdo not meanthe samething.



Also, the agumentdescribechererelatesto the proper
ties of discretesystemscontainingcontradictions.Suchan
argumentmay not apply to continuoussystemswith feed-
backloops. Continuoussystemswith feedbackloops can
generatewildly varyingbehaior if thatsystemmovesinto
a chaoticregion of its statespace.Clearly, in systemsax-
periencingsuchchaosmary maybeswill not mostly mean
the samething.

Our emphasi®on discretesystemsioesnot precludethe
applicationof this analysisto corventionalproceduraboft-
ware. Much researcthasbeendevotedto the extractionof
discretemodels(in the form of finite statemachinesfrom
proceduratode.For example,the BANDERA system[10]
automaticallyextracts (slices) the minimum portionsof a
JAVA programs bytecodeswhich are relevant to proving
particular propertiesmodels. Theseminimal portionsare
thencorvertedinto thefinite statemachinerequiredfor au-
tomaticformal analysis.Also, in domainswheretoolslike
BANDERA are unavailable, finite statemachinescan be
generatedrom the high-level documentatiordescribinga
procedurabystem[34].

This article suggestghat we canreasonabouta theory
that containsinconsistencies Sucha suggestiommight be
foreignto studentsof classicaldeductve logic in which a
contradictionimplies anything at all. Classicaldeduction
was a useful tool but in the late twentieth century mary
researcher®undthatnon-standartbgicswererequiredfor
inconsisteng-tolerantreasoningabout(e.g.) model-based
diagnosiq9], conflictingrequirement$16], or overridesin
inheritancehierarchieg15].

Theamgumentmadeherewasthatthe averagenumberof
reachablegoalliterals are not effectedgreatly by the pres-
enceof contradictoryinferencesn atheory Thisis a state-
ment aboutwhere inferencepathways end and not about
the routetakento a goal. Hence,evenwhenmostmaybes
meanthe samething (i.e. the samenumberof goalsarebe-
ing reached)an indeterminatedevice (i.e. onecontaining
contradictions)cantake mary differentpathwaysto those
goals.Consequentlythe side-efectsof reachinga goalcan
bevery different.If thenegationof undesirableside-efects
(e.g. notreactormelt down) areaddedto the goal set,then
the argumentof this paperwill apply andwe can quickly
checkif we can/cannotreachundesirablesideeffects.

This analysisassumes set-cawering semanticsj.e. we
only considetliteralsthatexist on prooftreesbetweerinput
and goal literals. The oppositeto set-caovering semantics
is consisteng-basedsemanticsn which inferencespreads
out to find all literals consistenwith inputsand goals,re-
gardlessof whetheror not thoseliterals are requiredfor
accessingsomegoals. The debatebetweenset-cwering
and consisteng-basedsemanticshas occurredelsavhere
(e.g.[9, 21]). This studyfavor set-caveringsemanticsince
if we areinterestedn literalsoutsidethe goal-findingproof

10

trees,we canaddthemto our goalset.

7 Conclusion

As theorysizeor compleity grows,wewill becomdess
andlesssureaboutthe assertionsn thattheory Contradic-
tory options(the “maybes”)will oftenbe enterednto the-
ories,particularlyif thattheoryis generatedrom designers
with differentviews aboutadomainor the purposeof apro-
gram.

An oftenrepeatedxperimentabbsenationis thata fast
randomexploration of a programwill reachas mary in-
terestinggoals as a larger numberof consideredprobes.
The mathematic®f reachabilityshovs usthattheseobser
vationsare not somequirk of particulardomains. Rather
theseobsenationsare examplesof a generalprinciple: on
average the way we resohe contradictionsdoesnot effect
the overall numberof reachableyoalsprovidedthat we are
probinginto ourtheoriesto a non-trivial depth.

Thesemathematicabndexperimentakesultscanbe ex-
plained using funnel theory Given a choiceof M argu-
mentsor N aguments(M < N) to reacha goal, ran-
domsearchwill usuallyfavor the smallersetof arguments.
Hence, fewer critical factorswill changethe number of
goalswe canreachand mostmaybeswill meanthe same
thing.
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