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Abstract

At the core of soft computingis the intuition that from
impreciseknowledge, we can still make reasonableinfer-
ences.Thispaperoffersexperimentalandmathematicalev-
idencefor this intuition. Basedon a literature review and
a newly developedmathematicsof ”r eachability”, it is ar-
guedthat searchesthrougha spacecontaininguncertain-
ties,mostof the reachableconclusionswill be reachedvia
a small numberof ”master variables” in a ”narr ow fun-
nel”. Such narrow funnelscanbe foundusingverysimple
randomizedsearch methods.Consequently, whenusingN
soft reasoningtools,it is bestto at leaststart with thesim-
plestandonly complicateyour soft reasonerif and only if
that initial simpletool somehowfails you(andreachability
theorypredictsthat it won’t oftenfail you)1.

1 Intr oduction

Someintuitions,while compelling,may not be correct.
For example,considerZadeh’s intuition that:

... as the complexity of a systemincrease,
our ability to make preciseand yet significant
statementsabout its behaviordiminishesuntil a
thresholdis reachedbeyondwhich precisionand
significance(or relevance)becomealmostmutu-
ally exclusiveproperties.

–Lofti Zadeh[37]

My own pre-experimentalnotionswasthatthis intuition
wasessentiallycorrect.It seemedclearto methatthemore
we say, the lesswe arecertainon what we say. As theory
complexity increases,the certaintyof that theory’s asser-
tionsdecreasesaswe struggleto fill detailswhich we may

12nd InternationalWorkshopon Soft Computingappliedto Software
Engineering,Netherlands,February, 2001: http://varlet.csc.
uvic.ca/˜scase01/ . This papercan be downloadedfrom http:
//tim.menzies.com/pdf/00maybe.pdf .

never have explored before. One way in which complex
theoriesget impreciseis the presenceof “many maybes”;
i.e. multiple pointswhereit is unclearwhich mutually in-
compatibleassertionshouldbemade.This maybeassim-
ple asa disputebetweendifferentdesignersover the size
of a numericconstantin an equation.Alternatively it may
beascomplex asa qualitativereasonerthatgeneratesinnu-
merablepossibleconclusions,onefor eachsetof consistent
possibilitieswithin a largespaceof contradictions.In either
case,theproblemis thesame:assertionsaboutsomepoint
arecontradictory.

However, after reviewing the available evidence,these
intuitions mustbe revised. A repeatedobservation is that
within the current generationof software, many maybes
mostlymeanthesamething. Thatis, if weasksoftwarecon-
tainingcontradictoryassertionsto reportonall thewayswe
achieve certaingoals,thenthereemerge certaingoalsthat
arealwaystrue, or alwaysfalse,acrossthe wide spaceof
“maybes”.For thesestableinferences,wecanmakeprecise
andcategorical statementsin the presenceof complex and
possibleuncertainassertions.Supposetheseexperimental
observationsare a generalresult, and not just a result of
a quirky selectionof casestudies. If so thenwe have an
explanationfor thesuccessof fuzzy logic [37], genetical-
gorithms[11], neuralnets[33], qualitative reasoning[20],
heuristicprogramming[6], stochasticinference(e.g.antin-
telligence[14], ISAMP [12], HT0 [28] GSAT [32], black-
box testing[17]) andmany otherapproximatesoft reason-
ing techniques.Thesetechniqueswork not becauseof their
intrinsic power, but becausemany probesacrossa spaceof
uncertaintieswill achievethesameresult.

This article teststhe generalityof the experimentalob-
servation that many maybesmostly meanthe samething.
At issueis how mucheffort we shouldspendon the con-
structionof elaboratesoft computingtools. We will offer
experimentaland theoreticalevidencethat, in the general
case,very simpletools suchasthe randomsearchof HT0
(describedbelow) shouldsuffice for soft computingtasks
thatreasonaboutaspaceof uncertainties.
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Thetheoreticalcasethatmany maybesmeanmostlythe
samething is basedon the “funnel theory” of Menzies,
Easterbrook,Nuseibehand Waugh [27]. Funnel theory,
as presentedin � 2, has an intuitive appealand explains
thecounter-intuitiveexperimentalobservationslistedin � 3.
However, until this article,funneltheoryhadno formal ba-
sis. Basedon a mathematicalargument,it will be shown
thatwecanroutinelyexpectoursoftwareto containnarrow
funnels.This mathswill bepresentedin two parts.Firstly,
in � 4, an averagecasereachability modelis presentedthat
computestheoddsof reachingsomerandomlyselectedpart
usinga theorythatcontainscontradictions.This modelhas
an odd behavior: the numberof contradictionsper literal
doesnot greatlyeffect the outputof the model. This odd
behavior promptedthedevelopmentasecondmodel.Based
on a simulationof an abstractmodelof funnels, � 5 argues
thatif someconclusioncanbereachedvia a narrow funnel
andawidefunnel,thenarandomsearchwill tendto usethe
narrower funnel. The argumentis recursive: given a nar-
row funnelandanarrowerfunnel,randomsearchwill favor
thenarrowerfunneloverthenarrow funnel.Hence,thenar-
rowest funnelsact like strangeattractorsin chaostheory,
pulling in all thearguments.Sincetheseargumentswill use
narrow funnels,therewill be few pointsof disagreement.
Hence,the net resultof mostof the disagreementswill be
verysimilar thatmostmaybeswill meanthesamething.

2 Funnel Theory

According to funnel theory, argumentswithin software
are pathways througha spaceof possiblecontradictions.
Eachpathway leadsto somedesiredgoalsandcontainsa
setof assignmentsto variables.Givena setof goals,if we
build proof treesfor eachgoalseparately, thenit is possible
that theseproofswill demanddifferentassignmentsto the
samevariables.Thatis, theproofsarecontradictoryaround
thosevariables.Thesetof variableswith contradictoryas-
signmentsarecalledthe funnelof anargument.Thecardi-
nality of this setis a measureof how muchtheconclusions
from thistheorycanvary. Givenand � argumentsaboutthe
assignmentsto � variablesin thefunnel,thenthereare ���
combinationsof proof treesthatwecanbelieveat thesame
time. Dependingon which assignmentwe endorse,differ-
entproof treeswill beendorsedanddifferentgoalswill be
reachable.

As the funnel size � shrinks,then thereare exponen-
tially lessdifferentwaysto resolve the contradictionsin a
theoryandexponentiallylessmethodsfor reachingdiffer-
entgoals.Funneltheoryclaimsthatmostsearchesthrough
a spaceof contradictoryoptionswill leadto thesamegoals
if thepathwayscrossverynarrow funnels. Narrow funnels
have two propertiessuggestingthatmany maybeswill lead
to the sameconsequences.Firstly, narrow funnelsdictate

Figure 1.

how argumentsmustbe resolved aroundthe funnel. If an
argumentmustmake it througha funnel in orderto reacha
goal,thenthatargumentmustadaptitself to theshapeof the
funnel. Secondly, narrow funnelslet us ignorecertaindis-
agreements.Considertwo arguments:onearounda narrow
funnelandanothervery peripheralto that funnel. Thefun-
nel argumentcould be resolved quickly sinceonly certain
resolutionswill passthroughthe funnel. Further, we need
not spendmuchtime on theperipheralargumentsinceit is
likely thatmostpathwayswill neverusethatperipheralpart
of themodel.

To understandtheeffectsof funnelsconsidersomeants
at the neck of Figure 1 arguing abouthow to bestcrawl
down to thefeet. Eachant’s argumentrelatesto onepossi-
blepathwayacrosstheskeleton.Notethatoursearchspace
hasfunnels: all the pathwaysmustpassthroughthe lum-
barspinejust abovethehips.Our antsmight havedifferent
disputesaboutthebestway to handlefingers,ribs, andthe
lumbarspine.Someof theseargumentsareirrelevant. For
example,arguingabouthow to traverseafingeris irrelevant
to the goal of reachingthe feet sinceno pathway through
the fingerstakesus to the groundwithout returningto our
currentposition at the neck. Also, with respectto some
statedgoal, the presenceof funnelsensuresthat someof
theseargumentsonly have onepossibleresolution.For ex-
ample,supposeoneof our antsprefersnot to crawl around
thelumbarspinesincethebonestherearetoopointy. Given
the goal of vertical motion to the feet acrossthe skeleton,
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reference [18] [5] [4] [13] [36]
# tests 4..5 �	� 5..10 8..10 10

reference [8] [24] [31] [2]
# tests 
 13 40 50 200

Figure 2. Number of tests used to cer tify ex-
per t systems.

that ant mustsurrenderto the inevitable and travel across
the pointy lumbarspine. Clearly, if the softwarecontains
thesamenarrow funnelsasFigure1, thenwewould expect
that the net effect of the contradictorypossibilitieswithin
thatsoftwarewouldbethesame.

3 Experimental Evidence

Thissectionreviewsempiricalevidencethatnarrow fun-
nelsarecommonin softwaresystems.Elsewhere,Menzies
andCukic [25] have catalogedthe numberof testsusedto
certify expertsystems.In theory, probinga spaceto find a
bug with probability ������ takes ��� ��������� teststo be 99%
sureof finding that event. To show this, note that � ran-
domly selectedinputshascertainty��� ��� �"!#�$�&%�' �)(
of finding someeventwith probability % . Hence,at a 99%
certainty,

��� ��� *�* andthis equationbecomes:� �,+.- !#�/�0��� *�*1'+.- !#�/�&%�' � ����� �+2- !3�4�5%6' (1)

If thespaceis beingprobedby anondeterminatesearchen-
gine,asoftenusedin a heuristic-basedexpertsystem,then�7� �6�8��9� wouldbeatheoreticallowerboundontherequired
numberof tests.Neverthelessanoftenrepeatedobservation
is thata smallnumberof inputscanoftenreachsignificant
errorsin aprogram(seeFigure2). Oneexplanationfor this
surprisingobservation is that narrow funnelsvery quickly
drive a small numberof test casestowardsthe reachable
failures.

Similarly, in conventionalsoftware,surprisinglyfew ran-
domprobeswill detectsignificanterrorsin asystem.Leve-
son heuristically applied partial descriptionsof software
fault treesto ADA code. She claims that this heuristic
searchdetectedasmany errorsin her studiedsystemasa
muchlonger, andmuchmoreformal, analysis[22]. If con-
ventionalsoftwarecontainednarrow funnels,thatwouldex-
plain how Leveson’s heuristicpartial probingwasso suc-
cessfulsinceany argument,generatedeitherby formal or
informal methods,would both be sucked towardsthe fun-
nels.

0
20
40
60
80

100

<11 <26 <51 <101<401>401
X=min paths to cover du paths

Y=% modules needing X paths

Figure 3. Path found in software modules by
[3]

Anothermethodof probingasystemis mutationtesting.
In mutationtesting,a testsuiteis assessedvia its ability to
distinguishaprogramfrom somemutationof thatprogram.
Numerousresearchersin mutationtestingreportthat most
mutationsgive rise to the samenominal and off-nominal
behaviors [1,7,29,35]. This resultcanbeexplainedassum-
ing narrow funnels. Mutatorsareappliedrandomlyandif
the funnelsaresmall, it is unlikely that the mutatorswill
stumbleacrossthem.

Another reasonto believe in narrow funnels is that
the overall structure of our programsmay not support
wide chainsof arguments.BiemanandSchultz[3] report
thata seeminglycomplex naturallanguageprocessingsys-
tem contains,on average,a small numberof narrow du-
pathways. A du-pathis a link from wherea variableis de-
fined to whereit is used. Clearly, the upperboundon the
numberof du-pathwaysin a programis exponentialon the
numberof programstatements.Thelowerboundonthedu-
pathways is 1; i.e. the tail of eachpath touchesthe head
of anotherpath.Figure3 showstheBiemanandSchultzre-
sults:95.1%of themodulesin theirsystemheldlessthat50
du-pathways.Analogousresultshasbeenseenin procedu-
ral code.In oneanalysisof 4000FORTRAN functionsand
3147“C” functions,the control flow graphof thosefunc-
tions grows linearly with the numberof statements[19].
Thatis, thecontrol-flow diagramformsasingle-parenttree.
Argumentsextractedfrom single-parenttreeswouldbevery
narrow indeed.

Thereis muchevidencethat the averagesizeof a fun-
nel in AI-basedsystemsis very narrow. Researchersin
AI andrequirementsengineeringexplore inconsistentthe-
ories. A repeatedresult consistentwith narrow funnels
is that committing to a randomlyselectedresolutionto a
conflict reachesasmuchof a programascarefully explor-
ing all resolutionsto all conflicts. For example,Figure5
shows Crawford and Baker’s [12] comparisonof a stan-
darddepthfirst searchbacktrackingalgorithm(TABLEAU)
to ISAMP, a randomizedsearchtheoremprover (shown in
Figure 4). ISAMP randomlyassignsa value to onevari-
able, then infers someconsequencesusinga fast forward
chainer. After forward chaining, if incomparableconclu-
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for TRIES := 1 to MAX-TRIES:
set all vars to unassigned;
loop:

if everything assigned
then return(assignments);
else pick any var v at random;

set v’s value at random;
forwardChainFrom(v);
if contradiction
then exit loop;
fi

fi;;
return failure

Figure 4. The ISAMP algorithm [12]

TABLEAU: ISAMP:
full search partial,randomsearch

% Time % Time Tries
Success (sec) Success (sec)

A 90 255.4 100 10 7
B 100 104.8 100 13 15
C 70 79.2 100 11 13
D 100 90.6 100 21 45
E 80 66.3 100 19 52
F 100 81.7 100 68 252

Figure 5. Average perf ormance of elabo-
rate search (TABLEA U) vs randomiz ed search
(ISAMP) on 6 scheduling problems (A..F) with
diff erent levels of constraints and bottle-
necks.

sionswerereached,ISAMP re-assignsall thevariablesand
triesagain(giving up afterMAX-TRIES numberof times).
Otherwise,ISAMP continueslooping till all variablesare
assigned.Whenimplemented,Crawford andBaker found
that ISAMP took lesstime thanTABLEAU to reachmore
schedulingsolutionsusing, usually, just a small number
of TRIES. Crawford and Baker offer a speculationwhy
ISAMP wassosuccessful:their systemscontainedmostly
“dependent”variableswhich aresetby a small numberof
“control” variables. Note that this dependent-controlthe-
ory is consistentwith narrow funnels: the small number
of control variablesare those found in the narrow fun-
nels.TABLEAU failedsinceit’s rigoroussearchdemanded
theresolutionof unimportantargumentsoutsidethenarrow
funnels.

Experimentswith randomizedmultiple-worldsinference
enginessupportthethesisthatnarrow funnelsarecommon.
If multiple worlds of belief arecreatedvia very wide fun-
nels,thenwe would expecta large numberof worlds cre-
atedwith eachworld condoningpossibly different infer-

%test ‘ors’ in a random order
X ror Y :- maybe -> (X;Y); (Y;X).

%test ’ands’ in a random order
X rand Y :- maybe -> (X,Y); (Y,X).

maybe :- 0 is random(2).

% Assuming that an object O’s attribute
% A is X is legal if this assumption does
% not conflict with previous assumptions.
% Otherwise, make assume that O.A=X but
% remove it if ever we backtrack to this point.
A of O is X :- a(A,O,Old), !, Old = X.
A of O is X :- assert(a(A,O,X)).
A of O is X :- retract(a(A,O,X)), fail.

% N times, zap assumptions, try the goal list.
ht0(0,_) :- !.
ht0(N0,G0) :- rememberBestCover(G0),

retractall(a(_,_,_)),
% Goals with lower weights
% are tried first
sort(G0, G1),
maplist(prove,G1,G),
N is N0 - 1,
ht0(N,G).

% Lower/raise a goal’s weight by a random amount
% if it fails/works respectively.
prove(In/Goal,Out/Goal):-

X is 1 + random(10ˆ3)/10ˆ6,
(call(Goal) -

> Out is In+X; Out is In-X).

% E.g: 5 times, random search for "sad" or "rich".
:- ht0(5,[1/sad,1/rich]).

Figure 6. HT0, simplified (handles acyclic
ground theories onl y). The full version con-
tains many more details suc h as how vari-
ables are bound within rand s and the imple-
mentation of rememberBestCover . For full
details, see [28].

ences. However, if suchworlds are createdthroughnar-
row funnels,thenwe would seethat only a small number
of worlds are created. Further, since there are few dis-
agreementsbetweentheworlds, it is likely that thecreated
worldswouldcondonesimilar inferences.In resultsconsis-
tent with narrow funnels,Menzies,Easterbrook,Nuseibeh
and Waugh[27] report that exploring a few set-covering
worlds returnednearlyasmuch informationasa rigorous
explorationof all worlds. Thatexperimentis describedbe-
low.

The Menzies,Easterbrook,NuseibehandWaughstudy
comparedthe behavior of two multiple-world reasoners:
HT0 andHT4. HT4 generatesall pathwaysfrom inputsto
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goalsandsortstheminto consistentworlds of belief [23].
HT0 just returnsthefirst world it findsrandomly[28]. HT0
randomizestheorderin which it searchesfor proofs. Dur-
ing the proof of goal ? , whenprocessinga setof goalsin
a disjunctionor a conjunction,the orderof the processing
is selectedrandomly(seerand/2, ror/2 in Figure6).
If a proof of goal ? fails, the systemdoesnot backtrackto
retryoneof goal �@��A�A!2?B�C��' . Instead,HT0 lowersaweight
associatedwith goal ? andmoveson to try goal ?ED � (see
prove/2 in Figure 6). When HT0 hasfinishedwith all
thegoals,it wipesall theassumptions,sortsthegoallist ac-
cordingto theadjustedweights,thentriesto provethemall
again(seeht0/2 in Figure6). WhenHT0 andHT4 were
run on the sameexamples,HT4’s runtimeswereobserved
to beexponentialwhile HT0 waslessthancubic[28]. Also,
andmost importantfor our discussion,the randomsearch
of HT0 reachesnearlyasmany goalsastherigoroussearch
of HT4. Menzies,Easterbrook,NuseibehandWaughex-
ecutedthousandsof modelsusingHT0 andHT4. To gen-
eratethesemodels,mutatorswould corruptinfluencesin a
theory;e.g.proportionalsignswereflippedto inverselypro-
portionalandvisaversa,influenceswereaddedat random,
andlessandlessdatawasofferedto thereasoner. In aresult
consistentwith mostmaybesmeanthesamething,theaver-
agedifferencein coveredgoalsbetweentherandompartial

searchof HT0 andtherigoroussearchof HT4 waslessthan� = (seeFigure7).

4 Generalizing HT0 with Reachability The-
ory

Did HT0 work becauseof quirks in its casestudy? Or
wasit an exampleof a generalprinciple? This sectionar-
guesthatHT0’s resultsarequitegeneral:theaverageodds
of reachinga goalacrossa spacecontainingcontradictions
is quite high. Theseaverage-caseoddscanbe calculated
usingthereachability analysis[26] describedbelow.

Reachabilitystudiestheoddsof reachinga randompart
of NAYO graphs like Figure 8. SuchNAYO graphscon-
tain No-edges, And-nodes, Yes-edges, andOr-nodes. Yes-
edgesdenotevalid inferencesandno-edgesdenoteincom-
patibilities “maybes”. The F nodesof a NAYO graph
aredivided into and-nodesandor-nodeswith ratios G -8HJI
and KML I respectively ( KML I DNG -8HOI � � ). In the reach-
ability model, and-nodesand or-nodeshave mean par-
ents G -8HPBQ KML P respectively. Or-nodecontradict,on aver-
age, - K otheror-nodes. G -8HPBQ KML PEQ#- K arerandomgamma
variableswith means G -8HJISR6Q G -8HP�R�Q KML P�R6Q#- K R ; “skews”G -8HAP6TUQ KML P6T8Q"- K T ; andrange �WVYXCV[Z . G -8HOI is a ran-
dombetavariablewith mean G -8HJISR andrange�\V^]_V`� .
And-nodesarereachedat height a via oneparentat height? � ab�C� andall othersat height:? � ]c! H1d"P�e#f 'E�g!ha��C��' (2)

so �iV^?cVj!ka8�l�M' . Notethatas H1dmP7e#f decreases,and-nodes
find their pre-conditionscloserandcloserto theinputs.

The probability nlo aqp.rts�u of reachingan and-nodeat
height aYvw� is the probability that one of its parentsis
reachedat height ax�y� andthe restarereachedat height���k�k!ka��C��' ; i.e.nlo a�p rts9u � nzo a��z�{p|� }~ rts�u#�S� �3��t� nlo ?�p��� (3)

Or-nodesare reachedat height a via oneparentat height? � ax��� . The probability nlo a�p.�#� of reachingan or-node
at height a&vY� is theprobabilityof not missingany of its
parents;i.e.nlo aqp.�"� � ���z!3���0nCo a��C�{p.'B� }~ �#�3�S� �3��t� !3���0nlo ?�p.'J�� (4)

From nlo a�p , we compute n���o aqp.�"� by modifying nlo a�p with
two factors:onefor theoddsof not enteringinto an infer-
encingloop,andonefor theoddsof not causingcontradic-
tions: nlo a�p�s����J�"sS�.��r{u��k���.���"s � � ��� - KFj� s�� �3�h�m�#��� (5)
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diet(fatty).
diet(light).
happy :- tranquil-
lity(hi) ; rich,healthy.
healthy :- diet(light).
satiated :- diet(fatty).
tranquillity(hi) :- satiated ; conscience(clear).

happy tranquility(hi)
�

diet(light)

and1 rich

healthy

diet(fatty)
no

yesyes

yesyes

yes

satiated yes

yes

conscience(clear)

yes

Figure 8. A NAYO graph (sho wn right) connecting terms within some theor y (sho wn left).

nlo a�p�s��9�h�m�J� � � ��� �F�� s�� �3�h�"�"��� (6)

where - o a�p is a guesstimateof the sizeof the proof treeto
depth a . Observe the useof - o a�p8��KML I in Equation5 and
Equation6. And-nodescontradictnoothernodes;hencewe
only needto considercontradictionsfor KML I of thesystem.
Also, sinceeveryand-nodehasanor-nodeasaparent,then
weneedonly checkfor loopsamongsttheor-nodes.

The probability nlo a�p of reachingany nodeis hencethe
sumof n���o a�p��"� and nlo a�p.rts�u weightedby thefrequenciesof
and-nodesandor-nodes;i.e.nlo a�p � G -8HOI �/nlo a�p rts9u D�KML I �/n � o a�p �#� (7)n � o a�p �#� � nlo a�p �#� ��nlo aqp s��9�h�m�O� �xnlo a�p s����J�"sS�.��r{u��k���.���"s(8)

A simulationof theabovesystemof equationsis around
200 lines of Prolog. This modelcan be executedto gen-
erate nlo a�p . From this figure, we find the numberof tests� requiredto be

� � *�* = percentcertainof reachinga
randomnodein a dependency graphusingEquation1.

Theabove modelwasrun for a wide rangeof input pa-
rameters;e.g. up to ��9¡ nodes,up to 1000inputs,wildly
varying the frequency and skew of and-nodes,or-nodes,
andno-edges,etc. The frequency distribution of the gen-
erated� valuesis shown in Figure9 dividedaccordingto
the a (proofheight)value.Thesimulationresultsshowsthat
HT0’ssuccesswasnotaquirk of themodelsin its domains.
Rather, if weexploreaNAYO graphto morethanashallow
depth(a�v,¢q� ) thenin the usualcase,we canreachmost
partsof thattheorywith smallnumberof randominputs.

The resultsof the simulationof the reachabilitymodel
reproducethe HT0 results: despitethe presencesof con-
tradictoryoptionsin a theory, the oddsof reachinga goal
canbequitehigh. However, thereachabilityanalysisraises
morequestionsthan in answers.A strangefeatureof the
reachabilitymodelis thatits conclusionsarebarelyeffected
by the numberof contradictionsin a theory. This lack-of-
effect was detectedusing a machinelearner (C4.5 [30])

and the following sensitivity analysis. Outputsfrom the
reachabilitymodel can be classifiedusing Equation1 as
follows:

£4¤k¥9¦{¦¨§ ©ªª« ªª¬
1¥9¦�®q¥q¯�°²±m³�´t¥{µ ¶�b·¹¸»ºt¼M½¾1¥9¦�®q¥q¯�°²¿ÁÀ°q´tÂA¥S®J´{¤kÃE´{Ä�µ|´t¯�¦�¶.Åq´Æ¶�b·¹¸»ºt¼�Ç�¾¦t¤kÀÈl¥q¯�°E´{Ä�µ|´t¯�¦�¶.Åq´ ¶�b·¹¸»ºt¼�É�¾¶.¿gµ�À�¦{¦t¶.Êm¤�´ ÀA®O³�´tÂÈË¶�¦{´MÌ

Decision treesto predict theseclassificationswere built
usingthreedifferentsubsetsof the modelparameters(see
Figure10). For eachsubset,learnersweregiven example
setsof differentsizes:150 examples,1500examples,and
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Figure 9. Some frequenc y distrib utions of the
number of tests required to be 99% sure of
reaching a node at height a generated from
the Menzies-Cukic-Singh reachability model.
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Subsets
Variable Description All Some LeastÎ

height Ï Ï ÏÐ{Ñ�ÒSÓ.Ô
mean relative parent
height( Õ ) Ï Ï ÏÖ"× ÒqØ Ù|Ú Ö"× Ò�Û mean Ï Ï ÏÜ{Ý Ð3Ò Ø Ù|Ú Ü{Ý Ð3Ò�Û mean Ï Ï ÏÜ{Ý Ð�ÞmØ mean and node fre-
quency ( Õ ) Ï ÏÜAÝ Ð#ÒSß Ù|Ú Ü{Ý Ð3Ò�Û skew ÏÖm× ÒSß Ù|Ú Ö"× Ò�Û skew ÏÝ�Ö ß Ù|Ú Ý1Ö Û skew ÏÝ�Ö Ø Ù|Ú Ý1Ö Û mean Ïà Ý numberof inputs Ïá numberof nodes Ï

classes âtã3ã"ã â#ä ½ or â#ä ½ ã3ã#ã â#ä Ç
or â#ä Ç ã#ã3ãåâ#ä É orâ#ä É ã3ã3ãOæ Ï Ï Ï

Figure 10. Parameter s used in the reachabil-
ity model, divided into three sets: All, Some,
Least.

150000examples. A baselinefor classifieraccuracy was
generatedby building a classifierusing All 13 model pa-
rameters.A nearlysimilarclassifiercouldbebuilt by ignor-
ing numerousparameters(evidence:comparetheAll curve
to the Somecurve in Figure11). However, if we blocked
accessby themachinelearnerto G -8HJI , the theaccuracy of
theclassifierfeel by 15-20%(evidence:comparetheSome
curve to theLeast curve in Figure11). Hence,theparam-
etersincludedin All-Some areclearly not the main deter-
minersof reachability. Notethat thesetAll-Some includes
informationaboutthefrequency of contradictionsin theory
( - K R , - KSç ).

The lack of sensitivity of reachabilityto contradictions
is moststrange.Thepre-experimentalintuition wasthatas
thenumberof contradictorypossibilitiesincrease,thenthe
oddsof reachinga particularconclusionshoulddecrease.
This intuition turnsout to be incorrect,both in specificex-
amplesshown in � 3 andin thegeneralcasedescribedby the
reachabilitymodel. To explain this insensitivity, we must
returnto funneltheory.

5 Formal Funnel Theory

A formal analysisof funnel theory explains why the
oddsof reachingsomerandomlyselectedpart of a theory
is barely effectedby the numberof contradictionsin that
theory. In this section,a mathematicalsimulationdemon-
stratesthatgiventhechoiceof anarrow or awidefunnelsto
reacha goal,a randomsearchenginewill selectthenarrow
funnel. That is, even if a theorysupportsmany arguments,
randomizedsearchwill favor thelesscontentiouspartsof a

theory.
Supposesomegoal canbe reachedby a narrow funnelè
or a wide funnel � asfollows:

ré��ê è^ër{ì��ê è ���A�rtí��ê è_î
ï ððñððò ���êôó|KSG + � uõ �

öðððððððð÷ ððððððððø
� ëúù éõ �� � ù ìõ ��Áû ù ìõ ��>ü ù ìõ ���A�� s ù�ýõ �

Under what circumstanceswill the narrow funnel be fa-
voredover the wide funnel? More precisely, whenarethe
oddsof reachingó|KSG + � via thenarrow funnelmuchgreater
thattheoddsof reachingó|KSG + � via thewide funnel?To an-
swerthis question,we begin with thefollowing definitions.
Let the

è
funnel use þ variablesand the � funnel use- variables.Eachmemberof

è
is reachedvia a pathwith

probability G�� while eachmemberof � is reachedvia apath
with probability ÿt� . Two pathsexist from thefunnelsto this
goal: onefrom thenarrow neckwith probability � andone
from the wide neckwith probability H . The probability of
reachingthegoalvia thetwo pathwaysis:- G1L�LSK�� � �

î���� ë G�� (9)

��? H1d � H s���� ë ÿt� (10)

For comparisonpurposes,we expressthe size of the
wider funnelasa ratio � of thenarrower funnel;i.e.

0
5

10
15
20
25
30
35
40
45
50

150 1500 15000 150000

Samples

% Estimated error

All (13)
Some (6)
Least (5)

Figure 11. Accurac y of classifier s learnt us-
ing the All, Some,Least sets defined in Fig-
ure 10. Note that the error in the classifier is
not chang ed much by using the Someset.
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- � �Bþ (11)

Assumingthat the goal is reached,thentherearethree
ways to do so. Firstly, we can reachthe goal using both
funnels: - G1LMLSK�� � �$? H9d � - G1LMLSK��b� �$? H9d (12)

Secondly, we can reachthe goal using the narrow funnel
andnot thewider funnel:- G1LMLSK�� ��� �$? H9d � - G1LMLSK��>!3�g�	�$? H9d ' (13)

Thirdly, we canreachthe goal usingthe wider funnel and
not thenarrow funnel.

� - G1LMLSK�� � �$? H1d � !#�$� - G9LMLSK�� '
�$? H9d (14)

Let ó beprobabilityof reachingó|KSG + � . Clearly, ó is the
sumof Equation12,andEquation13,Equation14; i.e.ó � - G9LMLSK��zD��$? H1d � - G1L�LSK��b� �$? H1d (15)

Giventhegoalis reached,thentheconditionalprobabil-
itiesof reachingthe ó|KSG + � via two our funnelsis:nz! - G1LMLMK��� ó�' � - G1LMLSK��- G1L�LSK�� D��$? H1d � - G1L�LSK��b� �$? H1d(16)nz!��$? H9d � ó|' � �$? H9d- G1L�LSK�� D��$? H1d � - G1L�LSK��b� �$? H1d(17)

Theoddsof aneventwith probability nl!��5' is theratio
of that event to it’s complement;i.e. �������ë � ������� . Hence,the
oddsof Equation16 is:

� H9H�� ! - G1LMLMK��� ó�' � s9rt�"�����s�rt�m�m��� �!�U��u#" � s9rt�"�����%$ �U�ku#"��� � s�rt�m�m���s�r{�"���&� �'�U�ku#" � s�rt�m�m���%$ �U��u#" �� - G1LMLMK��
�$? H9d !#��� - G1LMLMK��g' (18)

Similarly, theoddsof Equation17 is:

� H9H�� !��$? H1d � ó�' � �$? H1d- G1LMLSK��^!#���(�$? H1d ' (19)

We divide Equation18 by Equation19 to computethe
ratio ) of the conditionaloddsof reachingó|KSG + � via the
narrow or thewide funnel:

) � ! - G1LMLSK�� '
� !3���	�$? H1d '!��$? H1d ' � !#��� - G1LMLSK�� ' (20)

Ourpre-conditionfor useof thenarrow funnelis:

)Yvj� (21)

In general,usingthe narrow funnel is muchmorelikely if
) is very large,i.e. biggerthansomethresholdvalue e

)Nv e (22)

wheree is somenumbermuchlargerthan1.
We can now define a procedurefor finding situations

whenarandomsearchenginewill favornarrow funnelsover
wide funnels:

* For awide rangeof valuesof G � Q ÿ � Q � Q"H�Q þ Q � , . . .

* Look for situationswhenEquation22 is satisfied.

We applythis procedurebelow, twice:

* In thefirst application,we make somesimplifying as-
sumptionssuchas G1� and ÿt� comefrom uniform prob-
ability distributions. Thesesimplifying assumptions
let us derive expressionsfor the ratiosof � and H that
wouldsatisfyEquation22.

* In the secondapplication,we reject the simplifying
assumptionsanddescribea simulationthat handlesa
wider rangeof cases.

In both applications,it is clear that if we grow the wide
funnelwider, thenEquation22 is oftensatisfied.

5.1 The Uniform Case

Considerthe simplecasethat G1� and ÿt� comefrom uni-
form probabilitydistributions,i.e.î

+ ��� ë G1� � �
, G1� � �þ

, - G1LMLMK�� � � � �þC� î (usingEquation9) (23)

Similarly

�$? H9d � H � �- � s (usingEquation10) (24)

Thus,by Equation21,narrow funnelis morelikely when:- G1LMLSK�� � !3���	�$? H9d '4v-�$? H9d � !3��� - G9LMLSK�� '
which wecanrearrangeto! - G1LMLMK��j�(��? H1d '{! - G9LMLSK��zD��$? H1d � - G1L�LSK��b� �$? H1d '$vC�

(25)
Equation25 containstwo terms, the secondof which is
Equation15 which is alwayspositive. Hence,Equation25
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is positive when s�rt�m�m����U��u#" v � . Substitutingin Equation23
andEquation24,yields:- G1LMLMK��

��? H1d � � � ëî ( îH � ës ( s (26)

Recallthat - � �Eþ , i.e. Equation26 will holdwhen:!��Eþ�' T î þ � î v H � (27)

Considerthe caseof two funnels,one twice asbig as the
other; i.e. � �/.

. Equation27 canbe rearrangedto show
that s�rt�m�m����U��u#" vj� is truewhen!.�9þ�' î v H � (28)

At þ �0.
, Equation28 becomesH21 �q�3� . That is, to

accessó|KSG + � from thewider funnel,thepathway H mustbe
64 timesmorelikely thanthepathway � . This is not highly
likely and this becomeslesslikely as the narrower funnel
grows. By the samereasoning,at þ �54

, to accessó|KSG + �
from the wider funnel, the pathway H mustbe 1728times
morelikely thanthenarrowerpathway � . Thatis, underthe
assumptionsof this uniform case,as the wide funnel gets
wider, it becomeslessandlesslikely thatit will beused.

5.2 The Non-Uniform Case

We haveseenthatthetwo assumptionsof

1. low thresholdvalueof e � � and

2. uniform probability distributions for the funnel pre-
conditions

meansthat the narrow funnel is far more likely than the
wider funnel.Thissectionrelaxesthesetwo assumptionsto
usevery largevaluesof e andwildly varyingvaluesfor G��
and ÿt� . A small simulatoris usedto computeEquation22
as follows. The mean 6 and standarddeviation 7 of the
logarithmof thevariablesG�� Q ÿt� Q � QmH werepickedat random
from thefollowing ranges:

6 8 99� Q . Q �A��{��;: (29)

�"P L d G H 8 9��7� �1¢ Q �7�h� Q �7� . Q ��� � Q ��� <=: (30)

6 and �"P L d G H wherethenconvertedinto probabilityasfol-
lows:

7 � �"P L d G H �>6P LSKqÿtG|ÿ�? + ? e@? � �� � ë �#s9�#� î�A ��BJ� � R3C ç � (31)
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Figure 12. Outputs from 100000 runs of the
funnel sim ulator . The Y-axis sho ws what per-
centa ge of the runs satisfies Equation 22 as �
increases. On the plot, � is sho wn as “alpha”.

Note that this methodproducesnon-uniformprobabili-
ties for G � and ÿ � . Next, þ and � werepicked at random
from theranges:þ 8 99� Q . Q �A��t��=: (32)

� 8 99� Q ��� . ¢ Q �9� ¢ Q �A��"���=: (33)

) was then calculatedand the numberof times ) ex-
ceededdifferent valuesfor e is shown in Figure 12. As
might be expected,at e � � Q � � � the funnelsare the
samesizeandtheoddsof usingoneof themis 50%. As �
increases,thenincreasinglyEquation22 is satisfiedandthe
narrower funnelwill bepreferredto thewider funnel. The
effect is quitepronounced.For example,in 82%of oursim-
ulatedruns,randomsearchwill be10,000,000,000timesas
likely asto usefunnels

ëû smallerthanalternatewider fun-
nels(seethe � �E4

results).
In summary, in boththeuniform andnon-uniformcase,

many maybesmostly meanthe samething. Perhapsthe
reasonfor this is asa funnel widens,it becomesexponen-
tially lesslikely that a randomsearchenginewill find all
the membersof the wider funnel. What ever the underly-
ing cause,theeffect is clear:thenarrow funnelwill usually
befavoredandthenumberof argumentsthatcaneffect the
reachablegoalswill bereduced.

6 SomeDetails

This sectionclarifiessomedetailsof this discussion.
Our casehas beenthat most maybesmeanthe same

thing, not thatall maybesmeanthesamething. As shown
above in Figure 9, thereexist discretesystemsfor which
many maybesdo not meanthesamething.
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Also, theargumentdescribedhererelatesto theproper-
tiesof discretesystemscontainingcontradictions.Suchan
argumentmay not apply to continuoussystemswith feed-
back loops. Continuoussystemswith feedbackloopscan
generatewildly varyingbehavior if thatsystemmovesinto
a chaoticregion of its statespace.Clearly, in systemsex-
periencingsuchchaos,many maybeswill not mostlymean
thesamething.

Our emphasison discretesystemsdoesnot precludethe
applicationof this analysisto conventionalproceduralsoft-
ware. Much researchhasbeendevotedto theextractionof
discretemodels(in the form of finite statemachines)from
proceduralcode.For example,theBANDERA system[10]
automaticallyextracts(slices)the minimum portionsof a
JAVA program’s bytecodeswhich are relevant to proving
particularpropertiesmodels. Theseminimal portionsare
thenconvertedinto thefinite statemachinerequiredfor au-
tomaticformal analysis.Also, in domainswheretools like
BANDERA are unavailable, finite statemachinescan be
generatedfrom the high-level documentationdescribinga
proceduralsystem[34].

This article suggeststhat we canreasonabouta theory
that containsinconsistencies.Sucha suggestionmight be
foreign to studentsof classicaldeductive logic in which a
contradictionimplies anything at all. Classicaldeduction
was a useful tool but in the late twentiethcentury, many
researchersfoundthatnon-standardlogicswererequiredfor
inconsistency-tolerantreasoningabout(e.g.) model-based
diagnosis[9], conflictingrequirements[16], or overridesin
inheritancehierarchies[15].

Theargumentmadeherewasthattheaveragenumberof
reachablegoal literals arenot effectedgreatlyby thepres-
enceof contradictoryinferencesin a theory. This is a state-
ment aboutwhere inferencepathways end and not about
the routetaken to a goal. Hence,evenwhenmostmaybes
meanthesamething (i.e. thesamenumberof goalsarebe-
ing reached),an indeterminatedevice (i.e. onecontaining
contradictions)can take many differentpathwaysto those
goals.Consequently, theside-effectsof reachinga goalcan
beverydifferent.If thenegationof undesirableside-effects
(e.g. not reactormelt down) areaddedto thegoalset,then
the argumentof this paperwill apply andwe canquickly
checkif we can/cannotreachundesirablesideeffects.

This analysisassumesa set-coveringsemantics;i.e. we
only considerliteralsthatexist onproof treesbetweeninput
and goal literals. The oppositeto set-covering semantics
is consistency-basedsemanticsin which inferencespreads
out to find all literals consistentwith inputsandgoals,re-
gardlessof whetheror not thoseliterals are requiredfor
accessingsomegoals. The debatebetweenset-covering
and consistency-basedsemanticshas occurredelsewhere
(e.g.[9,21]). This studyfavor set-coveringsemanticssince
if weareinterestedin literalsoutsidethegoal-findingproof

trees,we canaddthemto our goalset.

7 Conclusion

As theorysizeor complexity grows,wewill becomeless
andlesssureabouttheassertionsin thattheory. Contradic-
tory options(the “maybes”)will oftenbe enteredinto the-
ories,particularlyif thattheoryis generatedfrom designers
with differentviewsaboutadomainor thepurposeof apro-
gram.

An oftenrepeatedexperimentalobservationis thata fast
randomexploration of a programwill reachas many in-
terestinggoals as a larger numberof consideredprobes.
Themathematicsof reachabilityshows usthat theseobser-
vationsare not somequirk of particulardomains. Rather
theseobservationsareexamplesof a generalprinciple: on
average,the way we resolve contradictionsdoesnot effect
theoverall numberof reachablegoalsprovidedthat we are
probinginto our theoriesto a non-trivial depth.

Thesemathematicalandexperimentalresultscanbeex-
plainedusing funnel theory. Given a choiceof

è
argu-

mentsor � arguments(
è 1 � ) to reacha goal, ran-

domsearchwill usuallyfavor thesmallersetof arguments.
Hence, fewer critical factorswill changethe numberof
goalswe canreachandmostmaybeswill meanthe same
thing.
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