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1. Introduction

How mary testswill berequiredto testsoftware? At first glance,we might think
thatanimpossiblylargenumberof testsarerequired.A systemcontainingV” variables
with S assignmentsayrequireonetestfor eachcombinationof assignments;e.

#tests = N= SV Q)

It is simpleto show that this is animpossiblylarge numberof tests. Considerone
sampleof fielded expert systemsin which knowledge baseswere found to contain
betweerb5and510"literals” [49]. Literalsoffertwo assignmentor eachproposition:
trueorfalse;i.e. S = 2 andV is half thenumberof literals. Assuming:

¢ It takesoneminuteto considereachtestresult(whichis agrossunderestimate),
and

¢ Theeffective working yearis 225six hourdays,

thena testof thosesampledsystemswould take between29 yearsand107° years(a
time longerthanthe ageof this universe).

The goal of this chapteris to offer an optimistic alternatie to the pessimismof
Equationl. After areview of the mathematicof testing,this chapterwill conclude
thatin mary caseseffective testingmay needfar fewer teststhanEquationl. Various
testingregimeswill bediscussed:

Black box methods (BB): In BB testing,input setscanbe quickly built usingauto-
maticrandomselectionof data.For nominal BB testing,theseinputsaredravn
from anoperationaprofile describingthe normalervironmentof a system[47].
For off-nominal BB testing,theseinputscancomefrom within andwithoutthe
operationaprofile. The discussiorwill focuson two specialtypesof BB test-

ing:



o If developersonly requirean approximateassessmertf a system,then
approximate testing cansufice.

¢ Dependingon the goal of the testing,we canusesampling theory to ex-
plorelessthanS" statesof a program.

e Variousstopping rules canbe appliedto controlthetime spentfor testing.

White box methods (W B): In W B patrtition testing,analystsreflectover the inter-
nalsof a programto inventtestinputsthatexerciseK differentpartitions of a
program.Eachpartitionrepresentsneclassof behaior of the system.

Formal methods (FM): In FM testing,afterthe programor specificationis under
stood,analystsnustwrite its representationT his formal representationontains
the essentiafeaturesof the specification.It is a formal model;i.e. all its con-
structshave a precisesemanticavhich canbe revealedby automaticmethods.
Let z denotethelevel of rigor and F* M denotea formal methodwith level-of-
rigor z. At leastfour differentstylesof FFM canbefoundin theliterature:

o [~ M refersto very lightweightformal methods.

e FO)M refersto manualformal methodsthatrely heavily on mathematical
representations.

e F1 )M arethemostcommontype of formal methodsn usetoday In F1 M
testing,programsarewritten using corventionalmethods thenautomatic
formal methodsareusedto delug andrevisethe program.

e F2M refersto full life cycle formal methodsin which codeis generated
automaticallyfrom largelibrariesof formally provedcomponents.

Before beginning, it is importantto note that thereare mary methodsof testing
softwareotherthanthoselistedabove (e.g. seethe excellentdiscussionsn [21, 35])*.
This chapterfocuseson the methoddisted above sincewe canpreciselycharacterize
someof their propertieamathematically

2. BB= Black box Methods

BB methodsarecharacterizedby randominputsor inputscollectedfrom the en-
vironment. BB testsare cheapto generatesince analystsneednot reflect over the
internalcompleities of their systemsWhendesigningB B tests testengineersnake
little or no useof theinternaldetailsof a system.Two broadclasseof BB methods
areapproximatetestingandsampling Testengineeroftenadjustthe effort associated
with testingusing stoppingrules Approximatetesting,sampling,andstoppingrules
arediscussedbelow.

Overhalf this chapterdiscusse® B since,surprisingly it turnsoutthattherandom
diceof BB testingareanexcellentcost-efective methodof detectingerrors. Random
BB testsareessentiafor analyzingsystemreliability sinceit is good practiceto test
outsideof the situationsdefinedby the analystq26, p670]. Randomizedselectionof

*NOTE TO REVIEWERSIooking at the proposedist of chapterdor volume2, it lookslike otherrefer
encesshouldgo herepointingto othervolume2 chapters.




Text N tests Text N tests
[28] 4.5 [8] 6

[6] 5..10 [17] 8..10
[56] 10 [10] <13
[42] 40 [50] 50

[4] 200

Figure 1: Numberof testsproposedby differentauthors. Extendedfrom a suney
by [10].

testinputsmayuncover errorsthatcouldbe missedf testingis biasedby theincorrect
assumptionsf theanalystd32].

Lestthis chapterover emphasise® B, it is importantto stressnow that BB tech-
niguesareblind to theinternalstructureof a program.Onceanerroris detectedising
BB, thenothermethodssuchasW B or F'M arerequiredto localizethesourceof that
error.

2.1. Approximate Testing

The authors experiencein the Australianand Americansoftwareindustryis that
the final versionof a software systemis often fielded after only a handful of tests
(dozengo hundreds) A literaturereview stronglysuggestshatthis experiences not
atypical.For example muchof theexpertsystemditeratureproposesvaluationsdased
onveryfew testd; seeFigurel. Suchsmalltestsetscanonly ever be anapproximate
testof asystem For therestof thissectionwe explorethecasefor approximateesting.
We will find thatin the majority of casesapproximateestingwill sufice. However,
a mathematicamodel of approximatetestingsuggestghat approximatetestingwill
fail atin at least25% of cases. Hence,subsequensectionswill try to improve on
approximateesting.

Approximatetestingassumeshat:

1. A systemcanbesampledvia a smallnumberof inputs.
2. Thissmallsetof inputsmight not be choserwith muchcare.

If our softwarecontaingpathwaystangledik e spaghettithenthesewo assumptiorare
clearlyinappropriate However, if softwarepathwaysaresimple,thena few testswill
adequatelyprobea systemandapproximateestingis anadequatetrateyy.

To seewhenapproximatdestingmight work, considetthefollowing examplecon-
taining 15 binary variablesa, b. . .,n,0. Equationl tells us that this systemneeds
215 = 32768 tests. However, supposahat systemhasonly oneinput andoneoutput
andpathwayslook lik e this:

a—>b—oc—od—oe
input >f — g — h — i — j — output
k=>l—-m-on—o

T Exception:[3] proposeat leastonetestfor every five rulesandaddthat “having more testcaseshan
ruleswould be best”.
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Figure2: An analysisof hundredf modulesin a softwaresystem.83% of the mod-
ulescouldbefully exploredusinglessthantentests.From[5]

Clearly, notestsarerequiredfor thetop andbottompathway sincethey areisolated
from systeminputsandoutputs.Further only asingletestis requiredto covertheonly
pathway that connectdnputsto outputs. If the pathsin mostprogramdook lik e this
example thensoftwarecontains

1. A smallnumberof simplei/o pathwaysrom inputsto outputs,and
2. Large unreadableregions

If so,thenary input, selectecht random thatcanpropagatehroughto any outputwill
testasignificantportion of the usablepartsof the system Hence:

¢ A smallnumberof suchinputswould hencebe sufficientto testa system;and

¢ We canignoreEquationl andendorseapproximateesting.

2.1.1. Empirical Support for Approzimate Testing

Thereis muchempiricalevidencefrom theliteraturethatreal-world softwarecom-
prisesmostly simplei/o pathsandlargeunreachableegions:

e Bieman& Schultz[5] studiedhow mary setsof inputsarerequiredto exercise
all du-pathwaysn asystem A du-pathis alink from whereavariableis defined
to whereit is used Figure2 shows their experimentalresults. At leastfor the
systemthey studied,in the overwhelmingmajority of their modules,very few
inputsexercisedall the du-pathvays.

e Harrold et.al. [29] studiedhow control-flov diagramsgrow as programsize
grows. A worst-casecontrol-flov graphis onewhereevery programstatement
links to every otherstatementi.e. theedgesn graphgrow with thesquareof the
numberof statements However, for over 4000 Fortranroutinesand 3147 “C”
functions,the control flow graphgrows linearly with the numberof statements.
Thatis, at leastin the systemsseenin that study the programpathwaysform
single-parentreesandnot complicatedangles.

e Colomb[14] comparedhe inputs presentedo an medicalexpert systemwith
its internal structure. Basedon the numbervariablesV andtheir statesS, an



% coverage

Program | Block | Decision | p-use| c-use
TEX 85 72 53 48
AWK 70 59 48 55

Figure 3: Coveragereportedby [32, p544]. “Block”= programblocks. “Decision’=
programconditionals. “P-use”= pathways betweenwherea variableis assignedand
whereit is usedin a conditional. “C-use”= pathways betweenwhere a variableis
assignedndwhereit is used but notin aconditional.

analysisik e Equationl madeColombnotethatthatsystemshouldhave SV =
10'* internalstates However, afteroneyear's operationtheinputsto thatexpert
systemonly exercised4000states;i.e. in practice,this systemonly neededo
handleatiny fraction of the possiblestateg4000 < 104).

e Auvritzer et.al.[2] studiedthe 857 differentinputsseenin 355 daysoperationof
anexpertsystem.Massve overlapexistedbetweerthesenput sets.On average,
the overlapbetweerntwo randomlyselectednputswas52.9%. Further a simple
algorithmfoundthat26 carefullyselectednputscovered99%of theotherinputs
while 53 carefully selectednputscovered99.9%of the otherinputs.

¢ HorganandMathur[32] notedthattestingoftenexhibits a satumtion effect; i.e.
mostprogrampathsgetexercisedearlywith little furtherimprovementastesting
continues Saturations consistentvith programscontaininglarge portionswith
simpleshapeghatareeasilyreachedandotherlarge portionsthataresotwisted
in shapethatthey will never be reachable.They reportstudieswith the Unix
report-generatiofanguageAWK [1]) andthe word processoMEX [34]. Both
AWK and TEX have beentestedextensiely for mary yearsby their authors,
with the assistancef a vastinternationalusergroup. Elaboratetestsuitesexist
for thosesystemgqe.g.[34]). Evenafterelaborateaesting,large portionsof TEX
andAWK werenot covered(seeFigure3).

2.1.2. Theoretical Support for Approximate Testing

If thesecasestudiesrepresentethe generalcase thenwe shouldhave greatcon-
fidencein the utility of approximatetesting. The averageshapeof software canbe
inferredfrom the oddsof reachingary partof the systemfrom randominput. If the
oddsarehigh, thenthe pathwaysto thatpartmustbesimple. To infer theseodds,Men-
zies& Cukic [39] assumedhat software had beentransformednto a possiblycyclic
directedgraphcontainingand-nodesndor-nodege.g. Figure4 would becorvertedto
Figureb). A simplified descriptionof their analysisis presentedhere. For reasonof
space that simple descriptionignorescertaindetailspresentedn the full description
of themodel[41] suchasrandomvariablesandtestingfor loops/contradictions.

To computethe oddsof reachingsomepartof aprogramgraph,we needtools. Our
first tool is the standardsampling-with-eplacemenéxpressiorof Equation2.

y= 1-(1—-=z;)") )



procedure relax {
if tired=="no" AND weekend then {gotoMall; gotoParty; }

}
function  weekend {

return  day=="saturday" OR day=="sunday"
}

procedure  gotoMall  {
if day=="sunday" then doThis
}

procedure  gotoParty  {
atParty="yes"
if time>2am then  atParty="no"; gotoHome else gotoParty;
}
procedure  gotoHome {
doThat
}

Figure4: A sampleof proceduratode.

Figure 5: Corwversionof the proceduralcodein Figure 4 to a graphcontainingno-
edgegbetweerincompatiblenodes) and-nodegwhich modelconjunction) yes-edges
(which modelvalid inferences)andor-nodes(which modeldisjunctions).And-nodes

areshowvn asrectanglesandor-nodesareshovn asellipses.

Figure 6: A programpathway extractedfrom Figure 5 that leadsto “atParty=yes"”.

And-nodesareshavn asrectanglegandor-nodesareshovn asellipses.



To derive this expressionyecall thatan eventwith probability 2 doesnot happen
after NV trialswith probability (1 — )" . Hence at probabilityy, theeventwill happen
with the probability shavn in Equation2. This equationassumesestindependence;
i.e. theeffectsof performingonetestdo not affectthe others.

Our secondool is an averagecaseanalysisof the reachability of programs.As-
sumethat“in” numberof inputshave beenpresentedo a graphcontainingl” nodes.
Fromtheseinputs,we grow a treeof pathwaysdown to somerandomnodewithin the
graph(e.g., seethe shadedree in Figure 6). The oddsof reachinga nodestraight

away from theinputsis zg = % The probability of reachingan and-nodewith andp

parentsis the probability of reachingall its parents;i.e. zqng = ™% wherez; is

the probabilitywe computedn the prior stepof the simulation(andz, beingthebase
case).Theprobability of reachinganor-nodewith orp parentds the probability of not
missingary of its parents;i.e. z,, = 1 — (1 — ;)°"? (via Equation2. If theratio
of and-nodesn a network is andf, thenthe ratio of or-nodesin the samenetwork is

1 — andf. The oddsof reachingsomerandomnodez; is the weightedsum of the
probabilitiesof reachingand-node®r or-nodes;i.e. z; = andf * Tqng + orf * Top.

We cancorvertz; to thenumberof testsV requiredto be 99%sureof find afaultwith

probabilityz; by rearrangind=quation2 to:

log(1 — 0.99)

N g - 7
log(1 — z;)

3)

After 150,000simulationsof this model,the numberof randominputsrequiredto
be 99% sureof reachinga nodewereusuallyeithersurprisinglysmallor impractically
large:

¢ In 55%o0f theruns,lessthan100randomtestshada 99%chanceof reachingary
node.Thisresultis consistentvith numeroussimplei/o pathways.

e In 20% of the runs, the numberof randomtestsrequiredto be 99% sure of
reachingarny nodewasbetweenonemillion and10'4. This resultis consistent
with largeunreachableegions.

In theremaining25%of casessystemsieededetweenl0,000and1,000,000andom
teststo be probedadequatelyln theseremainingcasesa few approximateestswould
beinadequatdo probea system.

The goodnews from this simulationis thatfor mostsystemg55 + 25 = 75%), a
smallnumberof testswill yield asmuchinformationasanimpossiblylarge numberof
tests.For thesesystems:

¢ Thereis nopointconductingengthyandexpensvetestingsincealimited testing
regimewill yield asmuchinformationasanelaboratdestingprocedure.

e Approximatetestingis anadequatéestregime.

Thebadnews from this simulationis twofold. Firstly, the Menzies& Cukic model
is anaverage-casanalysisof therecommendeéffort associatedvith testing.By def-
inition, suchanaveragecaseanalysissayslittle aboutextremecasef high criticality.



Hence,our analysismustbe usedwith careif appliedto safety-criticalsoftware. Sec-
ondly, accordingo this model,approximatedestingis inadequatén atleast25%of the
spaceof systemsexploredby Menzies& Cukic. Hence for those25% of systemsand
for safety-criticalsystemswe needalternatvesto approximateesting.

2.2. Sampling

Onealternatve to approximateestingis statisticalsampling. Statisticalsampling
theoryprovidesmethodsfor assessingystemausingfar fewer teststhanproposedyy
Equationl. This sectionwill discusswo examplesof sampling.Thefirst examplewill
uset-testsandthe secondexamplewill usethe sampling-with-eplacemengéquation.

The adwantageof thesesamplingtechniquess that unlike Equationl, sampling
techniquesirenoteffectedby thesizeof thesystem.Thenumberof testsrecommended
by Equationl grows exponentiallyasthe systemsize grows. However, the number
of testsrecommendedby (e.g.) Equation3 (seebelow) is only effectedby required
reliability.

Thedisadwantageof thesesamplingtechniquesvasstatedabore. Onceanerrorhas
beendetectedusingcheapBB techniquesthen othermethodssuchasW B or FM
mayberequiredto localizeandfix theerror.

2.2.1. Sampling Using T-Tests

Using statisticalt-tests,a surprisingly numberof testscan certify even complec
systemsThis methodwill be presentedby example.

A mere40 testswasrequiredto assessin expertsystemthatcontrolleda complex
chemicalplant(125kilometersof highly inter-connectegiping) [42, 40]. Thegoal of
thatassessmentasto testthatthe expertsystenwasat leastat goodashumanoper
atorsin runningthe plant. In thatdesign,the expert systemandthe humanoperators
tookturnsto runtheplant. At theendof a statisticallysignificantnumberof trials, the
meanperformanceverecomparedisingat-test. Let m andn bethe numberof trials
of expert systemand the humanexpertsrespectiely. Eachtrial generates perfor
mancescore(time till unusualoperations):X; ...X,, with meanu, for the humans;
andperformancecorest; ...Y;, with meanu, for theexpertsystem.We needto find
a Z valueasfollows:

z— (i —po)® Sy —py)®
Z = 7"52 £ where §7 = Bleipe)  gnd §2 = Zuizew)
e
Let a bethedegreesof freedom.If n = m = 20,thea = n +m — 2 = 38. We
rejectthe hypothesighat expertsystemis worsethanthe human(i.e. p, < p,) with
95%confidencef Z is lessthan(—tsg 0.95 = —1.645).

2.2.2. Sampling With Replacement

Anotherstatisticaltechniques to usethe sampling-with-replacemergquationof
Equation3. In thisapproachit is assumedhatsystemseedonly betestedo somepre-
specifiedevel of reliability; e.g. a probability of failure on demandof 10—°. Further
it is assumedhat testsare selectedat randomand a single test doesnot effect the
resultsof the othertests.Giventheseassumptionghenwe canusethe sampling-with-
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Figure7: Chanceof findinganerror=1— (1 — failure rate)t¢**. Theoretically4603
testsarerequiredto achiese a99%chanceof detectingmoderatelyinfrequentougs;i.e.
thosewhich occuratafrequeny of 1in athousandcaseg27].

replacemengxpressiorof Equation3 to assesthecost-benefiturve of randomtesting.
Considerasearctor amoderatelffow-frequeny eventsuchasone-in-a-thousand-or
this systemz; = 0.001 andEquation3 tell usthat4603randomlyselectedestsare
requiredto be 99% certainthatwe will revealthatevent. To computeothertestssizes
usingsampling-with-replacemerggeFigure?.

2.3. Stopping Rules

Thediscussiorsofarhasassumedhatthenumberof testss somehaev pre-specified
andfixed. In practice testengineeroften usestoppingrulesto adjustthe time spent
in testing. Threesuchstoppingrulesarereliability certificationtestingandbayesian
stoppingrules andfault-basedesting

2.3.1. Reliability Certification Testing

Certificationtestsusingreliability demonstratiorchartshave beenintroducedby
Musa, lannino and Okumoto[46]. They are basedon sequentialsamplingtheory,
which is very efficientin the senseof giving the result(reliability certification)at the
earliestpossibletime, i.e., smallestpossiblenumberof tests.

A reliability demonstation chart is shavn in Figure 8. Therearethreeregions
on the chart: reject, testandaccept. A failure is plottedto the chartwhenit occurs
during randomtestingin which testsare selectedaccordingto the operational profile
(an operationalprofile is a statemenbf what input valuesare expectedat runtime).
The vertical axis on the chart denotesthe failure number while the horizontalaxis
denotesnormalizedoccurrencdime (for example,occurrencdime multiplied by the
failure intensity objective). Dependingon wherethe failureis plottedwith respecto
the graphregions,testingis stoppedwith the programeitheracceptedr rejected)or
continued.

The numberof testsrequiredfor reliability certificationtestin this techniquede-
pendson the position of the lines betweerreject, continueandacceptregions. Their
exactpositionwill dependon
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Figure8: Thereliability demonstratiorchart.

e Thediscriminationratio, or theerrorin estimatingfailureintensityoneis willing
to accept.

e Theconsumetevel of risk, or the probability oneis willing to acceptof falsely
sayingthefailureintensityobjective hasbeenmetwhenit is not.

e Thesupplierevelrisk, ortheprobabilityoneis willing to accepbf falselysaying
thefailureintensityobjective hasnotbeenmetwhenit is.

Whenrisk levels and/orthe discriminationratio decreasethe continueregion be-
comeslarger.  This situationrequiresmore testing before reachingeither acceptor
rejectregion.

Thismethodis apracticalversionof astoppingrule,basedntherequiredsoftware
reliability. It hasseenits applicationin telecommunicationgdustry For the details
of how to setappropriatdevelsof risksanddiscriminationratio, interestedeadersare
encouragedo look for statisticaldetailsin [47].

2.3.2. Bayesian Stopping Rules

When safetycritical systemsaretested,the usualgoal is to achiese certainlevel
of confidencethat the predefinedevel of reliability hasbeenachiesed. Recallthat
Equation2 saidthat4, 603 successfulestsareneededo have 99% confidenceahatthe
probability of failureis indeedlessthanor equalto 10—3. However, this modeldoes
notaddresshe questionof whathappensvhenfailuresoccurduring those4,603tests.
Supposea failure is detectedat test3,500. A commonsenseapproachwould require
fixing thefault thatcausedhefailure andthe repetitionof reliability certification,i.e.,
in this specificcase runningall 4, 603 testsagain.However, sincefailure occurrences
in randomtestingarerandomevents,dehuggingmay notbenecessaryin otherwords,
programmay actuallybe exhibiting the requiredreliability, eventhoughit hadfailed.

Theproblemis how mary additionaltestsneedto be executedsuccessfullyfollow-
ing oneor morefailures,to be ableto certify requestedeliability without debugging.

LittlewoodandWright [36] proposednesolution,basedn Bayesiarstatistics:
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1. At the startof the certificationtest,computen,, the numberof failure free ex-
ecutionsfor the certificationtestto succeedand stop. This figure might come
from Equation2.

2. Executethe testcases.If all n; executionssucceedstoptestingand software
reliability canbe certifiedat the requiredlevel. Otherwiseafailureis obsened
atexecutions; andtestingstops.

3. Inthelight of evidenceof onefailurein s; executionsanumberof furtherfailure
freeexecutionsye, whereny > nq, is determined.

4. Testexecutionsproceedandeithern, executionssucceedandreliability certi-
fied), of afailureis obsenedondemands; + s». In thelatercase steps3 and4
keepbeingrepeated.

Notethatif theprogramdoesnot havetherequiredreliability, testingmaycontinue
forever. In a sensethis techniqueis similar to Musas reliability certificationcharts,
but thereasoninghatleadsto acceptbr continuetestingdecisionds different.

Stoppingrulesproposedy Littlewoodet. al. [37] arebasedn Bayesiarstatistics.
Assumethattargetreliability level for a programis 10—3, denotedoy py. Testingbe-
ginswith anignoranceprior probability of failure ®, meaningthat® is equallylikely
to assumeary valuebetween) and1. As successfutestsare executed followed by
obsened failures,the prior informationchangedo reflecttheseobsenations. These
obsenationsareincorporatedn a Betadistribution with appropriatevaluesfor its two
parameters Whenever a failure occurs,in additionto an updateto prior distribution
of failure probability, theadditionalnumberof successfuleststhatindicatea posterior
distribution confirmingthe target failure probability, po, is computed. Readersnter-
estedn understandinghe detailsof this approactareencouragedo read[36, 37, 16].

2.3.3. Fault-Based Testing

Softwae fault injection is the processf physicallyinjecting a fault into the pro-
gram. Fault seedings a statisticalfaultinjection methodusedto estimatehe number
of faultsremainingin theprogramafterthetestinghasbeenperformed44]. Let M de-
notetheknown numberof injectedfaults,k thetotal numberof faultsdetectedhrough
testing,andm the numberof injectedfaultsdetectedy testing(m < k andm < M).
Underthe assumptiorthat both injectedand inherentfaults are equally likely to be
detectedanestimateof the numberof inherentfaults V is

M
N = — (k —m).

Stoppingrulesdependon thetype of the programundertest. Typical rulesrequire
thatbetweerB0%and100%o0f theinjectedfaultsaredetectedy blackbox testing.

Mutation analysisis a techniquesimilar to fault seeding18]. Multiple copiesof
theprogramaremade andin eachcopy, oneor morefaultsareinjectedusingoneof the
mutantoperators.Mutant programcopiesaretestedwith input datasets. The goal of
mutationanalysigs to determinewhich datasetis ableto detecthe changesMutation
analysisinspiredJef Voasandhis colleaguego estimatethe conditionalprobability

11



that, givenafaultin the programlocation, the datastatebecomesnfectedandresults
in incorrectoutputs. Systematiggeneratiorand injection of faultsinto differentpro-
gramlocations,combinedwith measurementsf the abore mentionedprobability; is
calledsensitivityanalysis[55]. Further Voasdeclareghatin orderto achieve testable
softwae, one needsto perform sensitvity analysisand go backto the specification
and designphaseand changethe insensitve programlocations,that is, thosewhich
areresponsibldor not propagatindinjected)faultsinto failures.Alternatively, instead
of redesignmoretestingeffort canbe directedtowardsprogramsegmentswith lower
testability No stoppingruleshave beendefinedfor sensitvity analysistesting.
Nowadaysit is generallyagreedhatfault basedestingdoesnot provide aninsight
into how goodthe codeis perse. It ratheranswers'what if” scenariody simulating
humanfactorerrorsandernvironmentfailures. Whensafetyis of concern fault-based
methodganbeausefulcomplemento reliability assessmeibut cannotreplacet. The
maindrawbackof fault-basedestingfor the reliability assessmens the questionable
(oversimplified)representatienes®f injectedfaults.

3. WB= White Box Testing

W B patrtitiontestingis atestingregimewhere,unlike BB, analystshave informa-
tion aboutwherethey shouldlook to repairafailedtest.In W B testing,analystgeflect
overtheinternalsof a programto inventtestinputsthatexerciseK differentpartitions
within aprogram.Partitionsdivide up theprogramsbehaior into equivalencelasses
Eachclassrepresentsneinterestingoehavior of the system.For example,oneequva-
lenceclassmightrelateto anincorrectpassverd beingofferedatalogin prompt. BB
testingmight testthatpromptagainandagainwith hundredof combinationsof differ-
entcharactestrings. The sametestdevelopedusingW B methodsmightrequireonly
two tests:onefor acorrectlogin passverd andonefor anincorrectpassverd.

Since W B testslet us examinethe internalsof a program,they canbe usedto
definestoppingrulesfor a testregime. An often usedcriteriais coverage; i.e. stop
testinga systemwhenwe have covered all partsof it. Variouscoveragecriteriahave
beendefinedsuchas

e Exerciseall linesin theprogramatleastonce.
e Checkthatall conditionalshave beenusedat leastonce.
e For every conditionalbranch ensurehatbothbranchehave beenexercised.

¢ Ensurethatall pathwaysbetweenwhereavariableis setandwhereit is usedare
covered. This coveragecriteria hasbeenfurther divided accordingto how the
variableis used;e.g. usedin a conditional ,usedoutsideof a conditional.

For example theModified ConditionDecisionCoveraggMC/DC) criterionis very
frequentlyby softwaretesterdn the aviation industry[51] for softwarebasedairborne
systemslIn this specificervironment,a 100%coverageis required.

Oneof the benefitsof W B shouldbe thatanalystscanusetheir expertiseinto the
procesof finding errors. A commonpre-eperimentalintuition is thatthis expertise
greatlyincreaseshe chanceghat W B will find moreerrorsthan BB. However this

12



turns out not to be the usualcasefor threereasons:incompletecoverage, partition
creationanddetectioneffectivenesgdiscussedelow). In general, W B is not better
than BB atdetectingerrors. However, therealwin with W B is thatit is muchbetter
than BB atlocatingerrors oncethey have beendetected.

3.1. Incomplete Coverage

Coverage-basedll’ B testingcan be an inadequatdestingstrategy. Fenton[22,
p302] reportsthat even whenwe try to explore the entire spaceof a program,the
averagereachablé'objects” (paths,linearly independenpaths,edges statementsjs
only 40% at most. Someevidencefor Fentons claim wasseenin Figure3: evenin
mature well-testedsystemsn frequentuse,coveragemaybefarlessthan100%.

Demandingfull coveragecan be prohibitively expensve. While MC/DC is less
demandinghanfull branchconditioncoverage,it presentsa hugecostoverheadfor
large avionics systems .Boeingestimateghat 40% of the softwaredevelopmentcosts
for the 777 werespenton testing. Hence testingto this standarchasbecomea major
costdriverin thedevelopmentf new aircraft.

Also, evenif full coverageis achieved, coverageonly commentson the structure
of thecode,andhencemaynot uncover problemsassociateavith missingor incorrect
requirementsNor cancoverage-baseW’ B uncover systemigoroblemsto do with the
interactionbetweencomponents.Othertechniquesuchas BB are requiredto find
thesesystemicproblems.

3.2. Problems with Partition Creation

Creatingthe K partitionsusedin W B testingis a non-trivial task. An analyst
mustmentallyconsiderow all inputswould flow into a systemandpastthe program
conditionals. If the programflows are pusheddeepinto the system thenthe analyst
will have a hardtaskensuringthatthe flows areinternally consistentAutomatictools
couldbeusedto build the possibleflows througha program.

Suchautomatidoolswould facetwo problems Firstly, they would have to execute
over accuraterepresentationsf a system. Sucha representatiorcould come from
eitherthe specificationdocumentsor the actualsystem. If the specificationis used,
thenexperiencestronglysuggestshatit will containnumerousnaccuracieshatcould
confuseour automatictools. If theactualsystemis used thena call graphwould have
to be extractedfrom the code. Generatinga correctcall graphis problematic. For
example,Murphy et. al. cautionthatin languageshat supportpointerto arbitrary
constructsthenthe problemis fundamentallyintractable[45]. Differentcall graph
generatorsamethis computationaproblemvia a varietyof heuristicdesigndecisions.
Theseheuristicsalter the call graphsgenerated For example,Murphy et. al. report
significantdifferencesn thegraphsproducedy differentcall graphgenerator$45].

The otherproblemwith automaticpartitioningis thatit canbe very slowv. Gabav
et.al.[24] shoved that building pathwaysacrossprogramswith contradictionds NP-
completefor all but the simplestsoftware models(a software modelis very simpleif

#Thetotal developmentcostfor theB777was$5 billion. Approximatelyhalf of this wassoftwaredevel-
opmenthenceroughlyabillion dollarswerespenton softwaretesting.
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it is very small,or it is a simpletree,or it hasa dependeng networkswith out-degree
< 1). No fastand completealgorithm for NP-completetaskshasbeendiscovered,
despitedecade®f research.

3.3. Detection Effectiveness

Theotherproblemwith W B is detectioreffectivenessThechance®f detectingan
errorwith W B probingis nearlythe sameaswith BB [27]. Thisis acountefintuitive
resultbut it is simpleto demonstrateLet us assumehatour K partitionseachhave
a differentprobability z;, of detectinganerror. Clearly, the chancef finding all the
errorsin all the partitionsafter N, testsin eachpartitionis

1— (H(l—mk)N’“> (4)

k=1

W B canbecomparedo BB if we compareEquatiord with the probability of finding
anerrorwith probabilityz; after NV randomblack box tests;i.e. Equation2. To make
the comparisormeaningful,we shouldinsistthatthe total numberof testsperformed
is thesame;i.e. N = Zle Ng. [27] performsa lengthy comparisonof the ratio
of Equation4 to Equation2 using variousrelationshipsbetweenx;, andz;. In the
overwhelmingmajority of their studiesthisratiowasnearlyalwaysvery closeto unity;
i.e. W B wasnotmuchbetterthan BB at detectingerrors.

Thisbizarreandsurprisingresulthasbeenduplicatednary times(seetheliterature
reviewsin [27, 26]). In only two casesasit hasbeenrefuted:

e In the specialcasewhereall inputsareequallylikely, thenit canbe shovn that
W B using K partitionscan be up to K times betterthan BB at finding er
rors[26]. However, giventhe high costof creatingthe K partitions,a factorof
K improvementin theutility of W B is notoverly impressve.

e Supposea programmerrepeatedlycommentsout out half the remainingcode
until anerrordisappearsin effect, this programmeis performingabinary-chop
partitioningstrateyy to createa partitionwith anincreasea¢hanceof holdingthe
error. In this case,z; would increaseo a value muchlargerthanz; andW B
becomes viable testingregime. Thatis, while W B may be not muchbetter
than BB for detectingerrors,it is superiorfor localizing errorsoncethey have
beendetected27].

4. FM= Formal Methods

The picture emenging hereis that W B augmentsBB methods. We sav above
that BB methodscan be surprisingly useful at detectingerrors, but may give little
assistancén solving the detectederrors. On the otherhand,the costsof W B may
not bejustified givenits relatively weakerror detectionpropertiescomparedo BB).
NeverthelessW B is betterthan BB atlocalizingthe sourceof anerror.

Extendingthe picture, we saythat F'M testingaugmentsiW B and BB meth-
ods. F'M combinesa powerful first-orderquery mechanisnfor detectingerrorsand
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a methodfor finding the causeof the error. Theoretically far fewer F M testsarere-
quiredthanwith BB and W B, sincea single F M first-orderqueryis equivalentto
mary W B or BB testinputs[38]. Further matureandhighly optimizedtoolsexist for
F M testing.

As we shallseebelow, the benefitsof M comeat considerableost. Oftenonly
smallcritical sectionf systemsanbetestedusing M. [38] arguethat M should
beviewedasonemethodin a spectrunof testingregimes. Sinceformal methodscan
only beappliedto asmallpartof asystem F M shouldbeproceededby cheapeforms
of testingsuchas BB andW B to identify theimportantpartsof a system.

41. About FM

In FM, we write asystemtwiced. Oncea programor specificatioris understood,
we write its againin a high-level formal representationThis representatiogontains
theessentiafeatureof the specificationTherepresentatiors formalin thesensehat
all its constructshave a precisesemanticavhich canbe revealedby automaticmodel
chedkers suchasSPIN[30].

A formal modelhastwo parts: a systemsnodelanda propertiesmodel The sys-
temsmodeldescribeshow the programcan changethe valuesof variableswhile the
propertieamodeldescribegylobalinvariantsthatmustbe maintainedvhenthe system
executes.Often, a temporallogic is usedto expressthe propertiesmodel. Temporal
logic is classicalogic augmentedvith sometemporaloperatorsuchas

OX : alwaysX istrue

OX . eventuallyX istrue,

OX: X istrueatthenext time point
XUY: XistrueuntilY istrue

For example,the simplepseudo-Englishequirementthe brake shouldalwaysbe
appliedbetweenseeingthe dangerandthe car stopping”might be written asthe fol-
lowing propertiesmodelin temporallogic:

O((danger = seen A (car = stop) A O (car = stop))
— (brake = on U (car = stop)))

Modern model checlers searchthe systemsmodel for a methodof proving the
negationof the propertieanodel.If successfulthenthesemodelcheclerscanreturna
counterexamplethatdescribesxactly how the systemanodelcanfail. Analystsfind
thesecounterexamplesvery usefulin tracingout how the causesandfixedfor abug.

4.2. The Costs of FM

The threecostsof F'M arethe writing cost the running cost and the rewriting
costs The writing costhastwo components.Firstly, thereis a shortsupply of ana-
lystsskilled in creatingtemporallogic models.Secondlyevenwhenanalystswith the
right skills areavailable,the writing processs time-consumingln recentyearsmuch
progresasheenmadein reducingthis writing cost. For example:

e In the KAOS system[54], analystswrite a propertiesmodel by incrementally
augmentingobject-orientedscenariodiagramswith temporallogic statements.

$ Exception:seeF2 M, discussedelow.
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Potentially this researclreduceghe costsof formal requirementsanalysisby
integratingthe writing of the propertiesmodelinto the restof the systemdevel-
opment.

e Dwyeret.al.[19, 20] haveidentifiedtempoal logic patternswithin thetemporal
logic formulaeseerin mary real-world propertiesmodels.For eachpatternthey
have definedanexpansionfrom theintuitive pseudo-Englisifiorm of the pattern
to a formal temporallogic formulae.In this way, analystsareshieldedfrom the
compleity of formallogics.

Anothersignificantcostof F' M is therunningcostof modelchecking.A rigorous
analysisof formal propertiesimplies a full-scale searchthroughthe systemsmodel;
i.e. Equationl. This spacecanbetoo largeto explore,evenontoday’s fastmachines.
Much of the researchinto F'M focuseson how to reducethis running costof model
checking.Varioustechnique$iave beenexplored:

Abstraction or partial ordering: Only usethepartof thespacerequiredfor apartic-
ular proof. Implementationgxploiting this techniquecanrestrainhow thespace
is traversed25, 43], or constructedn thefirst place;e.g.[23, 52].

Clustering: Divide the systemsmodelinto sub-systemsvhich canbereasonedbout
separately13,57,11,48].

Meta-knowledge: Avoid studyingtheentirespace Insteadpnly studysuccinctmeta-
knowledgeof the space Oneexampleusedan eigervectoranalysisof the long-
termpropertiesof the systemsnodelunderstudy[33].

Exploiting symmetry: Provepropertiesn somepartof thesystemsnodel,thenreuse
thoseproofsif everthosepartsarefoundelsevherein the systemsnodel[12].

Semantic minimization: Replacethe spacewith somesmaller equivalentspacg31]
or orderedbinary decisiondiagrams[7]. For example,the BANDERA sys-
tem [15] reducesboth the systemsmodeling cost and the execution cost via
automaticallyextracting (slicing) the minimum portionsof a JAVA programs
bytecodesvhich arerelevantto particularpropertiesmodels.

While the above tools have all proved usefulin their testdomains,they may not be
universallyapplicable:

e Certainoptimizationsrequireexpensve pre-processingsuchas[33].

o Exploiting symmetryis only usefulif the systemunderstudyis highly symmet-
ric.

¢ Clusteringgenerallyfails for tightly connecteanodels.

¢ Splicingsystemdike BANDERA arevery languagespecific. BANDERA only
worksonimplementedAVA systemsandnotfor (e.g.)specificatiordocuments.

Dueto the high runningcosts,acommoncycleis to:
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1. Write aformal model,

2. Try torunit,

3. Realizethatit is too largeto checkformally,

4. Try to shrinkthemodelit by rewriting it at somehigherlevel of abstraction.

Thatis, apartfrom thewriting costandthe running cost the othercostof F'M is the
rewriting cost

In summaryoftenonly smalldescription®of systemsanbeformally tested Anec-
dotally, we know of onecasewheretheinvariantsfrom 30 JAVA classedakes1GB of
mainmemoryto checkformally, evenusinga state-of-the-arautomationodelchecler.
Testinglargersystemsnay not betestableusing F' M sincesuchlargersystemsavould
requireexponentiallymorememorythan1GB. Consequentlyin thegeneraktaseclas-
sic formal methodsdoesnot reducethe effort of testinga system. However, for the
the kernelof mission-criticalor safety-criticalsystemsthe large costof F'M is often
justified.

4.3. Styles of Formal Methods

The previous sectiondescribedraditional F M. We denotethis traditional style
F' M anddistinguishit from otherstylessuchas F~' M or lightweightformal meth-
ods F°M or manualformal methodsand 2 M or full life cycleformal methods The
index z in F* M denoteghe level of rigor and effort requiredto apply that style of
formal methodgesting.

One exampleof lightweight formal methods(F ! M) is the work of Schnieder
et.al.[52]. In this lightweightapproacha modelchecler wasusedto describea sys-
tem. However, only partial descriptionsof the systemsand propertiesmodelswere
constructed Despitetheir incompletenature,Schneideet.al. found that suchpartial
modelscouldstill detectsignificantsystemserrors.

Levesonswork onsoftwarefaulttreegSFT)[35] is anexampleof anultra-lightweight
formal method. SFTshave a fully formal semantics.Yetthey arelightweightto con-
structsincethey aretypically very small. For example,the SFT for an if-then-else
statemenhasonly afew entriessinceif-then-elseis a simpleconstruct.Levesonet.al.
heuristicallyappliedalibrary of SFTsto proceduratode.They arguethatSFTsfound
asmary errorsin lesstime thana traditional F'* M analysis.Note thatthis resulten-
dorseseitherthe utility of Z—1M or our above argumentthat approximatetestingis
oftenanadequatéestingregime.

Manualformal methodg F° M) impliesthe manualconstructiorandmanipulation
of intricate mathematicatlescriptionof a systemsmodelwritten in (e.g.) the Z no-
tation. Due to the manualnatureof F°M, it canonly be appliedby highly skilled
analystdo very smalldescriptionof programs.

F'M wasdiscussedn the previous section. F1 M can be criticized for being
appliedtoo latein the softwarelife cycle. Suchcritics rhetoricallyask

“Why dehug anincorrectsysteminto correctness®™ould it not be better
to build demonstrablyorrectsystemsn thefirst place?”
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Advocatesof this write-it-right F2M approachbuild systemsrom libraries of com-
ponents Automaticrefinemenmethodsspecializeandcombinemembersf the com-
ponentlibrary into an executablg53, 9]. Knowledgeaboutthe particularapplication
beingconstructeds usedto constrainandinform therefinemenprocess.

The dreamof F2M is thatsystemswill never needtestingsincethereweregen-
eratedfrom componentghat have beenformally proved correctusing an automatic
refinemenimethodthat hasalsobeenproved correct. The reality of F2M is thatthe
technologycurrentlyavailablefor automatigyenerations not perfect.While refininga
singlecomponentmay maintainthe correctnessf thatcomponentwhencomponents
combineit is not clearthat correctnesganbe guaranteed Also, the costof building
and maintainingthe library of formally proved componentss non-trivial. Extensie
andelaboratemathematicainnotationsnustbe addedto eachcomponenin orderto
supportproving it's correctnessand combiningit with other components.An open
questionfor F2M researchs “will the benefitsof F2M be out-weightedby the cost
of developingthe componentibrary?”.

5. Summary

We have explored how mary testsit takesto certify software. Testshave been
characterizeds samplesof the spaceof possiblepathwayswithin a program. Such
pathwaysclumptogethewnariablesandary probeinto thatclumpwill yield information
aboutthe entireclump. Hence therequirednumberof testsneednot be exponentialon
programsize.

A systemcanbetestedapproximatelywhena few randomlyselectedorobesfinds
mostof the clumps.This doesnothappernwhentheinternalpathwaysaretoo complec
to condenseénto a small numberof clumps. Basedon a simulationof reachingnodes
in anand-orgraph,it wasarguedabove thatsuchoverly-comple pathsoccurat least
25%of thetime. Hence approximatedestingcannotbe endorsedor safetycritical and
missioncritical systems.

To improve on approximateesting,we thenexploring sampling. Given a known
requiredlevel of reliability, thenEquation2 canreturnthe numberof requiredrandom
tests. For even moderatdevels of reliability (e.g. find all faultswith a frequeng of
one-in-a-thousandhenthousand®f testsmay be required(Equation2 saysthat at
z; = 1073, 4603randomtestsarerequiredto be 99%certainof finding thefault).

Whensampling,testengineeroften usefeedbackirom the testresultsto control
whento stoptesting. Threestoppingcriteriadiscussetherewerereliability certification
testing,bayesiarstoppingrules,andfault-basedesting.

An alternatve to randomblack box probingof a systemis white box partitioning.
White box testingallows ananalystto useknowledgeof internalprogramstructureto
definetestcasesandstoppingcriteriabasedon systemcoverage.However, thereary
severaldravbackswith white box testingincludingincompleteor expensve coverage,
the costof creatingaccuratepartitions,andthe comparatie effectivenesof white box
testing. Comparedo randomblack box probing, white box testingis no betterthan
detectingerrors but is superioratlocalizing errors.

Formal methodscanfind errorswith far fewer teststhanwhite box or black box
methods. Further whenan erroris detected formal methodmodelcheclerscanre-
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turn a counterexample shaving exactly what mustbe changedo preventthe error.

However, the benefitsof formal methodscomeat considerableostincludingthe cost
of writing the formal model (analystsskilled in formal analysisarein shortsupply),
runningtheformal model(which, in theworstcase hasto run throughan exponential
numberof statesin the program),andthenrewriting the modelif we needto reduce
its sizeandassociateduntimecost.Much researcthasbeendevotedto reducingthese
costshut, for themoment formal methodsanonly besuccessfullyappliedto smallde-
scriptionsof systemsHence,it is goodpracticeto preceddormal methodswith other,

cheaperandlesscompletetestingregimes,in orderto focusthe analysison relevant
portions.

This chapterevieweddifferentstylesof formal methods.It is an openquestionif
thesedifferentstyleswill changethe way we useformal methodsin the future. For
example,full life cycle formal methodscould remove the bugsbeforewe insertthem
into our systems. However, this approachcome at considerablecost. Lightweight
formalmethodsareanotherexciting alternatve style of formalmethods However, it is
possiblethat“lightweight formal methods arereally justa synorym for “approximate
testing”; i.e. ary testingregime (lightweight formal methodsor randomblack box
testing)will quickly revealmary bugs.
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