SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999 1

Applications of Abduction:
Testing Very Long Qualitative Simulations

Tim Menzies, Robert F. Cohen, Sam Waugh, Simon Goss

T. Menzies is with the Department of Electrical and Computer Engineering; 2356 Main Mall; Vancouver, B.C.

Canada V6T1Z4 Email: timm@menzies.com; Url: www.tim.menzies.com.
Robert F. Cohen 1is with Algomagic Technologies, Inc. Email: rfc@algomagic.com; Url:

http://www.algomagic.com
Sam Waugh and Simon Goss are with the Defence Science and Technology Organisation Air Operations Division,

PO Box 4331, Melbourne, Australia, 3001. Email: sam.waugh,simon.goss@dsto.defence.gov.au

November 21, 2000 DRAFT

2 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

NOTE TO REVIEWERS

Thank you for your careful reading and excellent comments on the last draft of this

paper.

With one exception (Described below), all your comments have been applied to this new

draft:

1. An intuitive overview has been added to the introduction. The main result is now
shown and discussed in the intro (see the new figures 1,2,3). The following text has
been added to the introduction to outline our core intuition:

This paper presents a non-naive renaming strateqy. This new strateqy is based on
the following simple intuition. Much of the search space shown in Figure 2 is the
same structure, repeated over and over again. It seems at least possible that no
path can be found through T + 1 copies that can’t be found in T copies (since the
space is essentially the same). If this were true, then we could reduce the search
space of temporal abductive validation by not copying the structure at all.

2. There were all-too-many typos in the last draft; e.g. wrong spelling of “foreign”. This
draft was checked by a professional proof-reader.

3. The meaning of the edge annotations has moved closer to the place where the edges
are first used. For example, in Fig 1, ”4++" and ”-” are defined right in the caption.
The meaning of ”+-+" is right next to its first usage under the text descrining figl1.

4. Extra notes on the relationship of "++” and ”-” to the "M~+" and "M-" of QSIM
have been added to the related word section.

Reviewer 2 suggested augmenting the examples in section III with more intuitive labels
than ”"a,b,c,...”. We did that, and found that it added a significant number of pages to
the total size of the article since it expanded all the diagrams 9,10,11,12,13,14,15. As we
understand the size restrictions at KDE, this expansion is not acceptable. So we left those

diagrams as before.

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 3

Abstract

We can test a theory of “X” by checking if that theory can reproduce known behaviour
of “X”. In the general case, this check for time-based simulations is only practical for short
simulation runs. We show that given certain reasonable language restrictions, the complexity
of this check reduces to the granularity of the measurements. That is, provided a very long

simulation run is only measured infrequently, this check is feasible.

Keywords

Validation, complexity, abduction, qualitative reasoning.

I. INTRODUCTION

We need thorough methods for testing our knowledge bases (KBs). Modern knowledge
acquisition (KA) theorists view KB construction as the construction of inaccurate surro-
gate models of reality [1,2]. Agnew, Ford & Hayes [3] comment that “expert-knowledge is
comprised of context-dependent, personally constructed, highly functional but fallible ab-
stractions”. Practioners confirm just how inaccurate KBs can be. Silverman [4] cautions
that systematic biases in expert preferences may result in incorrect/incomplete knowledge
bases. Compton [5] reports expert systems in which there is always one further important
addition, one more significant and essential change. Working systems can contain multi-
ple undetected errors. Preece & Shinghal [6] document five fielded expert systems that
contain numerous logical anomalies. Myers [7] reports that 51 experienced programmers
could only ever find 5 of the 15 errors in a simple 63 line program, even given unlimited
time and access to the source code and the executable.

Potentially inaccurate and evolving theories must be validated, lest they generate in-
appropriate output for certain circumstances. Testing can only demonstrate the presence
of bugs (never their absence) and so must be repeated whenever new data is available or
a program has changed. That is, validation is an essential, on-going process throughout
the lifetime of a knowledge base. This view motivated Feldman & Compton [8], then
Menzies & Compton [9], to develop QMOD/HT4: a general technique for automatically
validating theories in vague domains. A vague domain is (i) poorly-measured; and/or
(ii) lacks a definitive oracle; and/or (iii) is indeterminate/non-monotonic. Validation in

such vague domains necessitates making assumptions about unmeasured variables and

November 21, 2000 DRAFT

4 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

fish growth
A ratge

++
fish population
++

change

fish density
s

fish catch

Fig. 1. A theory. A theory connected devices with two states (upt and downl). In this theory x Hy
denotes that y1 and yl can be explained by xt and x| respectively; and x — y denotes that y1 and
y{ can be explained by x| and x?1 respectively.

maintaining mutually exclusive assumptions in separate worlds. Many domains tackled
by modern KA are vague; i.e. this definition of test is widely applicable.

Formally, QMOD/HT4 is abduction, which is known to be NP-hard [10]; i.e. theoretically
the system is impractical since its runtimes are very likely to be exponential on theory size
(O(2")). Nevertheless, abductive validation has been able to detect previously invisible
but significant flaws in the theories published in the international neuroendocrinological
literature [8,9]. Further, Menzies has shown [11] that abductive validation is practical
for at least the sample of fielded expert systems studied by Preece & Shinghal. However,
standard abductive validation is restricted to non-temporal theories with the invariant that
no variable can have two different values (§II). In the case of time-based simulation, this
invariant is inappropriate since variables can have different values at different times.

One way to extend abductive validation to temporal abductive validation is to rename
variables at each time point in the simulation. For example, all the variables in Figure 1
could be renamed e.g. fishCatchl, fishCatch2... fishCatchT where T is some time
point. A naive renaming strategy would use these renamed variables to create T" copies of
the theory as seen in Figure 2. This naive renaming strategy incurs a severe computational
cost; i.e. if a non-temporal theory has N variables and is O(2"), then for T time points,
its temporal equivalent is O(2V*7) (§III).

This paper presents a non-naive renaming strategy. This new strategy is based on
the following simple intuition. Much of the search space shown in Figure 2 is the same
structure, repeated over and over again. It seems at least possible that no path can be
found through T + 1 copies that can’t be found in 7" copies (since the space is essentially

the same). If this were true, then we could reduce the search space of temporal abductive

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 5

e | \
.D++ - : Theory: copied
L7 for time T=0 (inputs)
I - v /
1 o~
x N v,
AR |_) A
N < A Theory: copied
\ 7 + . —
g /s L for time T=1
| ‘/ ;!
: Theory: copied
fortimesT=2.. 99,999,999
r / 7 \
\ / / L
VR
//\\ |l>./ \l I
I [1 Theory: copied
\ /Q/. :J l’ ! for time T= 100,000,000
/> §— <= :'/* =
Il
! |
7 3 s
. Theory: copied
. for time T= 100,000,001
to time T= 999,999,999
-, , .
\ / / |
V4 |
,K\ Aty | I
A} D++ { Theory: copied
o u N L/ for time T=1,000,000,000
N -
A B

Fig. 2. The theory of Figure 1, copied 10° 4+ 1 times. The copy at time 7' = 0 is used for the inputs to
the simulation. Dashed edges denote links between variables at different times. For space reasons,

some of the copies not shown.

validation by not copying the structure at all.

We show below (in §III) that this intuition is incorrect, unless we carefully restrict how
variables are linked in our theories. A linking policy is the method of connecting variables
at T; to T; 1. We will show that if we apply the implicit symmetric edge linking policy
(described below), then the search space of a theory with K states saturates after K
renamings; i.e. if a proof does not terminate in time K, then no such proof exists (§IV).
The practical implications of saturation are that, under certain circumstances, we can
ignore a large subset of the renamed variables at unmeasured time points. Suppose all
the variables in Figure 1 had K = 2 states (e.g. they were variables states: upf, downl).
Suppose further we had run that model for a billion (10°) time steps. Suppose further
that we only have data from that simulation at three time points: say, initially, at 7" = 108

and T = 10°. Without implicit symmetric edge linking, then when searching for proofs

November 21, 2000 DRAFT

6 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

+_ \
D++ - Theory: copied
. \) for time T=0 (inputs)
l/ : ﬂ+. . :/ /'
T =
/\ ++ . = /
! \%.D” - \,\/ Theory: copied
<IN for time T= 100,000,000
! , Vg // \\
! / / \
T 7 1
Vv ﬁ !
O |j. A | Theory: copied
| / for time T=1,000,000,000

Fig. 3. Assuming the simulation is measured only three times, and the 2-state variables are connected
with implicit symmetric edges, then the search space from the 10° + 1 copies of Figure 2 reduces to

the 3 copies shown here.

of these measurements, we would have to explore the space created by all 10° renamings
shown in Figure 2 However, with implicit symmetric edge linking, we only need explore
55 of that space, as shown in Figure 3 (§V).

Our approach requires a language that is more restrictive than that used in standard
qualitative reasoning such as QSIM [12,13]. Nevertheless, we argue that this restriction is
both practical and desirable:

« §VI is an experimental demonstration that these language restrictions still permit the

simulation and validation of real-world theories.

« In our related work section (§VII), we will note that standard qualitative reasoning

systems cannot guarantee a tractable simulation for all models represented in that
system. By comparison, we can guarantee a tractable simulation for all theories written

in our language, provided that a very long simulation run is only measured infrequently.

II. NoON-TEMPORAL ABDUCTIVE VALIDATION

This section contains our standard description of non-temporal abductive validation.

A. Tutorial

Abduction is the search for assumptions A which, when combined with some theory T

achieves some set of goals OUT without causing some contradiction [14]. That is:

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 7

current trade
account deficit
balance \
investor
foreign confidence
\ ++
++ oompany corporate - wages
domestic T)
profl ts ++ spending restraint
e \
++ ++
public - inflation
confidence

Fig. 4. A theory.

« EQ: TUAF OUT;

e FQy: TUA/L.

Menzies’ HT4 abductive inference engine [15] caches the proof trees used to satisfy EQ
and EQy. These are then sorted into worlds W: maximal consistent subsets (maximal with
respect to size). In the case of multiple worlds being generated, the best world(s) are those
with maximum cover: the intersection of that world and the 0UTputs.

For example, consider the task of checking that we can achieve certain QUTputs using
some INputs across the KB shown in Figure 4. We denote x=up as x{ and x=down as x|.
In that figure, x ps y denotes that y1 and y| can be explained by x{ and x| respectively;
and x — y denotes that y1 and y| can be explained by x| and x1 respectively. Edges
in our theories are optional inferences. The utility of using an edge is assessed via its
eventual contribution to world coverage.

In the case of the observed OUTputs being {investorConfidencef, wagesRestraintt,
inflation|}, and the observed INputs being {foreignSales?, domesticSalesl}, HT4
can connect QUTputs back to INputs using the proofs of Table I. These proofs may contain
controversial assumptions; i.e. if we can’t believe that a variable can be both up and down!®,
then we can declare the known values for companyProfits and corporateSpending to
be controversial. Since corporateSpending is fully dependent on companyProfits (see

!Note: in the temporal abductive case, this rule would be a variable can be up and down at the same time.

November 21, 2000 DRAFT

8 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

TABLE I
PROOFS FROM FIGURE 4 CONNECTING 0UT= {investorConfidence?, wagesRestraint?,

inflation|} BACK TO INPUTS= {foreignSales?, domesticSales]|}

P[1]: domesticSales), companyProfits|, inflation]

P[2]: foreignSales?, publicConfidencet,
inflation]

P[3]: domesticSales|, companyProfits],
corporateSpending|, wagesRestraint?

P[4]: domesticSales|, companyProfits],
inflation), wagesRestraint?

P[5]: foreignSales?, publicConfidencet,
inflation), wagesRestraint?

P[6]: foreignSales?, companyProfitsf,

corporateSpending?, investorConfidencet

Figure 4), the key conflicting assumptions are {companyProfitsf, companyProfits]}
(denoted base controversial assumptions or A.b). We can used A.b to find consistent belief
sets called worlds W using an approach inspired by the ATMS [16]. A proof P[i] is in W[j]
if that proof does not conflict with the environment ENV[j] (a maximal consistent subset
of A.b). In our example, ENV[1]|={companyProfitst} and ENV[2]|={companyProfits]}.
Hence, W[1]={P[2], P[5], P[6]} and W[2]={P[1] P[2] P[3], P[4]} (see Figure 5 and Figure 6).

HT4 defines cover to be size of the intersection of a world and the QUTput set. The cover
of Figure 5 is 3 (100%) and the cover of Figure 6 is 2 (67%). Note that since there exists a
world with 100% cover, then all the OUTputs can be explained; i.e. this theory has passed
the abductive validation test.

In essence, abductive validation answers the following question: “what portions of a
theory of X can reproduce the largest % of known behaviour of X?”. This algorithm will
work in two hard cases:

1. Only some subset of known behaviour can be explained.

2. In the case where a theory is globally inconsistent, but contains useful portions. For

example, observe in Figure 4 that the theory authors’ disagree on the connection from

inflation to wagesRestraint.

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 9

*
* investor

forei confidence
oreign
sdes X ++
* company corporate * wages
profits 44+ spending restraint

public * -- infion

confidence

Fig. 5. World #1 is generated from Figure 4 by combining P[2], P[5], and P[6]. World #1 assumes
companyProfits? and covers 100% of the known 0UTputs.

foreign *

sales
++ company corporate - __ wages

ic —=

domestic profits ++ spending restraint

sales +

- \ /
public inflation
confidence

Fig. 6. World #2 is generated from Figure 4 by combining P[1], P[2], P[3], and P[4]. World #2 assumes
companyProfits] and covers 67% of the known 0UTputs.

Note that this inference procedure ignores certain possible inferences; e.g. in W[1],
tradeDeficit] and currentAccountBalancef. HT4 does not compute ATMS-style to-
tal envisionments; i.e. all state assignments consistent with known facts. A total envi-
sionment would have included tradeDeficit| and currentAccountBalance?. Nor does
HT4 compute QSIM-style attainable envisionments [12,13]; i.e. the subset of total envi-
sionments downstream of the INputs. An attainable envisionment would have included
currentAccountBalancef. Rather, HT4 restricts itself to the inferences that connect
INputs to OUTputs. That is, HT4 only computes relevant envisionments; i.e. the subset

of the attainable envisionments which are upstream of the 0UTputs. The extra inferences

November 21, 2000 DRAFT

10 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

of non-relevant envisionment may result in pointless world generation. For example, if
somehow currentAccountBalance? was incompatible with wagesRestraint?, then total
or attainable envisionments would divide W[1] into at least two additional worlds, each
of which would contain some subset of the literals shown in Figure 5. The new addi-
tional world containing currentAccountBalance?f would subsequently be ignored since
the new additional world with wagesRestraint? would be returned during the search for

maximum cover.

B. Complexity

This section describes our algorithm for solving the core problem of HT4: finding the
base controversial assumption set A.B. This algorithm will be shown to be theoretically
NP-hard, experimentally exponential, but practical for certain problems.

HT4 executes in four phases: the facts sweep, the forwards sweep, the backwards sweep,
and the worlds sweep. Firstly, the facts sweep removes all variable assignments inconsistent,
with known FACTS (typically, FACTS=IN U OUT). Using a hash table, the facts sweep runs
in linear time.

Secondly, the forward sweep finds the conflicting assumption set (denoted A.c) as a side-
effect of computing the transitive closure of IN (denoted IN*). In a theory comprising a
directed graph with vertices V, edges E, and fanout F = %, the worst-case complexity of
the forwards sweep is acceptable at O(|V|*). Note that if the theory lacks invariants, then
the validation process could stop at this point since the transitive closure would find the
QUTputs reachable from the INputs. However, in theories with invariants, it may be the
case that we can only consistently use portions of the theory and INputs to achieve some
subset of the OUTputs.

Thirdly, the backwards sweep grows proofs backwards from a member of OUT back to IN
while maintaining several invariants. (i) Proofs can only use members of IN*; i.e. only
those literals downstream of the INputs. (ii) Proofs maintain a forbids set; i.e. a set of
literals that are incompatible with the literals used in the proof. For example, the liter-
als used in P[1] forbid the literals {domesticSales?, companyProfits?, inflationt}.

(iii) The upper-most A. ¢ found along the way is recorded as that proof’s guess. The union

of all the guesses of all the proofs will be A.b. (iv) A proof must not contain loops. (v) A

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 11

procedure worldsSweep begin
ENV := maximalConsistentSubsets(A.b)
for i := 1 to size(ENV) begin
wlil := 0;
forp eP
if p.forbids N ENV[i] = 0
then W[il := W[i]l + p;

Fig. 7. The worlds sweep of HT4.

proof must not contain items that contradict other items in the proof; i.e. a proof’s mem-
bers must not intersect with its forbids set. We can demonstrate informally and formally

that the backwards sweep is a slow process:

o Informally: 1f the average size of a proof is W, then worst case backwards sweep
is O(|P[]])¥). To make matters worse, the backwards sweep cannot cull its search at
a local propagation level. The utility of an edge may not be apparent till we have
examined the search space accessed after using that edge.

o Formally: Bylander et. al. [10] showed that general abduction is NP-hard. For our
particular implementation, we can repeat that prior result since we can show that
satisfying invariant (v) is NP-hard. Clearly, we can find a theory to generate any
directed graph. Gabow et. al. [17] showed that finding a directed path across a
directed graph that has at most one of a set of forbidden pairs is NP-hard. Our

forbidden pairs are assignments of different values to the same variable; e.g. the pairs

xT&x] and x| &x1 are forbidden.

Fourthly, once A.b is known, then the proofs can be sorted into worlds via the worlds
sweep. HT4 extracts all the objects 0 referenced in A.b. A world-defining environment
ENV[i] is created for each combination of objects and their values. In our example,
ENV[1] = {c1} and ENV[2] = {c|}. The worlds sweep is simply two nested loops over
each ENV[i] and each P[j]| (see Figure 7). A proof Pj belongs in world W[i] if its forbids

November 21, 2000 DRAFT

12 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

1500
1200 -
Runtime 900
(seconds) g |- _
300 -

0 | | |
0 200 400 600 800 1000
Size (|v])

Fig. 8. Average runtimes.

set does not intersect the assumptions ENV[i]| that define that world. The worlds sweep is

exponential at O(|P| |[ENV|)= O((|P[i]|)¥ * |ENV]).

Menzies [11] reports exponential runtimes of HT4 in a mutation study. Hundreds of
theories were artificially generated by adding random vertices and edges to the Smythe
’89 theory of glucose regulation [18]. For this runtime study, the fanout of the theory
was kept constant. Figure 8 shows the average runtime for executing the system over
94 mutated theories and 1991 randomly chosen < IN,QUT > pairs [11]. For that study, a
“give up” time of 840 seconds was built into the system. The system did not terminate
for [V| > 850 in under that “give up” time (shown in Figure 8 as a vertical line); i.e. the

“knee” in the exponential runtime curve kicks-in at around 800 vertices.

Nevertheless, non-temporal abductive validation is a practical validation algorithm since
there exist real-worlds theories which it can validate. Of the fielded expert systems sampled
by Preece & Shinghal [6], none had more than 510 literals in their dependency graphs. The
neuroendocrinological theories studied by Feldman, Compton, & Menzies had less than 550
literals in their dependency graphs. However, HT4 contains an NP-hard backwards sweep
followed by a exponential worlds sweep. Experimentally, exponential runtimes have been
observed in one implementation. Hence, we have theoretical and experimental reasons
to reject proposals which significantly increase the size of our theories; e.g. the naive
renaming for temporal abductive validation discussed in the introduction and elaborated

below (§III).

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 13

Fig. 9. A theory.

III. TEMPORAL ABDUCTIVE VALIDATION

In at least two commonly used knowledge representations, the truth value of literals can

change over the lifetime of the simulation:

1. Rule-bases that are processed via a standard match-select-act loop may assert and
retract facts many times during processing.
2. As the inference executes over loops in qualitative theories or topoi graphs [19], literals

may be assigned different belief values at different times.

We use the term “temporal abductive validation” to denote the problem of validating
theories where the belief values of literals can change during a simulation. One approach
to implementing temporal abductive validation would be to create one copy of the theory
for each time interval 7" in the simulation. The variables at time ¢ would be created
by renaming each variable X in the theory Xi for ¢ = 1... 7. Once the renaming was
completed, then we could apply some linking policy to make connections between T = i
and T = i + i. For example, using the implicit edge linking policy (hereafter epce), if
the theory says X — Y, then we would connect X;—; — Yr_;.;. For example, for a
simulation of Figure 9 over 3 time intervals, we could execute HT4 over Figure 102. The
disadvantage of this approach is that the graph size would increase with the number of
copies. Given the complexity results of §II-B, this is undesirable.

Note that the copies of Figure 10 repeat the structure of Figure 9 at each time interval
in the simulation. Recall the introduction, a plausible intuition is that no explanation
path can be found through 7"+ 1 copies that can’t be found in 7" copies since the space is
essentially the same. If this were true, then we could reduce the search space of temporal
abductive validation by not copying the structure at all.

Menzies & Cohen [20] showed that this optimisation is not possible for unrestricted
languages; i.e. if we allow (e.g.) asymmetric edges in our theories. Symmetric edges model

*Implementation note: internally, we could execute over one copy of the theory and use a stack variable to denote

the current time.

November 21, 2000 DRAFT

14 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

A : B : C
++ . ++ . ++
a——=b . C— =9 [- p—
~ ; \/¢\ A S
+-+ : L4+ T

Fig. 11. A theory with asymmetric edges from a to d and from c to f.

the kinds of influences we see in simple mathematics. For example, x *5 y and x = y are
examples of symmetric edges in that they make some statement about every state of the
downstream vertex y. x i y is an example of an asymmetric edge: y1 could be explained
by x1, but not vice versa. Asymmetric edges are useful for (e.g.) modeling in-flows that
pour into the top of a tank and out-flows which drain from the bottom of the tank. If an
in-flow increases, then the tank level could increase. However, the converse is not true since
only if the tank out-flow increases will the tank level decrease. For example, Figure 11
contains two asymmetric edges (a s Y R s f) which, internally, has the search space
of Figure 13. Figure 11 duplicates the topology of Figure 9 in the regions A,B,C with an

extra link from the top-left vertex of one region to the top-right vertex of the next region.

A B C
++ . ++ . ++
a——=b . =9 e =f
~ ; \/¢\ A S
++ : L+ /‘\

Fig. 12. Figure 11 with asymmetric edges replaced by symmetric edges.

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 15

B : C

Ao b A A 4

>, 2

a* %b* (c* —=d e+ %f*

Fig. 13. The search space within Figure 11.

B : C

PN S NS S S

Fig. 14. The search space within Figure 12.

A path from b7 to e? will take at 3 time intervals to cross from top-left to top-right in each
of the regions A, B, C. By repeating A, B, C more times, we can generate dependency graphs
which would require any number of intermediaries to traverse. This example suggests that

between each measured time interval we may need many intermediary copies.

However, if we restrict our language appropriately, then something close to our above
plausible intuition is true. While exploring examples like Figure 11, we noted that if we
restrict ourselves to only symmetric edges, then we could not find an example where proofs
took longer than two time intervals. For example, Figure 12 replaces the asymmetric edges
of Figure 11 with symmetric edges. Figure 12 expands into the search space of Figure 14
in which we can connect bt to el in two time intervals (one from bi1 to £1/, then two
from £1] to €21). In the next section, we will demonstrate that this “2 time intervals is

enough” is a general result.

November 21, 2000 DRAFT

16 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

------------------ w4
T

Fig. 15. Proofs in two time intervals or less. The dashed line from y1 to ac is a time edge. Dotted

edges denote any number of non-time edges.

IV. PROOF

This section describes the main result of this paper; i.e. given a theory comprising K-
state devices connected by symmetric edges, then if a proof cannot be found in K time
intervals, it can never be found at all. Roughly speaking, if every edge offers a comment
on all the states of its downstream vertices (i.e. they are symmetric), then the state
space rapidly saturates. That is, the granularity of the time axis reduces to the number
of states in the theory. Hence, all the connectable points in the state space can be found
very quickly. The formal proof for the K-state case is intricate. Hence, we first show an

informal proof of the 2-state case before presenting the K-state proof.

A. Informal Proof For 2-State Devices

Consider a proof over theory using two state devices (say, up and down, denoted 1 and
| respectively) and symmetric edges. This proof has a start (e.g. x1) and a goal. If that
goal can be reached without crossing anything that contradicts the goal (hereafter, the
simplest case), then this proof can be achieved in one time interval. This case is the top
path of Figure 15.

Now consider the case in which the goal (e.g. yJ) can only be reached via a conflicting
value (e.g. yt, see the bottom path of Figure 15). The only case in which such a proof
can terminate is when there is a path from the conflicting value to the goal value; e.g. y1
to y}). If such a path exists, then with iepck linking, there must be a time edge from the
conflicting value to its neighbor; e.g. yt to ac where a denotes some value assignment to
a (either at or a]). This means that we can use the simplest case to get to the conflicting
value in one time interval and then we can use the time edge to move on to the goal (see
the dashed edge in Figure 15). Note that moving on to the goal (via ac to wl to yl)

will take no more than one more time interval since the only literal that could block the

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 17

process (e.g. y1) has already been used (this is proved formally below).

The only other interesting case is that this proof needs to cross other conflicting values
(e.g. wt and w]). Using the simplest case, we can cross one of these conflicting values
before the time edge via the base case, and the other one afterwards (see Figure 15).
Hence, these other conflicting values will not further delay the proof.

By symmetry, this example can be repeated for proofs from x| to y1 or yJ, and for

proofs from y to x. Hence, if a proof exists, it must be found in at least two time intervals.

B. Formal Proof for K-State Devices

Formally, a theory digraph is a directed graph G consisting of vertices representing vari-
ables and edges representing connections between the states of the variables. Each variable
x can have K states, x1,... xx. A directed edge e of G from z to y represents a collection
of dependencies of the states of y on the states of x. For theory digraph G, we use these
dependencies to construct a dependency digraph Gp. For each vertex z of G, there is a
vertex s in Gp for each state of . There is an edge from vertex x, to vertex y; if y; is
dependant on x; in some relationship represented by an edge of GG. For simplicity, in this
paper we refer to vertices in a theory digraph as wariables and vertices in a dependency
digraph as states. For an edge e of a theory digraph G, we define image(e) to be the col-
lection of edges of Gp generated by e(see Fig. 16). Similarly, for a path P of G, image(P)
is the subgraph formed by the union of the images of the edges of P.

A directed edge e in G from z to y is symmetric if the edges in image(e) form a bijection
between the the states of 2 and the states of y (see Fig. 16). In this section, we consider
only theories where all edges are symmetric.

Consider states u, and v, in dependency digraph Gp. A simple proof of v, from wu,,
I1%(ug, vr), is a directed path from u, to v, such that for any variable z in G, at most one
state of z is on II*(ug, v,).

A proof of state y, from state x,, II(xs, y;) is an ordered collection of simple proofs such
that z, is the start of the first path, y; is the end of the final path, and there is an edge in
Gp from the final state of each simple proof to the start state of its successor (see Fig 17).
Note that for a state z of G, multiple states of z can be contained in proof II(z,, y;), but

at most one state of z can be contained in the same simple proof of II(x, y;)-

November 21, 2000 DRAFT

18 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

(@ ®)

X X X X X X
o g b~ WN P
<
IS

Fig. 16. The relationship between an edges of a theory digraph and its image in the associated dependency
digraph. (a) Directed edge e from variable z to variable y in a 6-state theory. (b) The edges in

image(e).

XS %—————}%—————>+yt

; y

Fig. 17. A proof of y; from z;. Edges e; and e; are time edges and are shown as dotted lines. Solid lines

are simple proofs containing one or more non-time edges.

We think of each simple proof of proof I1(z,, ;) as occurring in its own time quantum.
The time of a proof, time(Il(zs,y;)) is the number of simple proofs in II(z, ;). We call the
edges connecting the simple proofs time edges. The minimum proof time, minTime(zs, y;),
is the minimum time of any proof of y; from z,. If there is no proof of ¥, from z,, then
minTime(zs, y;) is undefined.

Consider a directed path P in G from vertex z to vertex y. Define reachable(P, z;) to
be the collection of states of y that are reachable from z; in image(P). We also define
path P’ to be a prefiz of path P if P’ is a subpath of P and P and P’ share the same first
vertex.

Lemma 1: Let P be a directed path in theory digraph G from variable z to variable y
and P’ be a prefix of P. Then |reachable(P', z;)| < |reachable(P, x)]|.

Proof: 'The proof is by a simple inductive argument on the length of P. If path P
has length 0, then z = y and only z; is reachable fron x; so |reachable(P, zs)| = 1 and the
only prefix is P itself so the lemma holds.

Now suppose the lemma is true for all paths of length £ or less. Suppose P has length
k + 1. Let vertex w be the predecessor of ¥ on P and let P’ be the path from z to
w formed by removing the final edge e of P. Symmetric edges imply that the edges in

image(e) form a bijection between the states of w and the states of y. Therefore, for each

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 19

+y1

— Y2

— Y3

Y4

— Y5

—Y 6

Fig. 18. Tllustration of the proof of lemma 1. There are paths to states v, y2, ¥3, and y4 through the
states of |reachable(P")|. |reachable(P’', xs)| < |reachable(P,z,)| since state y,, is reachable from some

prefix of P'. Dashed lines are time edges; solid lines are one or more non-time edges.

Wy in reachable(P', xs) there is a unique state of y reachable from zs via a path through
Wy, SO |reachable(P’', xs)| < |reachable(P, x;)| (see Fig. 18). Since any prefix of P is either
P itself or a prefix of P’ the lemma is proved.

Note that it is possible for |reachable(P’, xs)| < |reachable(P,xs)| since P may contain
cycles and other states of y may have been reached in some other prefix of P. |

Lemma 2: Let P be a directed path in theory digraph G from variable z to variable y
and x; be a state of x with |reachable(P,zs)| = r. For each integer ¢ in 1...7, we can find
a unique state y; of y such that minTime(x;,y;) < i when only considering proofs with
all edges in image(P).

This lemma is the key to our result. Before proving the lemma, consider the following
example. Figure 18 represents image(P) for some path P from variable z to variable y.
Path P’ is the prefix of P formed by removing the final edge e from w to y.

Suppose we have determined that |reachable(P’,z4)| = 4 and for each 1 < i < 4 we have
minTime(zs, w;) < i. We iterate finding states of y to satisfy the lemma:

o Iteration 1: Since there are no states of y on Il;, we can extend II; by e; to demonstrate

that minTime(xs,y1) = 1.
o Iteration 2: State Y3 is on the final simple proof of proof II,, so we can conclude that
minTime(zs,ys) < 2.

o Iteration 3: Since we can consider edge e, a time edge, we demonstrate that minTime(zs, y) <

3.
o Iteration 4: State Y5 is on the final simple proof of proof II,. We can use the already

November 21, 2000 DRAFT

20 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

determined proof of yo to demonstrate that minTime(xs, ys) < minTime(xs, y2) +1 <
4.
o Iteration 5: Since a proof of y, was found earlier (by induction), we have that minTime(zs, y4) <
reachable(P', xs)| = 4 < 5.
Proof: Let P be a path from vertex z to vertex y. The proof is by induction on
the length of P. If P has length 0, then x = y and only z, is reachable from z, so
|reachable(P, zs)| = 1 and minTime(xs, xs) = 1.

Now suppose the lemma is true for all paths of length £ or less. Suppose P has length
k + 1. Let vertex w be the predecessor of y on P and P’ be the path from z to w formed
by removing the final edge e of P.

We partition the states of y into three categories:

« Y]: the states of y that are connected from a state in reachable(P’, z,) by an edge in

image(e).

« Y5: the states in reachable(P, xs) not in Y;

« Y3: the states not in reachable(P, xs).

Assume without loss of generality, that the states of w are ordered such that for i <
|reachable(P', x5)|, minTime(xs, w;) < i. Such an ordering is possible by the inductive
hypothesis. Assume also that the edges of image(e) are labeled ey, ..., ex and the states
of y are numbered such that:

« edge e; connects state w; to state y;,

* Yyil+1 5 Yjreachablepz,) AT€ the states of Y5 in any order.

* Yireachable(pas) 110 -+ YK aTe the states of Y3 in any order.

Note that our definition implies that y,...,yy;| are the states of set Y;.

We now show how we bound the values of minTime(x,,y;) in such a way to satisfy the
lemma. Let count indicate the number of states of y labeled at anytime in our algorithm.
For each value 1 < count < |reachable(P,)| we need to find a unique state y; such that
minTime(y;) < count:

While count < |reachable(P, z4)| do

 Increment count

o Choose the smallest 7 such that y; is in either set Y; or set Y5 and we have not already

bounded minTime(xs,y;) for path P. By our structure, we know that i < count.

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 21

o If y; in Y}
— If i < count since we know by induction that minTime(z,,w;) < i, if we consider
edge e; a time edge, we get minTime(xs,y;) =i+ 1 < count.
— else let IT be a proof of state w; from z; with téme(IT) < i. Let II* be the final simple
proof of II. If II® contains state y; # y;:
* if we have already determined a bound for minTime(zs,y;) for path P, then we
know that minTime(x,,y;) < count. Let v, be the successor of the last occurance
of y; on II* connected to y; by edge e,. We form a proof of y; as follows. Use a
proof II; of y; with time(Il;) < count. Consider edge e, a time edge. Then the
suffix of IT* from v, to w; plus edge e; form a simple proof(since II° is a simple
proof), and the only state of y on this path is y;, so minTime(zs,yi) < count.
* else we can truncate proof II at state v;, so minTime(x,,y;) = ¢ < count.
— else the only possible state of y in simple proof II° is y;. Therefore, the path formed
by adding edge e; to II° is a simple proof, so we get minTime(zs,y;) =i < count.

« else state y; is in set Y,. Therefore, there is a prefix P"” of P’ such that y; is in
reachable(P", xs). By lemma 1, we know that |reachable(P",x,)| < |reachable(P', zy)|.
By our construction, 7 > |Yi| = |reachable(P’, z)|. We get, by induction, min Time(zs, y;) <
|reachable(P", zs)| < |reachable(P', x)| < count.

|

Theorem 1: Consider a theory digraph G with K states per variable. If if there is a path
from vertex x4 to vertex y; in dependency graph Gp, then minTime(z,y;) < K.

Proof: Find a path P in G with y; in reachable(P, zs). Then, as an immediate

consequence of lemma 2, minTime(x,, y;) < K. [|

V. IMPLICATIONS

We can use the above proof as an optimisation technique as follows. Suppose we had a
K-state device which was run for 7; time intervals and was measured at 7} time points.
By “running” we mean that a search space was created with 7; renamings of the variables
in the device. These renamings would be linked as per the connections in the original
device plus implicit edge linking between variables from adjacent time points. In search

for proofs of measurements, we would not need to explore further than K time edges away

November 21, 2000 DRAFT

22 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

from the measurement before we could declare a proof impossible.

Note that it would be a mistake to only generate K renamings of the search space. A
proof from T' = a back to T" = ¢ must be consistent with intermediary measurements at
T =b(a < b<c). Hence, the backwards sweep must build this proof from 7" = ¢, through
T = b, then back to T' = a. Hence, when generating the renamed variables, we would
need to represent the search space at and between measured time points; i.e. (K x7};) —1
renamings. In the case where K was small and 7; < T;, then this is still a significant
reduction in the search space.

Returning to our example in the introduction, suppose:

« We had a K = 2-state device with symmetric 1EpGe linking which has been running

for a billion time steps; i.e. T; = 10° seconds.

o The number of literals in the device are less than the size limits shown in Figure 8;

i.e. non-temporal abductive validation across this device was known to be tractable.

« We only collected measurements at three time points (say, 1 and 5 % 10® and 10°); i.e.

T; = 3.

Let the space complexity for non-temporal abductive validation across this device be X.
If we had not proved saturation for our device, then the search for these proofs would have
to explore 10° renamings; i.e. the space complexity would be 10° x X. However, since we
have proved saturation, we know that if a proof cannot be found in two renamings, then
no such proof exists. Consider a proof from (e.g.) time 1 to time 5 * 10%. If that proof
cannot terminate in the space 1 and 5 * 108, then it will never terminate. That is, when
building this proof, we could ignore the search space that used the renamings from 2 to
5% 10% — 1. A similar argument could be made for proofs from 5 x 108 to 10°. In practice,
we would only need to search the space created for the three measured time points. That

is, the space requirements for this temporal validation problem would only be 2 x X.

VI. EXPERIMENTS

The previous section discussed a general theoretical result relating to temporal abductive
validation. This section describes a specific experimental result relating to studies on one
model. We motivate this section as follows:

« In order to prove saturation, we have had to severely restrict our representation lan-

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 23

Fig. 19. Figure 9 renamed over 3 time intervals and connected using INODE.

sufficiently permissive

theories explain...
everyt hing sufficiently restrictive

not hi ng

theories are...
good poor

Fig. 20. Visualising a successful linking policy. A linking policy should be both permissive to all good
theories to explain correct behaviour and restrictive enough to prevent poor theories explaining any

behaviour.

guage. A reasonable objection to our approach is that these restrictions render our
approach impractical. In this section, we show that it is not necessarily true that
our approach is excessively restrictive since, at least in the example offered below, a
practical system was developed.

« The experiment described below is a general framework for comparing the testability
of different qualitative representations.

« An earlier version of this paper [20] offered a theoretical conclusion that 3 time copies
were sufficient for the implicit node linking policy (hereafter, ivoDE) using two-state
variables linked by symmetric edges. With implicit node linking, variables at time
T = i were linked to variables at time 7' =i+ 1 (see Figure 19). However, subsequent
experiments with that policy [21] showed that iepcE could not distinguish good theories
from poor theories. This section describes this experimental rejection of ivobE and the

experimental confirmation of the utility of iEpGE.

November 21, 2000 DRAFT

24 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

++ fish growth
—= rate
++ /-
fish population
change \
++
- / fish density
fishcatch = **
4 ++ boat
++ net 44 investment
catch potential catch — = INCOMe —= fraction
proceeds B
’ boat +
milftenance j -
bo 1
decomissions <—**—— change <, boat
++ h
in boat purchases
numbers

Fig. 21. The fisheries model. Adapted from [23, pp135-141]. Variables in italics were used in the XNODE
study (see text).

A. FEzxperimental Design

In order to assess the practical merits of a linking policy, we need to step back and
make a statement about the context in which such a policy would be used. Menzies &
Goss [22] describe the gray-box modeling problem in which operators need to guess the
inner workings of a black-box simulator using only minimal knowledge of that simulator’s
input-output. The operator records their guess in an approximate gray-box notation such
as Figure 4. For our purposes, we say that a linking policy is adequate if it supports gray-
box modeling. In particular, we say that a linking policy should be permissive enough
to permit the generation of proofs for known correct behaviour and restrictive enough
to block proofs of known incorrect behaviour. Further, we need to be able to quickly

recognise if an operator’s guesses move towards the correct theory.

Figure 20 is a succinct visual representation of an adequate linking policy. Given a range
of theories which degrade from good to poor, we like to see curve of Figure 20; i.e. we
quickly get feedback that we can explain progressively less and less of the behaviour of

the theory.

Our test engine has four sub-routines: (1) representative model selection; (2) data gen-

eration; (3) model mutation; and (4) option comparison.

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 25

alﬁ-H- bl

| \“/

Fig. 22. Figure 9 renamed over 3 time intervals and connected using XNODE where the user has indicated

that a is an explicit time node. Dashed lines indicate time edges.

(1) Representative model selection: The “fisheries simulation model” (Figure 21) is sim-
ilar to theories developed by Goss in his domain. It includes feedback loops; qualitative
states; and measurable entities. A precise mathematical expression of this model is avail-
able [23, pp135-141].

(2) Data generation: The selected quantitative model was run 15 times over five time
steps to generate numeric test data using different input parameters to create an ar-
ray of quantitative observations measure[1..15]. From each comparison of measure[i]
with measure[j] (i < j < 15), 105 entries were written to an array of qualitative ob-
servations changes[1..105]. For example, if in comparison change[37], the fish den-
sity fdens was increased and the fish catch fcatch was always seen to decrease at all time
steps, then change[37] .1in is {fdens=up} and change[37].out is {fcatch(t=1)=down,
fcatch(t=2)=down, fcatch(t=3)=down, fcatch(t=4)=down, fcatch(t=5)=down}.

(3) Model mutation: This process must be repeated for a large number of representative
theories from a domain. As these are hard to find in practice, we generate them using
a variant of the mutation strategy used by Menzies (Figure 8). In this new mutator, a
random sample of X statements in the qualitative form of the known representative model
are corrupted. Given a model with E edges, then as we vary X from 0 to E, we are moving
from a good model to a poor model; i.e. the x-axis of Figure 20. We corrupted the model
by flipping the annotation on an edge (e.g. ++ to -— or vice versa). The corruption-model-
mutator picks its edges to corrupt at random, and we repeat the corruption a statistically

significant number of times (20 repeats).

(4) Option exploration: The two linking policies discussed above (IEDGE, INODE) were

November 21, 2000 DRAFT

26 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

compared with another policy we have proposed elsewhere [21]. The ezplicit node linking
policy (hereafter, xNopE) acts like INoDE except that domain experts explicitly label which
nodes are to be connected across time. For the three linking policies (1EpGE, INODE, XNODE)
and for each mutated model, we created six model copies copy[0..5]. copyl[i] was
connected to copy[i+1] as follows: if iepcE was being used, then copies were connected
as in Figure 10; otherwise, if ivopE was being used, then copies were connected as in
Figure 19; otherwise, if xNoDE was being used, then copies were connected as in Figure 22.
For the xnobpE policy, the variables shown in italics in Figure 21 were used as the explicit
time nodes. Change inputs were mapped into copy[0]. Change outputs were mapped
into some copy[1..5]. The success of each run was assessed using the generated data, by
recording the % of the explicable outputs i.e. those outputs that the model could connect
back to inputs. Returning to Figure 20, everything=100% explicable and nothing=0%
explicable.

Proofs for PUTputs at time T = 5 must be consistent with proofs from 7" = 1..4. Hence,
all the proofs must be built together (see run_qualitative model in Figure 23). For this

study, we only collected % explicable figures for QUTputs at time 7" = 5.

B. Results

Figure 24 shows the results of applying the test engine to the fisheries model. All policies
could yield explanations for at least 20% of data, even for very poor theories. We attribute
these residual explanations to the indeterminacy of qualitative theories.

The results show that two of the linking policies (xxope and 1EDGE) were close to the
ideal curve of Figure 20. mope was observed to be quite removed from the ideal. NoDE is
clearly not sufficiently restrictive a linking policy since even with all edges corrupted, this
linking policy allowed poor theories to explain correct behaviour. Hence, based on this
experiment, we now reject our previous recommendations [20] regarding the use of 1EDGE.

xNODE was closest to the ideal curve of Figure 20. However, we must not uncritically
endorse the xnope linking policy. Recall that the basis of this policy was that users could
pick some subset of the vertices and mark them as explicit time traversal nodes. Our
above proof of saturation of K-state devices in K time ticks depended on the regularities

found in the search space found in 1Epced linked theories. The search space of an explicitly

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 27

Inputs: 1) the quantitative fisheries model MO

2) the qualitative fisheries model M1 with

edges E = edge[1..17]
3) T = b max time ticks
4) linkingPolicies := [iedge, inode, xnodel
5) Repeats 1= 20

Outputs: Xplicable, Runtime

measure[1..15] := run_quantitative_model (T,MO)

change[1..105] := comparisons(measure)
for policy € linkingPolicies begin
for corrupted:=0 to |E| begin
for r:=1 to Repeats begin
M2 :=corruptSomeEdgesChoosenAtRandom(corrupted,M1)
for t:=0 to T copyl[t]:= M2
for t:=0 to T-1 time_connect(copy[t],copyl[t+1],policy)
for i:=1 to |change| begin
<In,Out[1..T]>:= change[il
startTime := timeNow()
Xplained[1..T]:= run_qualitative_model (copy,In,QOut)
Runtime[policy,r,corrupted,i] := timeNow() - startTime
Xplicable[policy,r,corrupted,i]:=
[Xplained[5] |*100/ |Out [5] |
end
end
if corrupted=0 or corrupted=|E| then goto :nextE
end
:nextE # skip further random edge corruptions of 0 or E edges

end

end

Fig. 23. Experimental design for assessing linking options

November 21, 2000 DRAFT

28 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

100 g+ T T T

80 | E
iedge ——
60 | inode —x—
xnode —e—

40 | .

% explicable

20 | y

0 I I I
0 5 10 15

Number of corrupted edges (max=17)

Fig. 24. Comparing implicit edge linking (IEDGE) with implicit node linking (INODE) with explicit node
linking (XNODE). 2.6 x 10® theories were tested ranging from Figure 21 with 0 edges corrupted) to

Figure 21 with all 17 edges were corrupted.

runtimes (s)

Number of corrupted edges (max=17)

Fig. 25. Average runtimes in seconds for the experiments of Figure 24.

linked theory may be highly irregular because users could link only a small subset of nodes
across time. Since we cannot demonstrate saturation for x~opkg linking, then a simulation
of (e.g.) 10° time ticks, the xxopE validater must search through a space equal in size to
10° copies of the theory. Hence, we can only recommend xnobk for short simulations such

as the five time steps simulated in Figure 24.

Figure 24 shows us that 1EpcE’s maximum explicable rate is 82%; i.e. EDGE is not fully
permissive. In our enthusiasm to cull the search space in a qualitative simulation, we have
also culled some valid behaviours. Nevertheless, our results show that 1EpDGE can serve as
a validation device for fisheries. Note that for iepcE after only a third of the model being
mutated, only around half the outputs are inexplicable. This is a nice result: we get clear,
early indications if we are straying from a good model. Further, since we can prove that

IEDGE Supports saturation, then, unlike xNopE, we can show that 1EpGe can be used for

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 29

validating very long simulation runs.

The average runtimes in seconds for each trial are shown in Figure 25. Iepce and
xNoDE were much faster than the rejected linking policy, wope. One interesting feature of
Figure 25 is that as the models grow more corrupted, it becomes faster to determine what

outputs are explicable. This is a another nice result: we can reject nonsense faster.

VII. RELATED WORK

Menzies & Compton [24] have argued that the limits to validation are also the limits
to modeling since we should not build what we cannot test. Levesque and Brachman
observed that seemingly minor changes in a frame-based language dramatically altered
the tractability of subsumption [25]. Here we have shown that seemingly minor changes
in the temporal linking policy dramatically altered the tractability of validation. The
implications for other representations are not yet clear. However, it is possible that if
other representations are to support tractable validation, then must be constrained in a
manner analogous to symmetric 1EpGE linking.

Elsewhere [9,26] we have extensively discussed the connection of this work to standard
qualitative reasoning (QR); non-monotonic reasoning such as default logic and assumption-
based truth maintenance systems (ATMS); and ATMS-based verification and validation
tools from the V&V community. We include some summary notes below.

Default logic: An HT4 world is not an extension of a default logic theory [27]. Extensions
are closed under deduction; i.e. they contain the attainable envisionments.

ATMS: As mentioned above, we generate different envisionments to the ATMS (§II-A).
Further, while the ATMS computes its environments incrementally, HT4 is a batch process.

Vé&V: To the best of our knowledge, our work is the first detailed analysis of the compu-
tational complexity of validating theories used for time-based simulations. The validation
of the runtime dynamic properties of rules has been studied by Preece et. al. [28]. De-
tailed complexity results for the verification of rule-based systems have been reported by
Levy & Rousset [29]. Other ATMS-style validation approaches are all for non-temporal
theories [30,31]. None of these studies explore loops within the dependency graph of a
rule based system. Such loops would require a temporal analysis.

Standard QQR: Standard QR is based around theorem provers that process qualitative

November 21, 2000 DRAFT

30 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

differential equations; i.e. a piece-wise well-approximated low-order linear equation or a
first-order non-linear differential equation whose numeric values are replaced by one of
three qualitative states: up, down, or steady [32]. Examples of standard QR include
QSIM [12] and QPT. Non-standard QR variants include first-order logic qualitative mod-
eling [33], and non-linear QR [34]. Our approach is similar to standard QR since it is
based on well-approximated low-order linear equations. However, it has certain key dif-
ferences. For example, our symmetric edges are different to the M+ and M— of QSIM.
The QSIM connections allow for the automatic inference of landmark states where the
sign of a variable’s rate of changes from positive to negative (or visa versa). We do not
permit the auto-deduction of such states: all our states must be encoded manually. Also,
our language is optimizes for tractability, not expressability. Hence, we can’t encode the
higher-order constraints often discussed in the QSIM literature. In our defense, we note
that often the QSIM literature uses those constraints to tame intractable chatter. We have

no need to tame intractability since that comes for free with our language choice.

Another major difference to the standard QR literature is that we have sought a minimal
graph-theoretic framework for our representation. As a result, the internal data structures
of our approach are very uniform. This uniformity enables the kind of complexity analysis
described above. Also, our approach can be viewed as a multiple-world qualitative version
of time averaging [35]. Time averaging studies the long-term properties of a model under
feedback. Such long-term reasoning is possible only for certain structures within a system
of equations. Our technique, on the other hand, can discuss the long-term properties of
all constructs in our language. To achieve this, we have had to adopt a more restrictive
language than that used in (e.g.) QSIM. Despite these restrictions, we have shown in §VI
that our language is still expressive enough to model and validate real-world QR theories

such as Figure 21.

A fundamental property of qualitative systems is their indeterminacy. For example,
recall that the qualitative model of Figure 4 could not tell if companyProfits would go up
or down. In standard QR, one world is branched for each possibility: companyProfitsf,
companyProfits| and companyProfits remaining steady. When extended over several

levels in a network, this can lead to an intractable branching of behaviour. Meta-knowledge

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 31

can be used to tame some of this indeterminacy. For example, the Waltz filtering of the
QSIM [12] system ruled out a transition of the first derivative of a variable from increasing
to decreasing without first going through a zero state. In practice, however, many possible
behaviours will still be generated [36] and must be somehow handled by the program
calling the qualitative simulator. Clancy and Kuipers observe that. ..

Intractable branching due to irrelevant distinctions is one of the major factors

hindering the application of qualitative reasoning techniques to large real-world

problems [37].
As of the time of this writing, the current best-proposal for taming intractable branching
from the QSIM community is the DEcSIM simulator in which the user divides the theory
into several partitions [37]. These partitions are then simulated as separate units. While
DecSIM has been able to offer richer simulations than basic QSIM, DrcSIM’s authors
comment that “DecSIM cannot guarantee a tractable simulation for any model.” By
comparison, we can guarantee a tractable simulation for theories written using symmetric

edges and 1EpGE linking and whose non-temporal abductive validation task was tractable.

VIII. CONCLUSIONS

Representations are usually assessed via their expressibility, completeness, correctness,
and tractability. Here we have explored a fifth criteria: testability. We have found that
seemingly minor choices in the representation language can have a significant impact on
the tractability of validation. In summary, we have explored a language comprising K-
state variables connected by symmetric edges and joined across time by implicit edge
linking. Using a graph-theoretic analysis, we have shown that such a language saturates
in K time steps; i.e. if proofs do not terminate after K time steps, then they will never
terminate. This observation can be used to dramatically cull the search space of qualitative
simulations running for very long time periods. Without knowledge of saturation, if a
theory is run for 7; time steps, then the size of the search space may be proportional to
O(T;). However, given that language saturates, and if that simulation is only measured at
T; time points, then we can reduce that space to something much smaller (%)

Our approach requires that (i) non-temporal abduction of some theory is tractable;

and (ii) when the non-temporal abductive validation problem is converted to a temporal

November 21, 2000 DRAFT

32 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

abductive validation problem, then it is linked using symmetric 1EpGE edges. The resulting
language is more restrictive than that used in standard qualitative reasoning such as QSIM.
Despite these restrictions, we have shown in §VI that the language is still expressive enough
to model and validate real-world QR theories such as the fisheries model. Further, we can
make a clear statement about the tractability of validating all theories written in our

restrictive language, where as other QR systems (e.g. DEcSIM) cannot.

ACKNOWLEDGEMENTS

Paul Compton (UNSW) first offered the intuition that we did not need to search every
time copy of a theory since each copy just reproduces the search space of its predecessor.
While this intuition proved not to be true in the general case, it inspired our search for

special cases where it was true. Kingsley Jones (DSTO) first proposed the mutator used

in §VI-A.

REFERENCES

[1] R. Davis, H. Shrobe, and P. Szolovits, “What is a Knowledge Representation?,” AI Magazine, pp. 17-33,
Spring 1993.

[2] B.J. Wielinga, A.T. Schreiber, and J.A. Breuker, “KADS: a Modeling Approach to Knowledge Engineering.,”
Knowledge Acquisition, vol. 4, pp. 1-162, 1 1992.

[38] N.M. Agnew, K.M. Ford, and P.J. Hayes, “Expertise in context: Personally constructed, socially elected, and
reality-relevant?,” International Journal of Ezpert Systems, vol. 7, 1 1993.

[4] B.G. Silverman, “Survey of expert critiquing systems: Practical and theoretical frontiers,” Communications
of the ACM, vol. 35, pp. 106-127, 4 1992.

[6] P. Compton, K. Horn, J.R. Quinlan, and L. Lazarus, “Maintaining an expert system,” in Applications of
Ezxpert Systems, J.R. Quinlan, Ed. 1989, pp. 366-385, Addison Wesley.

[6] A.D. Preece and R. Shinghal, “Verifying knowledge bases by anomaly detection: An experience report,” in
ECAIT ’92, 1992.

[71 G.J. Myers, “A controlled experiment in program testing and code walkthroughs/inspections,” Communica-
tions of the ACM, vol. 21, pp. 760-768, 9, September 1977.

[8] B. Feldman, P. Compton, and G. Smythe, “Towards Hypothesis Testing: JUSTIN, Prototype System Using
Justification in Context,” in Proceedings of the Joint Australian Conference on Artificial Intelligence, AI ’89,
1989, pp. 319-331.

[9] T.J. Menzies and P. Compton, “Applications of abduction: Hypothesis testing of neuroendocrinological
qualitative compartmental models,” Artificial Intelligence in Medicine, vol. 10, pp. 145-175, 1997, Available
from http://www.cse.unsw.edu.au/~timm/pub/docs/96aim.ps.gz.

[10] T. Bylander, D. Allemang, M.C. M.C. Tanner, and J.R. Josephson, “The Computational Complexity of
Abduction,” Artificial Intelligence, vol. 49, pp. 25-60, 1991.

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 33

[11]

[16]
[17]

(18]
[19]

(20]

21]

[22]

23]

[24]

25]

[26]

[27]
28]

[29]

(30]

31]

32]

T.J. Menzies, “On the practicality of abductive validation,” in EFCAI ’96, 1996, Available from http:
//www.cse.unsw.edu.au/"timm/pub/docs/96abvalid.ps.gz.

B. Kuipers, “Qualitative simulation,” Artificial Intelligence, vol. 29, pp. 229-338, 1986.

B. Kuipers, “Qualitative simulation: then and now,” Artificial Intelligence, vol. 59, pp. 133-140, 1993.

K. Eshghi, “A Tractable Class of Abductive Problems,” in IJCAI 93, 1993, vol. 1, pp. 3-8.

T.J. Menzies, “Applications of abduction: Knowledge level modeling,” International Journal of Human
Computer Studies, vol. 45, pp. 305-355, 1996, Available from http://www.cse.unsw.edu.au/~timm/pub/
docs/96abkll.ps.gz.

J. DeKleer, “An Assumption-Based TMS,” Artificial Intelligence, vol. 28, pp. 163-196, 1986.

H.N. Gabow, S.N. Maheshwari, and L. Osterweil, “On two problems in the generation of program test paths,”
IEEE Trans. Software Engrg, vol. SE-2, pp. 227-231, 1976.

G.A. Smythe, “Brain-hypothalmus, Pituitary and the Endocrine Pancreas,” The Endocrine Pancreas, 1989.
R. Dieng, O. Corby, and S. Lapalut, “Acquisition and exploitation of gradual knowledge,” International
Journal of Human-Computer Studies, vol. 42, pp. 465-499, 1995.

T.J. Menzies and R.E. Cohen, “A graph-theoretic optimisation of temporal abductive validation,” in Furopean
Symposium on the Validation and Verification of Knowledge Based Systems, Leuven, Belgium, 1997, Available
from http://www.cse.unsw.edu.au/ timm/pub/docs/97eurovav.ps.gz.

S. Waugh, T.J. Menzies, and S. Goss, “Evaluating a qualitative reasoner,” in Advanced Topics in Artificial
Intelligence: 10th Australian Joint Conference on AI Abdul Sattar, Ed. 1997, Springer-Verlag.

T.J. Menzies and S. Goss, “Applications of abduction #3: “black-box” to “gray-box” model,” in Al in
Defence Workshop, Australian AI’95, also Technical Report TR95-31, Department of Software Development,
Monash University, 1995.

H. Bossel, Modeling and Simulations, A.K. Peters Ltd, 1994, ISBN 1-56881-033-4.

T. J. Menzies and P. Compton, “The (Extensive) Implications of Evaluation on the Development of
Knowledge-Based Systems,” in Proceedings of the 9th AAAI-Sponsored Banff Knowledge Acquisition for
Knowledge Based Systems, 1995.

R.J. Brachman and H.J. Levesque, “The tractability of subsumption in frame-based description languages,”
in AAAI ’84, 1984, pp. 34-37.

T.J. Menzies, Principles for Generalised Testing of Knowledge Bases, Ph.D. thesis, University of New South
Wales. Avaliable from http://www.cse.unsw.edu.au/"timm/pub/docs/95thesis.ps.gz, 1995.

R. Reiter, “A Logic for Default Reasoning,” Artificial Intelligence, vol. 13, pp. 81-132, 1980.

A. D. Preece, C. Grossner, and T. Radhakrishnan, “Validating dynamic properties of rule based systems,”
Int. J. Human-Computer Studies, vol. 44, pp. 145-169, 1996.

AY. Levy and M. Rousset, “Verification of knowledge bases using containnment checking,” in AAAI ’96,
1996.

N. Zlatereva, “Truth mainteance systems and their application for verifying expert system knowledge bases,”
Artificial Intelligence Review, vol. 6, 1992.

’ in Proc.

A. Ginsberg, “A new Approach to Checking Knowledge Bases for Inconsistency and Redundancy,’
3rd Annual Ezpert Systems in Government Conference, 1987, pp. 102-111.
Y. Iwasaki, “Qualitative physics,” in The Handbook of Artificial Intelligence, P.R. Cohen A. Barr and E.A.

Feigenbaum, Eds., vol. 4, pp. 323-413. Addison Wesley, 1989.

November 21, 2000 DRAFT

34 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

[33] I. Bratko, I. Mozetic, and N. Lavrac, KARDIO: a Study in Deep and Qualitative Knowledge for Ezpert
Systems, MIT Press, 1989.

[34] K.M. Yip, “Understanding complex dynamics by visual and symbolic reasoning,” Artificial Intelligence, vol.
51, pp. 179-221, 1991.

[35] R. Levins and C.J. Puccia, Qualitative Modeling of Complex Systems: An Introduction to Loop Analysis and
Time Averaging, Harvard University Press, Cambridge, Mass., 1985.

[36] P. Fouche and B. Kuipers, “An assessment of current qualitative simulation techniques,” in Recent Advances
in Qualitative Physics, B. Faltings and P. Struss, Eds. 1992, pp. 263-278, The MIT Press.

[37] D.J. Clancy and B.K. Kuipers, “Model decomposition and simulation: A component based qualitative
simulation algorithm,” in AAAI-97, 1997.

seen below

Tim Menzies is an Assistant Professorship at the Department of Electrical and Computer
Engineering, University of British Columbia, Vancouver, Canada. In his research, he explores
how quirks in human cognition effect the process of software and knowledge engineering.
He holds a Ph.D. in artificial intelligence (1995), a masters of cognitive science (1988) and
a computer science undergrad degree (1985), all from the University of New South Wales,

Sydney, Australia. In his career, Dr. Menzies has worked with NASA on software testing and

with commercial organizations on object-oriented systems and expert systems. Dr Menzies is

the author of over 90 journal/conference/ and workshop articles (see http://tim.menzies.com/papers.html).

DRAFT November 21, 2000

MENZIES, COHEN, WAUGH, GOSS: TESTING VERY LONG SIMULATIONS 35

Robert F. Cohen Robert Cohen is President of Algomagic Technologies, Inc, an internet
security company, and a software consultant. He holds a PhD and M.S. in Computer Sci-
ence from Brown University, M.S. in Computer Science form Boston University, and B.A. in

Mathematics from Brandeis University. He lives in Boston, Massachusetts.

Sam Waugh Sam Waugh received the BSc and PhD degrees in Computer Science from the
University of Tasmania, Australia in 1991 and 1997, respectively. He is currently a Research
Scientist with the Air Operations Division of the Defence Science and Technology Organi-
sation, Melbourne, Australia. His research interests include machine learning and software

engineering.

Simon Goss Simon Goss holds BSc(Hons) (1978) and PhD (1985) degrees in physical chem-
istry from La Trobe University, and a Grad Dip KBS (1991) from RMIT. He is a Senior
Research Scientist in Air Operations Division of DSTO. He has been local chair of the Al
SIG of the ACS since 1991 and chaired national conferences in Cognitive Science and inter-
national workshops in modeling Situation Awareness. In previous existences he has worked
as a programmer-engineer in industrial control, a market-driven consultant, a physical scien-

tist and a journalist. He is a member of IEEE, AAAI, ACM, ACS and AORS. His research

interests lie in applied AI in the context of representation, software life cycle, and optimisation, in modeling and

simulation of complex social systems for operations research.

November 21, 2000 DRAFT

36 SUBMITTED TO IEEE TRANS. KNOWLEDGE AND DATA ENG., VOL. XX, NO. Y, MONTH 1999

DRAFT November 21, 2000

