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Abstract  Agents try to achieve goals while being buffeted by wild factors out-
side of their control. While seeking their goals, agents may work au-
tonomously, may interact, may react, and may be proactive.

Before we can trust agents to work correctly and autonomously, we
need to certify that they will behave correctly, even in wild domains.
Before agents can learn to trust each other during social action, they
must assess another agent, even if much of that agent is wild. Further,
reactions and pro-actions are futile in unless we can certify that those
actions are effective, even in wild domains.

This chapter argues that, in the average case, we can certify that
autonomous agents can learn effective and cheap actions and reactions
strategies, despite these wild influences. Further, it is possible to re-
design agents in order to increase their immunity to wild influences.

Keywords: Agents, nondeterminism, reachability, treatment learners.

Introduction

A Turing machine is a lonely machine. It talks to no one and no
outsider talks to it. Within its walls, nothing happens unless its read-
write device changes an entry on a Turing tape. No external force ever
stops the tape rolling backwards and forwards, searching for its solitary
conclusions.

An agent machine is a social machine. Situated within some environ-
ment, the agent busily attempts to achieve goals while being buffeted
by wild forces outside of its control. Beliefs that seemed reasonable only
an hour ago may become obsolete. It is as if the Turing tape of our
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Figure 1.1. An agent with wild inputs.

agent machine can be wildly scribbled on by the environment, without
the agent noticing’.

To assess the impacts of wild interaction, this chapter will consider an
agent dealing with devices of the form of Figure 1.1. Such devices con-
tain hidden variables, inputs variables and observable variables. For the
purposes of this analysis, it is irrelevant if the devices are sub-routines
within the agent or sensors and actuators attached to the environment.
In either case, our agent only has change the controllable inputs. The
other inputs are wild and are set by forces outside of the control of the
agent; e.g. the environment, or the actions of other agents. We will
assume no knowledge of the wild inputs. In this model, nondetermin-
ism is modelled as wild variables that control choice operators at all
nondeterministic choice points within the hidden variables.

We will assume that some of the observables are assessable by some
oracle. This oracle generates a small number of scored classes that offer
a coarse-grain assessment of the behavior of a system; e.g. “very good”,
“good”, “fair”, “poor”, “very poor”. For example, if the device can
achieve N output goals, then the oracle could output “good” if more
than (say) 80% of those goals are reached.

A treatment is some setting to the controllable inputs. The task of our
agent is to minimize the cost of both finding and applying its treatments
while mazimizing the score of the classes generated by the oracle. We
will assume that it costs some effort to adjust the control inputs. The
rest of this article assumes all controls cost “1” unit of effort (and this
could be simply adjusted if required).

The challenge facing our agent is that much of the device is hidden
or wild. Any treatments must be effective over the range of possible be-
haviors that result from the wild inputs impacting the hidden variables.
Hence, we say that the range of possible outputs from the device rep-
resents a space of what-if scenarios and a treatment restricts the space
of possible what-ifs by restricting the space of settings to the control
variables.
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% rules

happy if tranquillity(hi) or rich and healthy.
healthy if diet(light).

satiated if diet(fatty).

tranquillity(hi) if satiated or conscience(clear)

% facts
diet(fatty).
diet(light).

% contradiction knowledge e.g. diet(fatty) and diet(light) are nogood.
nogood (X,Y) :-

X =.. [Fla1],
Y =.. [F|A2],
A1 \= A2.

Figure 1.2. A theory.

This chapter argues that:

CLAIMZ1: In the average case, it is possible to learn effective and cheap
treatments, despite the wild variables.

CLAIMZ2: It is possible to redesign particular devices in order to in-
crease their immunity to wild variables.

CLAIM1 will be defended using an average case analysis, some ex-
perimentation, and a literature review. Such an average case analysis
may not apply to particular systems. Hence CLAIM?2 is required in or-
der to increase the chances that a particular system exhibits our desired
average case behavior.

To demonstrate these claims, we need:

1 A formal model of the hidden variables. We will assume that
the hidden variables form a negation-free horn clause theory. We
will further assume that some nogood predicate can report pairs of
incompatible variables. A sample negation-free horn clause theory
and a nogood predicate are shown in Figure 1.2.

2 A definition of the execution method of that theory. We will as-
sume that execution means the construction of consistent proof
trees across the horn clauses, where consistent is defined with re-
spect to the nogood predicates.

3 A theoretical sensitivity result that shows that adequate treat-
ments can be developed for our device across the entire range of



possible wild inputs. We will show that the entire range of possible
wild inputs will, in the average case, result in a limited number of
settings to the assessable outputs.

This demonstration will be made in three parts. §2 offers a theoretical
argument for CLAIM1. §3 discusses empirical results that support our
theory. §4 argues for CLAIM2. Related work is discussed throughout
this chapter. This work extends earlier studies on testing nondetermin-
istic systems (Menzies and Cukic, 2000b; Menzies et al., 2000; Menzies
and Cukic, 2000a). Also, before beginning, we offer some notes on how
this work connects with the standard agent literature (see §1).

Note that this analysis will only be an average case analysis. Such an
argument for average case success says little about our ability to handle
uncommon, critical cases. Hence, our analysis must be used with care if
applied to safety-critical software. On the other hand, many applications
are not safety-critical since such software costs in excess of one million
dollars per thousand lines of code (Schooff and Haimes, 1999, p276); i.e.
safety-critical applications are cost-justified in only a minority of cases.

1. A Quick Overview of Agents

This paper applies concepts from the truth maintenance literature (Doyle,
1979) to engineering controllers for agents. Hence, it is somewhat dis-
tant from the rest of the papers in this volume. To bridge the gap, this
section offers some notes on the standard agent literature.

A spectrum of agents types is offered by Woolridge and Jennings (Wooldridge
and Jennings, 1995). Weak agents are:

Autonomous: Agents act without intervention by a human operator.
Social able: Agents interact extensively with other agents.
Reactive: Agents must react to changing circumstances.

Pro-active: Agents can take the initiative within a simulation.

This article is an exploration of the mathematics of the above fea-
tures of weak agency. Before we can trust agents to work correctly and
autonomously, we need to certify that they will behave correctly, even
in wild domains. Before agents can learn to trust each other during so-
cial action, they must assess another agent, even if much of that agent
is wild. Further, reactions and pro-actions are futile in unless we can
certify that those actions are effective, even in wild domains.

Wooldridge and Jennings distinguish weak agency from strong agents.
Strong agents possess mentalistic attitudes or be emotional or animated.
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A commonly used framework for strange agents is the beliefs, desires and
intentions (BDI) paradigm of (Roa and Georgeff, 1995) and (partially)
implemented within the dMARS system (d’Inverno et al., 1998):

Beliefs: the current state of entities and environment as perceived by
the agent (abstract labels or percepts)

Desires: future states agent would like to be in (a.k.a. goals)

Intentions: commitment of an agent to achieve a goal by progressing
along a particular future path that lead to the goal (a.k.a. a plan).

In this BDI paradigm, deliberation is done through the selection of a
goal, selection of a plan that will be used to form an intention, selection of
an intention, and execution of the selected intention. All these decisions
are based on the beliefs the agent has about the current state of the
environment. In wild environments, plan generation is futile unless we
can first assert that the wild influences do not destroy the plan.

Wooldridge and Jennings make no comments beyond strong agency.
However, other researchers have explored further extensions: Pearce and
Heinze added another layer on top of AMARS to process the patterns of
standard agent usage seen in simulations (Pearce et al., 2000). Their
command agents divide reasoning into the following tasks:

Situation awareness: Extracting the essential features from the envi-
ronment.

Assessment: Ranking the extracted features.
Tactic Selection: Exploring the space of options.

Selection of operational procedure: Mapping the preferred option
onto the available resources.

In repeated applications of this framework, Pearce and Heinze report
that the command agents framework offers a significant productivity
increase over standard dMARS. However, these researchers don’t know
how to validate their agent systems (pers. communication). One of the
original motivations of this work was the need to certify command agents
in particular and other agent systems in general.

For other interesting applications of agent technology, see (Jones
et al., 1999; Han and Veloso, 1999; Clancey et al., 1996; Muscettola
et al., 1998; Nayak and Williams, 1997) and the other chapters in this
volume.



Path; happy < tranquility(hi) < conscience(clear)
Path; : happy < tranquility(hi) < satiated « diet(fatty)
< rich

Paths : happy < andl(_yo1ny « diet(light)

Figure 1.8. Three pathways to happy generated across Figure 1.4 (which is a graph-
ical form of Figure 1.2).

2. Usual Case Analysis of Wild Influences

In this section, we begin our case for CLAIM1; i.e. in the average
case, it is possible to learn effective and cheap treatments, despite the
wild variables. Wild variables inject a degree of randomness into how a
device will operate. We show here that such a random search within a
device containing nogoods can be controlled by a small number of key
funnel variables (defined below). It will be argued that:

1 The range of behaviors within a device containing nogoods is small
if there are few possible worlds of belief (defined below).

2 The total number of possible worlds of belief is small if the funnel
size is small.

3 In the average case, the funnel size is indeed quite small.

These three points are necessary, but not sufficient preconditions for
CLAIM1. The next section (§2) will show that the small number of
key variables within the funnel can be controlled using just the available
controllable inputs.

2.1 Worlds of Belief

A theorem prover exploring a device containing nogood variables often
reaches incompatible options; e.g. pairs of variables depreciated by the
nogood predicate. For example, in Figure 1.2, two such incompatible
beliefs are diet (1ight) and diet(fatty).

When such incompatible pairs are reached, the theorem prover must
choose which variable to believe. As the reasoning progresses, this con-
tinual choice of what to believe leads to a particular world of belief.

Given a model such as Figure 1.2 and a goal such as happy, then
worlds of belief can be generated as follows.

m The individual pathways to the goals are collected. Figure 1.3
shows the possible pathways are Path;...Paths, shown in Fig-
ure 1.3.
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Figure 1.4. The rules of Figure 1.2 converted to an and-or graph. All nodes here
are or-nodes except andl. All parents of an and-node must be believed if we are
to believe and-node. In this graph no-edges represent illegal pairs of inferences; i.e.
things we can’t believe at the same time such as diet(light) and diet(fatty). All
other edges are yes-edges which represent legal inferences.

®» Anything that has not been asserted as a fact is an assumption.
If we have asserted happy, then Paths contains the assumptions
tranquility(hi) and satiated and diet (fatty).

m  No path can contain mutually exclusive assumptions or contradict
the goal; i.e. assuming —happy is illegal since, in this example, we
already believe happy.

m  The generated pathways should be grouped together into maximal
consistent subsets. Each such subset is a world of belief. Our exam-
ple generates two worlds: World,= {Path;, Paths} and Worlda=
{Pathl, Pathg}.

m A world contains what we can conclude from and-or graphs. A
goal is proved if it can be found in a world.

Worlds are generated when inconsistencies are detected. There are at
least three methods to control such generation:

Method A- full worlds search: Method A is to generate a world for
every possible resolution. Method A takes a long time? and prag-
matic agents should avoid it.

Method B- random worlds search: Method B is to generate a world
for one on resolution, picked at random, then continue on. Method
B is often combined with a “rest-retry” mechanism. That is,



method B is applied X times, with the system reset between each
application.

Method C- use of domain knowledge: Method C is to carefully se-
lect one resolution, based on domain knowledge. This chapter is
focused on the effects the unknown knowledge (the wild variables)
than the effects of known knowledge; i.e. Method C is not of in-
terest here.

Random worlds search (method B) best simulates the impact of wild
inputs. Such a partial random search will find only some subset of
the possible paths, particularly if it is run for a heuristically selected
time interval. That is, random worlds searching may not reliably infer
that (e.g.) healthy is an uncertain conclusion. Depending on how the
conflict between diet (light) and diet (happy) is resolved at runtime,
this system will sometimes nondeterministically conclude healthy and
sometimes it won’t.

CLAIM1 can be formally expressed as follows: the wild inputs do
not greatly influence what worlds are explored. Traditional complexity
results are pessimistic about such a claim. If a graph lacks nogoods, then
it can be searched very fast (see the linear-time and-or graph traversal
algorithm in the appendix). However, the presence of nogoods changes all
that. Gabow et.al. (Gabow et al., 1976) showed that building pathways
across programs with impossible pairs (e.g. variables marked by a nogood
predicate) is NP-complete for all but the simplest programs (a program is
very simple if it is very small, or it is a simple tree, or it has a dependency
networks with out degree < 1). The traditional view is that NP-complete
tasks are only practical when incomplete domain-specific heuristics are
applied to constrain the task. The applicable to such heuristics to all
possible inputs cannot be proved. Hence, in the traditional view, using
such heuristics can produce wildly differing results when:

I. Not enough worlds are generated to cover the range of possible
conclusions. This first case could arise from heuristics pruning
possible inferences at runtime. Random worlds search can suffer
from this problem.

II. Too many worlds are generated and we are swamped with possi-
bilities. This second case arises when heuristics fail to prune the
search space. Full worlds search can suffer from this problem.

Both problems are removed if the total number of possible worlds is
small. If so, then:

m  Problem I disappears if all the possible conclusions can be reached
by sampling just a few worlds.
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s Problem II disappears if a large number of worlds is not possible.

2.2 Funnels Control Worlds

This section argues that the number of worlds is small if the funnel size
is small. Before describing the funnel, we first categorize assumptions
into three important groups: the dependent, the non-controversial, and
the remaining variables that lie in the funnel. Only this third group of
funnel variables will determine how many worlds are generated.

Some assumptions are dependent on other assumptions. For example,
in Pathgy, the tranquility(hi) assumption depends fully on satiated
which, in turn, fully depends on diet(fatty). In terms of exploring
all the effects of different assumptions, we can ignore the dependent
assumptions.

Another important category of assumptions are the assumptions that
contradict no other assumptions. These non-controversial assumptions
are never at odds with other assumptions and so do not effect the num-
ber of worlds generated. In our example, the non-controversial assump-
tions are everything except diet(light) and diet (healthy). Hence,
like the dependent assumptions, we will ignore these non-controversial
assumptions.

The remaining assumptions are the controversial, non-dependent as-
sumptions or the funnel assumptions. These funnel assumptions control
how all the other assumptions are grouped into worlds of belief. DeK-
leer’s key insight in the ATMS research was that a multi-world reasoning
device need only focus on the funnel (DeKleer, 1986)%. When switching
between worlds, all we need to resolve is which funnel assumptions we
endorse. Continuing our example, if we endorse diet(1light) then all
the conclusions in Worlds follow and if we endorse diet (healthy) then
all the conclusions in World; follow.

Paths meet and clash in the funnel. If the size of the funnel is very
small, then the number of possible clashes is very small and the number
of possible resolutions to those clashes is also very small. When the
number of possible resolutions is very small, the number of possible
worlds is very small and random search can quickly probe the different
worlds of beliefs (since there are so few of them). Hence, if we can show
that the average size of the funnel is small, then CLAIM1 is supported.
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2.3 Average Funnel Size

Suppose some goal can be reached by a narrow funnel M or a wide
funnel N as follows:

( bl
N1 <—
b
A My Ny +—
a2 b2
— d «—
My \ e, goal; <— < N3 R
o P N4 2
= M,
b
\ N” -

We say that the probability of reaching the goal is the value reached.

Under what circumstances will the narrow funnel be favored over the
wide funnel? More precisely, when are the odds of reaching goal; via the
narrow funnel much greater that the odds of reaching goal; via the wide
funnel? The following analysis is taken from (Menzies and Cukic, 2001)
which is a simplification of (Menzies and Singh, 2001).

To find the average funnel size, we begin with the following definitions.
Let the M funnel use m variables and the N funnel use n variables. For
comparison purposes, we express the size of the wider funnel as a ratio
a of the narrower funnel; i.e.

n = am (1.1)

Each member of M is reached via a path with probability a; while each
member of N is reached via a path with probability b;. Two paths exist
from the funnels to this goal: one from the narrow neck with probability
¢ and one from the wide neck with probability d. The probability of
reaching the goal via the narrow pathway is

m
narrow = cH a; (1.2)

=1

while the probability of reaching the goal via the wide pathway is
n
wide = d [ b: (1.3)
i=1

Let P(narrow|reached) and P(wide|reached) denote the conditional
probabilities of using one of the funnels, given that the goal is reached.
The ratio R of these conditional probabilities informs us when the narrow
funnel is favored over the wider funnel.
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R P(narrow|reached) — (P22%)  narrow (1.4)
~ P(wide|reached) (e ) © wide )
Narrow funnels are more likely than wider funnels when
R>1 (1.5)

To compute the frequency of Equation 1.5, we have to make some as-
sumptions about the probability distributions of narrow and reached.
(Menzies and Singh, 2001) showed that if a; and b; come from uniform
probability distributions, then narrow funnels are more likely than wide
funnels. In the case of such uniform distributions,

1 1\™
Zai =1,.a;=— . .narrow=c| — (1.6)
— m m
Similarly, under the same assumptions,

wide = d <1>n (1.7)

n

Under this assumption of uniformity, R > 1 when

1

narrow € (E)m

wide — d (l)”

n

Recalling that n = am, this expression becomes

d
(am)*m ™ > — (1.8)
c
Consider the case of two funnels, one twice as big as the other; i.e.
«a = 2. This expression can then be rearranged to show that 222% > 1

vd
is true when J e
(4m)™ > p (1.9)

At m = 2, Equation 1.9 becomes d < 64c. That is, to access goal; from
the wider funnel, the pathway d must be 64 times more likely than the
pathway c. This is not highly likely and this becomes less likely as the
narrower funnel grows. By the same reasoning, at m = 3, to access goal;
from the wider funnel, the pathway d must be 1728 times more likely
than the narrower pathway c. That is, under the assumptions of this
uniform case, as the wide funnel gets wider, it becomes less and less
likely that it will be used.
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To explore the case where Y /" a; #1 and Y ;* | b; # 1 (i.e. the non-
uniform probability distribution case), we created and executed a small
simulator many times. In this simulator, we found the frequency at
which R > t where ¢t was some threshold value.

To execute the simulator, we required some knowledge of the distribu-
tions of narrow and wide when they are computed by nondeterministic
search.Those distributions were taken from an average case analysis of
reachability across graphs such as Figure 1.4. This reachability analysis
is discussed below.

2.3.1 A Reachability Model. Menzies, Cukic, Singh and
Powell (Menzies et al., 2000) computed the odds of reaching some ran-
dom part of a space of nondeterminate choices from random inputs. The
analysis assumed that software had been transformed into a possibly
cyclic directed graph containing and-nodes and or-nodes; e.g. Figure 1.2
has been converted to Figure 1.4. A simplified description of their anal-
ysis is presented here. For example, in the full model, all variables are
really random gamma or beta distribution variables specified by a mean
and a skew parameter; see (Menzies et al., 2000) for details.

Assume that “in” number of inputs have been presented to a graph
containing V nodes. From these inputs, we grow a tree of pathways
down to some random node within the graph. The odds of reaching a
node straight away from the inputs is
in
v
The probability of reaching an and-node with andp parents is the prob-
ability of reaching all its parents; i.e.

o — (1.10)

Tand = 7" (1.11)

where z; is the probability we computed in the prior step of the simula-
tion (and z( being the base case). The probability of reaching an or-node
with orp parents is the probability of not missing any of its parents; i.e.:

Tor =1 — (1 — ;)" (1.12)

If the ratio of and-nodes in a network is andf, then the ratio of or-nodes
in the same network is 1 — andf. The odds of reaching some random
node x; is the weighted sum of the probabilities of reaching and-nodes
or-nodes; i.e.

z; = andf * Tepg + orf * x,, (1.13)

!/

Zor = Tor * Tnoloop * Tnoclash (1'14)
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X! is similar to the original z,,, but it is modified by Equation 1.14,
for the following reasons. Recall from Figure 1.2 that some nodes are
nogood with other nodes and the average size of the nogood set for each
variable is no. The probability x,,, cjasn 18 that a new node can be added
to the tree of pathways of size size; at level j is the probability that this
new node will not contradict any of the or-nodes in the current path:

no) sizej*or f

Tnoclash = (1_7 (1.15)

Not only must a new node not contradict with other nodes in the tree
of pathways, it must also not introduce a loop into the tree, since loops
do not contribute to revealing unseen nodes.

1 sizejxor f
Tnoloop = (1 - V) (116)

Observe the use of size; * orf in Equation 1.15 and Equation 1.16.
And-nodes contradict no other nodes; hence we only need to consider
contradictions for orf of the system. Also, since every and-node has
an or-node as a parent, then we need only check for loops amongst the
or-nodes.

Having calculated z;, we can convert it to the number of tests N
required to be 99% sure of find a fault with probability z; as follows.
Equation 1.12 is really the sampling-with-replacement equation where
orp is the number of trials N. We can use sampling-with-replacement
to find the certainty of finding some event after N trials. If we demand
a 99% certainty of reaching a node at step j (i.e. y = 0.99), then we can
re-arrange Equation 1.12 to

N(z;) = log(1 —0.99) (1.17)
log(1 — ;)

After 150,000 simulations of this model, some best and worst cases
were identified. These are shown in Figure 1.5 labelled pessimistic and
optimistic respectively. In the pessimistic case, we restricted the depth
of our search to some trivial size: 7 < 10. In this pessimistic case, more
than 10,000 random inputs are required to reach half the nodes in the
graphs we simulated. In the optimistic case, we gave the search engine
greater freedom to explore: 7 < 100. In this optimistic case, less than
100 random inputs would reach over half the nodes in the graphs we
simulated.

2.3.2 Simulating Funnels. Having some knowledge of the
distributions, we can now compute the frequency of Equation 1.5 (i.e.
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Figure 1.5. 150,000 runs of the simulator generated z; figures which were converted
into number of tests IV required using Equation 1.17. X-axis shows the percentile
distribution of the output of the runs.
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Figure 1.6. 10000 runs of the funnel simulator. Y-axis shows what percentage of the
runs satisfies R > t.

R > 1) for non-uniform distributions. For one run of the Equation 1.4
simulator, m and a were picked at random from the ranges:

me{1,2,...10}; a€{1,1.25,1.5,...10}

The a;, b;, ¢, d needed for Equation 1.2 and Equation 1.3 were taken
from one of three distributions: the pessimistic and optimistic curves
shown in Figure 1.5, plus a log normal curve (just for comparison pur-
poses). For the log-normal curve, mean p and standard deviation o2 of
the logarithm of the variables were picked at random from the following
ranges:

pe{l,2,...10}; spread € {0.05,0.1,0.2,0.4,0.8}
1 and spread where then converted into probability as follows:

0% = spread  p;  probability = 10~ LxnormDist(u.a?)

R was then calculated and the number of times R exceeded different val-
ues for ¢ is shown in Figure 1.6. As might be expected, at t = 1,a =1
the funnels are the same size and the odds of using one of them is 50%.
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As «a increases, then increasingly R > t is satisfied and the narrower fun-
nel is preferred to the wider funnel. The effect is quite pronounced. For
example, for all the studied distributions, if the wider funnel is 2.25 times
bigger than the narrow funnel, random search will be 1,000,000 times as
likely as to use the narrow funnel (see the lower graph of Figure 1.6).
Interestingly, as reachability drops, the odds of using the narrow funnel
increase (see the pessimistic curves in Figure 1.6). That is, the harder
the search, the less likely the search will suffer from the problem of
nondeterminate search under-sampling the space.

2.4 Exploiting the Funnel via Random Search

Prior research is pessimistic about finding the funnels in tractable
time. Assumption-based truth maintenance systems incrementally build
and update the minimal environments (a.k.a. funnels) that control the
total assumption space (DeKleer, 1986). In practice, finding the min-
imal environments takes time exponential on theory size (Menzies and
Compton, 1997).

However, such pessimism may be misplaced. There is no need to find
the funnel in order to ezploit it since any pathway from inputs to goals
must pass through the funnel (by definition). Repeated application of
some random search technique will stumble across the funnel variables,
providing that search technique reaches the goals. Further, assuming
small funnels, such a random search would not have to run for very long
to sample all the possible worlds.

There is some evidence in the literature for this optimistic view that
random search can quickly sample the behavior of a wild system:

s  For CNF representations, it is well established that random search
with retries can demonstrate satisfiability in theories too large for
full search (Kautz and Selman, 1996).

s Williams and Nayak found that a random worlds search algorithm
performed as well as the best available assumption-based truth
maintenance system (which conducts a full worlds search) (Williams
and Nayak, 1996).

m Menzies, Easterbrook et.al. report experiments comparing ran-
dom world search with full world search for requirements engi-
neering. After millions of runs, they concluded that randomized
world search found almost as many goals in less time as full worlds
search (Menzies et al., 1999).

m  In other work, Menzies and Michael compared a full worlds search
with a random worlds search. As expected, the full worlds search
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Figure 1.7. HT4: full worlds search- fork one world for each consistent possibility
reached from inputs. HTO0: random worlds search- when contradictions are found,
pick one resolution at random, then continue. In the zone where both algorithms
terminated, HT0’s random world search found 98% of the goals found by HT4’s full
worlds search (Menzies and Michael, 1999).

ran slow (O(2")) while the random worlds search ran much faster
(O(N?)); see Figure 1.7. What is more interesting is that, for prob-
lems where both search methods terminated, the random worlds
search found 98% of the goals found by the full worlds search
(Menzies and Michael, 1999).

3. Controlling the Funnel

The previous section argued that (i) funnel variables control a device;
(ii) the number of funnel variables is small; and (iii) this small funnel
can be found quickly via randomized search. This is not enough to
prove CLAIM1. It remains to be shown that the funnel variables can
be controlled using just the available controllable inputs. This section
uses experiments with treatment learners to argue that the funnel can
be influenced by the controllers.

3.1 Treatment Learners: An Overview

Treatment learners input a sample of a device’s behavior that has
been classified by the oracle in Figure 1.1. These learners output a con-
junction that is a constraint on future control inputs of the device. This
conjunction, called the treatment, is a control strategy that “nudges”
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the device away from “bad” behavior towards “good” behavior (where
“c00d” and “bad” is defined by the oracle).

The learnt treatments must be carefully assessed. Ideally, the treat-
ments can be applied to the device that generated the data. However,
commonly, this is not practical and the learnt treatments should be stud-
ied using an N-way cross-validation study on the training data (i.e., N
times, learn on % of the data then test on the remaining %—th of the
data).

As we shall see, treatment learners are very simple and can only work if
there exist a small number of funnel attributes that control the behavior
of the systems. CLAIM1 holds in domains where treatment learners
can return adequate treatments.

The TAR2 (Menzies and Kiper, 2001; Hu, 2002) treatment learner
used in these experiments is an optimization and generalization of the
TARI system (Menzies and Sinsel, 2000). The following experiments use
examples presented in this text, data generated by (Menzies and Kiper,
2001), and examples from the UC Irvine machine learning database
(http://www.ics.uci.edu/"mlearn/. In keeping with the abstract
model of Figure 1.1, examples were selected with many uncertain vari-
ables. For example, the CAR data was generated from some model of
car assessment, the details of which are unavailable to us. Also, the
CMM2 and REACH examples were generated from models where key
control values were picked at random for each different run. In all these
cases, treatment learners were able to build adequate controllers.

The following brief sketch of TAR2 skips over numerous details. For
example, TAR2 generate treatments in increasing size order. That is,
smaller and cheaper treatments are generated before larger and more
expensive treatments. Also, when not all attributes in the input data
set are controllable, TAR?2 has a facility for focusing the treatments only
on the controllable inputs. Further, sometimes treatments can too re-
strictive. This can happen when the proposed treatment contains many
conjunctions and little of the input data falls within that restriction. In
such a case, the treatment must be relaxed, lest TAR2 over-fits on the
theory. For more on these and other details, see (Hu, 2002).

3.2 Treatment Learning: The Details

TAR2 input classified examples like those in Figure 1.8 and output
a treatment; i.e. a conjunction of control attribute values. To find
the treatments, TAR2 accesses a score for each classification. For a
golfer, the classes in Figure 1.8 could be scored as none=0 (i.e. worst),
some=1, lots=2 (i.e. best). TAR2 then seeks attribute ranges that oc-
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#  outlook  temperature (°F) humidity windy? time on course
1 sunny 85 86 false none
2 sunny 80 90 true none
8  sunny 72 95 false none
4 rain 65 70 true none
5 raim 71 96 true none
6 rain 70 96 false some
7 Tain 68 80 false some
8 rain 75 80 false some
9  sunny 69 70 false lots
10 sunny 75 70 true lots
11 overcast 83 88 false lots
12 overcast 64 65 true lots
18 overcast 72 90 true lots
14 overcast 81 75 false lots

Figure 1.8. A log of some golf-playing behavior.

cur more frequently in the highly scored classes than in the lower scored
classes. Let a = r be some attribute range (e.g. outlook=overcast)
and X (a = r) be the number of occurrences of that attribute range in
class X (e.g. lots(outlook=overcast)=4). If best is the highest scor-
ing class (e.g. best = lots) and others are the non-best class (e.g.
others = {none, some}), then A,_, is a measure of the worth of a = r
to improve the frequency of the best class. A,—, is calculated as follows:

score(best) — score(x)) * (best(a=1r) — X(a=r
Bm 3 (leeretbet - sere(e) s Gestla =1) - Xla =)

X €others |examples|

where |examples| is the number of categorized examples; e.g. Figure 1.8
has |ezamples| = 14 entries.

The attribute ranges in our golf example generate the A histogram
shown in Figure 1.9.i. A treatment is a subset of the attribute ranges
with an outstanding A,—, value. For our golf example, such attributes
can be seen in Figure 1.9.i: they are the outliers with outstandingly large
As on the right-hand-side.

To apply a treatment, TAR2 rejects all example entries that contradict
the conjunction of the attribute rages in the treatment. The ratio of
classes in the remaining examples is compared to the ratio of classes in
the original example set. For example Figure 1.10 shows the frequency of
classes in the untreated classes and after two different treatments. The
best treatment is the one that most increases the relative percentage of
preferred classes. In Figure 1.10, the best treatment is outlook=overcast;
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Figure 1.9.3: golf
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Figure 1.9.15: car
9
6
3
0

-13-12-11-10 -9 -8 -7

Figure 1.9.4wv: housing
8

6

4

-10-8 6 -4 -2 0 2 4 6 8 1012 14 16 18 20 22

Figure 1.9.vi: wine
9
6

3

T T TTTTTTTTTIT
4-32-1012345¢678 91011

Figure 1.9.viii: reach

20
15
10
5
0

Figure 1.9. A distribution seen in eight data sets. Outstandingly high deltaf values
shown in black. Y-axis is the number of times a particular A was seen. Figures
ii,iii,iv,v,vi come from datasets taken from the UC Irvine machine learning database
at http://www.ics.uci.edu/"mlearn/. Figures i,ii,viii are discussed in this text.
Figure vii comes from data generated in (Menzies and Kiper, 2001).

no change outlook =
overcast
69 6
4+ I 4+
24 24 I
0 E 0
5 3 6 0 0 4

none (worst)
= some
lots (best)

1l

Figure 1.10. Finding treatments that can improve golf playing behavior. With no

treatments, we only play golf lots of times in

= 57% of cases. With the

_6
5+3+6

restriction that outlook=owvercast, then we play golf lots of times in 100% of cases.
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no change persons = 2
1200 1900 ﬁ =unacceptable car (worst)
=acceptable car
900 900 i =good car
600 600 =very good car (best)
300 300

o1210 384 69 65 0576 0o 0 O

Figure 1.11. Finding treatments that can degrade cars. By reversing its scoring
function, TAR2 can be made to output treatments that favor bad classifications.
For example, in the CAR dataset from the UC Irvine machine learning database

(http://www.ics.uci.edu/"mlearn/), m = 70% of cars are unaccept-

able. However, with the restriction of person=2, then 100% of all cars are unaccept-
able.

i.e. if we bribe disc jockeys to always forecast overcast weather, then in
100% of cases, we should be playing lots of golf.

3.3 On the Generality of Treatment Learners

Figure 1.9 shows the A distribution generated by TAR2 in several
domains. Figure 1.9 lends support to CLAIM1: in nearly all the dis-
tributions there exist outstanding outliers for A (denoted by a black
bar in Figure 1.9). The worst A distribution we have seen is the CAR
distribution of Figure 1.9.ii where the maximum A seen is -7. But even
in this worst case, something like CLAIMZ1 still holds. By flipping the
scoring measure used on the classes, we can coerce TAR2 into finding
treatments that drive the system into a worse situation; see Figure 1.11.
So even when we can’t advise our agents how to improve a system, we
can still advise what not to do. In the case of CAR domain, this advise
would be “don’t buy two seater cars”.

There is much evidence that many domains contain a small num-
ber of variables that are crucial in determining the behavior of the
whole system. This phenomenon has been called various names includ-
ing small funnels (as above), master-variables in scheduling (Crawford
and Baker, 1994); prime-implicants in model-based diagnosis (Rymon,
1994); backbones in satisfiability (Singer et al., 2000); dominance filter-
ing in design (Josephson et al., 1998); and minimal environments in the
ATMS (DeKleer, 1986). These experimental results suggest that treat-
ment learning in particular and CLAIMI1 in general should be widely
applicable.
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Note that if the outstanding As are all from wild variables, then TAR2
will fail. We have not seen this case in practice. In all the domains
studied so far, a subset of the total domain variables were used as inputs.
Usually, these variables were selected on some idiosyncratic or pragmatic
grounds- e.g. these were variables for which data had already been
collected. Despite idiosyncratic nature of their collection method, these
attributes were sufficient to learn effective treatments.

4. Sensitivity

Optimistic conclusions derived from an average case analysis (such as
shown above) may not apply to particular systems. Hence, this chapter
now turns to CLAIMZ2; i.e. it is possible to redesign particular devices
in order to increase their immunity to wild variables.

To show CLAIM2, we need to first describe the use of TAR2 for sen-
sitivity analysis. As we shall see, this kind of analysis can be used to find
design options that increase or decrease the likelihood that CLAIM1
will holds for a particular device.

Suppose a designer has access several alternate versions of some de-
vice. The alternate versions may come from a range of possible design
choices. Suppose further that these devices have been implemented, ex-
ecuted, and their output classified by some oracle. If TAR2 is applied
to this output, it will generate numerous treatments, sorted by their
impact on the class distribution. Qur designer can study this range of
treatments to answer three interesting questions:

Q1: What is the best variation? This best variation would be scored
highest by TAR2; e.g. see Figure 1.10.

Q2: What is the worst variation? This worst variation can be found
using the techniques described above around Figure 1.11.

Q3: How important is variation X? Between the best and worst treat-
ment are a range of alternative treatments. To assess the signifi-
cance of some design option, the analyst only needs to see where
this option appears within this range.

To determine what features of a device influence reachability, we only
need to apply TAR2 to the outputs above from Equation 1.13. We will
classify each run as one of {0,10,20,...90}. A run is classified (e.g.) 90
if 90-100% of it’s goals are reached. The rationale for this classification
scheme is as follows:

m  Wild variables increase the variability in the behavior of a device.
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Q1: What is the best
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Figure 1.12. Studying the impacts of design options on reachability. Y-axis shows
percentage of runs falling into each X-axis bucket. X-axis shows the percentage of
the runs falling into a 10% bucket; e.g. 50% of the left-hand-side runs fell into the
90-100% reachable bucket.

= One measure of such variability is reachability; i.e. how many ran-
domly selected inputs probes are required to reach all the possible
behaviors of a system.

m  We say that the reachability is high if the number of such probes is
small. If the reachability is (e.g.) impossibly high, then an agent
must conduct an impractically large number of experiments on a
device (more than 10°%) in order to design control strategies.

TAR2 generated Figure 1.12. Figure 1.12.1eft can be read as follows:

If: The and-nodes are not common (andf < 25% of all nodes) and if
or-nodes have far more parents than and-nodes. ..

Then: In the majority of cases, the reachability will be 70% or more.
Figure 1.12.middle can be read as follows:

If: the and-nodes are very common (andf > 75%), then for certain
values of V and in...

Then: In the overwhelming majority of cases, the reachability will be
very low (0-10%)
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These two conclusions do support CLAIM2. That is, using TAR?2, it
is possible to assess features of a device according to how those features
change our ability to quickly understand that device.

More interesting than Figure 1.12.left and Figure 1.12.middle is Fig-
ure 1.12.right which explores the relative impact of nondeterminacy on
reachability. Nondeterministic devices contain nogoods that define sets
of nodes which can’t be believed at the same time. The no variable is the
average number of nogoods associated with a node. If no = 0, then the
same search can take linear time using (e.g.) the walk algorithm shown
in the appendix. If no > 0 then the graph contains incompatible pairs
and the results of (Gabow et al., 1976) discussed near the end of §2.1
apply; i.e. a search can take exponential time to execute, in the worse
case. Such an exponential time search would imply a very poor reach-
ability. In order to avoid such worst case behavior, many researchers
to reject nondeterminism. For example, Nancy Leveson comments that
“nondeterminacy is the enemy of reliability” (Leveson, 1995).

Contrary to the pessimism of (e.g.) Leveson, Figure 1.12.right sug-
gests that even when no > 0, then only certain ranges of no result in
reachability problems. Figure 1.12.right was the worst effect ever seen
in the TAR2 treatments that mentioned the no variable. Clearly, some
ranges of no have a disastrous effect on reachability. In the case of
6 < no < 12, then for certain other parameter values, the reachabil-
ity will be poor. However, while no can determine reachability, other
attributes can dominate the no effect. Recall that Figure 1.12.middle
showed treatments that have a worse impact than in Figure 1.12.right
without mentioning the no variable.

This kind of sensitivity analysis can be finely tuned to a particular
device:

1 The parameters required for the reachability model are set using
an analysis of the code in that particular project.

2 When uncertainty exists over those parameters, plausible mini-
mum and maximum bounds for those parameters are determined.

3 Equation 1.13 is executed using random inputs picked from the
preceding two points.

4 TAR2 learns treatment on the data collected from the preceding
run.
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5. Discussion

Can we trust agents to work adequately autonomously in wild en-
vironments? The uncertainty of such environments might make agent
co-ordination, reaction and pro-action ineffectual.

To answer this question we have explored an alternative to classical
formal analysis. Traditional formal analysis makes a deterministic as-
sumption where all computation is controlled. However, agents working
in dynamic environments cannot access all knowledge in that domain.
Nor can they stop the environment, or other agents, changing beliefs
without informing our agent. Hence, this deterministic assumption may
not be valid for agents working in highly dynamic environments.

We have presented here a non-standard formal analysis that makes
a nondeterministic assumption. At issue was our ability to control a
device, despite random perturbations to that device from the environ-
ment (or from other agents). Assuming that the device is of the form
of Figure 1.2 (i.e. negation-free horn clauses plus some nogood pred-
icates), then there will exist a funnel within the theory. This funnel
contains the key variables that control the rest of the system. Theoreti-
cally, is has been shown that, on average, the size of the funnel is small.
Hence, only a small number of different behaviors are possible, despite
the inputs from the wild inputs. Also, using some experiments with the
TAR2 treatment learner, it was argued that these funnel variables can
be controlled from the inputs.

All the above was an average case analysis. By applying TAR2 to our
theoretical model, it is possible to theoretically assess alternate designs
according to how well they “nudge” a system into this desired average
case behavior. Several “nudges” were discussed above include the effects
of nondeterminism within a system. Compared to other factors, nonde-
terminism was not the most significant problem associated with search
a device.

Our current research direction is to test our theory on real models
reduced to our negation-free horn clauses. To this end, we are building
translators from SCR state charts (Heitmeyer et al., 1996) to our and-or
graphs. Once built, we will test if:

m The range of actually behaviors within these state charts are as
small as predicted by funnel theory.

m  The theoretical assessments of alternate designs seen in §4 will let
us find new designs that are less influenced by the wild inputs.
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Notes

1. We owe this image to the keynote address of Dr. James Handler at the first NASA
Goddard Workshop on Formal Approaches to Agent-Based Systems, April 5-7, 1999.

2. Method A is a synonym for “explore every option in the program”. Experience sug-
gests that this is often an intractable process; e.g. the state-space explosion problem of
model checkers (Holzmann, 1997); or the intractable branching problem of qualitative rea-
soning (Clancy and Kuipers, 1997).

3. DeKleer called the funnel assumptions the minimal environments. We do not adopt
that terminology here since DeKleer used consistency-based abduction while we are exploring
set-covering abduction here. For an excellent discussion that defines and distinguishes set-
covering from consistency-based methods, see (Console and Torasso, 1991).
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Appendix: Walking And-Or Graphs in Linear Time

The function walk shown below returns a list of nodes reachable across
some and-or graph g from supplied inputs ins. Walk assumes that the
graph does not contain nogoods.

STRUCT node {

type : one OF {and,or}
parents : list OF node
kids : list OF node
waiting : integer

}

FUNCTION walk(g: list of node, ins: list of node): list OF node {
LOCAL v,k: node,
out,todo: list OF node;
FOR v € g {v.waiting « {IF v.type=="and" THEN |v.parents| ELSE 1 }}
out < ins
todo < ims
WHILE (v <« pop(todo)) {
out <« push(out,v)
FOR k € v.kids {
k.waiting--
IF k.waiting==0 THEN {todo < push(todo,k)}

}

RETURN out

On each visit to a node k, a waiting counter is decremented. When
that counter goes to zero, then the algorithm has visited enough parents
v to permit a visit to the child.. That child node is then added to a todo
stack so that its children can be explored at subsequent iteration.

Note that all the parents of an and-node must be visited before visiting
the and-node while only one parent of and or-node need be visited before
we can visit and or-node. To implement this, and-nodes have their
waiting initialized to the number of parents while or-nodes have their
waiting set to one.

Each node k is visited, at maximum, once for each parent of that
node v. Hence, the algorithm’s time complexity is O(N) where N is the
number of nodes in the graph.



