
Better reasoning about software engineering activities

Tim Menzies
�

University of British Comlumbia
tim@menzies.com

James D. Kiper
�

Miami University
kiperjd@muohio.edu

ABSTRACT

Software management oracles often contain numerous
subjective features. At each subjective point, a range of be-
haviors is possible. Stochastic simulation samples a subset
of the possible behaviors. After many such stochastic simu-
lations, the TAR2 treatment learner can find control actions
that have (usually) the same impact despite the subjectivity
of the oracle.

1. Introduction

Experience with software management can be encoded
into an management oracle that can offer advise on how
to structure a software project. Three components are re-
quired for such an oracle. Firstly, a knowledge source is re-
quired. Secondly, a syntax is required to encode that knowl-
edge source. Thirdly, an interpreter is required to execute
the syntax. In the case of subjective software engineering
knowledge, this interpreter must be able to handle degrees
of belief.

This paper reports experience with one such oracle. The
knowledge source was a detailed description of CMM2 [3,
p125-191]. We used CMM2 since, in our experience, many
organizations can achieve at least this level. CMM2 is less
concerned with issues of (e.g.) which design pattern to ap-
ply, than with what overall project structure should be im-
plemented. Improving CMM2-style decisions is important
since in early software lifecycle, many CMM2-style deci-
sions effect the resource allocation for the rest of the project.

The JANE language was used to encode the knowledge
source. In order to handle degrees of belief, JANE assigns a
Chances weight to all of its propositions. This weight is
a subjective judgement and so, for each run, the JANE in-
terpreter hence varies this weight according to distributions

1Proceedings of ASE 2001, San Diego, USA. Corresponding author.
Department of Electrical & Computer Engineering; 2356 Main Mall; Van-
couver, B.C. Canada V6T1Z4. Phone: (604) 822-3381 Web: http:
//tim.menzies.com.

2Dept. Computer Science & Systems Analysis, Miami University, Ox-
ford, Ohio, USA.

supplied by the analyst. After many such runs, a large log
of possible behaviors is generated which is summarized by
the TAR2 treatment learner.

Despite the range of possible actions within our encod-
ing of CMM-2, and the subjectivity of the weights mea-
sures, there exists a small number of actions that have a
significant impact on the project. Figure 1 shows three sets
of actions learnt by TAR2. The left-hand-side histogram
marked

���
shows the ratio of different project types pre-

dicted by our software management oracle. The other his-
tograms (

�����	�
) show how those ratios change after apply-

ing the treatments learnt by TAR2; i.e. managers taking
certain actions to change their current situation. The worth
of each option is a reflection of the proportion of good and
bad projects, compared to

�
�
; i.e. ( ���������� ���������

). Note
that as worth increases, the proportion of preferred projects
also increases.

The rest of this paper describes how Figure 1 was gener-
ated.

2. JANE

A JANE programmer enters in models in a propositional
rule-based language. Internally, these rules are converted
into a directed graph with the following BNF1:

Graph ::== Goal (Vertex)* (Edge)*
Goal ::== Item
Vertex ::== Mix | Item
Item ::== Type Variable Value Label
Type ::== action | fault | requirement
Mix ::== CombineRules Order

Note that each Graph has a special Goal Item. Concep-
tually, JANE is a backward chainer that performs a recursive
descent from the Goal.

In JANE, every vertex is either an Item where some
Value is assigned to some Variable; or a Mix vertex

1In this article’s BNF notation, W ::== X Y | Z denotes that the
structure � contains either the structures X and Y or the structure � . (X)*
denotes zero or more repeats of X. (X)+ denotes one or more repeats of
X. [X] denotes that X is optional. Terminals start with lower case, or are
quoted



0
10
20
30
40
50
60
70

14 22 30 24
0

10
20
30
40
50
60
70

5 16 5 74
0

10
20
30
40
50
60
70

7 13 19 60
0

10
20
30
40
50
60
70

5 14 26 55���
=current

�! �#" ��$
worth=1 worth=1.44 worth=1.31 worth=1.28

KEY:
Top-to-bottom = least
desirable to most desirable.

= high cost, low chances;
i.e. a very bad software
project

= low cost, low chances

= high cost, high chances

= low cost, high chances;
i.e. a good software
project

Figure 1. Ratios of different software project types seen in four situations.

where influences are combined. Each Vertex and Edge
in JANE is augmented with a Cost and a Chancesweight
and Mix vertices define how Costs and Chances are
combined”

Edge ::== Vertex Label Vertex
Label ::== Cost Chances
Cost ::== null | 0.00 .. infinity
Chances ::== null | 0.00 .. 1.00

JANE’s Chances define the extent to which a belief in one
vertex can propagate to another. Costs let an analyst model
the common situation where some of the Cost of some
procedure is amortized by reusing its results many times.
Hence, the first time we use an actionwe incur that Cost
but afterwards, that action is free of charge.

The Cost and Chances of Vertexs are either pro-
vided by the JANE programmer or computed at runtime via
a traversal of the edges. In JANE, this computation is de-
fined by the CombineRules at the Mix vertices. For each
child of a Mix node, a recursive descent is executed and the
returned Cost and Chances values are combined accord-
ing to the CombineRules:

CombineRules ::== CostCombine
| ChancesCombine

CostCombine ::== first(cost)
| sum(cost)

ChancesCombine ::== first(chances)
| sum(chances)
| negate
| product(chances)

Negate is used for negation. For example, when search-
ing X if not A, the Chances of X are 1-Chances(A).
Product(chances) is used for conjunctions. For ex-
ample, when searching X if A and B and C, the Chances
of X is the product of the chances of A,B,C. First(X) is
used for simple disjunctive evidence. For example, when
testing X if A or B or C, then the Cost and Chances

of X is taken from the first member of A,B,C that is satis-
ficed. Sum(X) is used for summing disjunctive evidence.
For example, JANE supports a special operator called ors
that is used for implementing disjunctive summing (JANE
also supports several other novel operators, described in the
next section). Ors is like or except that when testing (e.g.)
X if A ors B ors C, all members of A,B,C will tested. If
at least one succeeds, the the Cost and Chances of X is
summed from the satisficed members of A,B,C.
Sum(X) and Product(X) can be combined to imple-

ment risk mitigation effects. For example, suppose some
action5 disables most of the contribution of fault3 on fault1.
In the JANE syntax, this can be coded as

fault1 if fault2 @ 0.4
ors (fault3@0.4 and not action5@0.9)

The ors operator uses Sum(chances); and uses
Product(chances); and not uses negate. Hence, if
the Chances of fault2,fault3,action5 are all unity, then of
action5 is false, the Chances of fault1 is %'& (*)+��%'& (,� �.-% �/��� %0& 1 . Alternatively, if action5 is true, the Chances
of fault1 is %'& (#)2�3%0& (�,#� �*- %0& 4 ���.� %0& (5(768%0& 1 . That is,
using action5 significantly reduces the Chances of fault1.

3. JANE and Random Search

JANE supports two mechanisms for exploring the space
of possibilities within the CMM-2 encoding. Both are
random search tools. Firstly, when defining Costs and
Chances, the programmer can supply a range and a skew.
For example:

goodUnitTesting and cost = 1 to +5

defines the cost of goodUnitTesting as being somewhere in
the range 1 to 5, with the mean skewed slightly towards 5
(denoted by the “+”). During a simulation, the first time this
cost is accessed, it is assigned randomly according to the



range and skew. The assignment is cached so that all sub-
sequent accesses use the same randomly generated value.
After each simulation, the cache is cleared. After thousands
of simulations, JANE can sample the “what-if” behavior re-
sulting from different assignments within the range.

Secondly, JANE can randomized where it searches using
the Order of the Mix operators:

Order ::== Random | Left2Right
Left2Right ::== and | or | ors | any | not
Random ::== rand | ror | rors | rany

In the case where the child-order represents some se-
quence that must be preserved (e.g. ordering software pro-
cesses) JANE programmers can use Left2Right opera-
tors. However, repeatedly searching a graph in the same or-
der may miss important interactions. In order not to miss
such important interactions, JANE supports several ran-
dom search operators: rand, ror, rors, and rany. For�:9<;>=?�A@CBED	F��A���HG , JANE tries to prove all of X op Y op Z,
but does so in some randomly selected order.
Rany is best understood by comparison with ror. The

expression X ror Y ror Z is exited when any one of X,Y,Z
is satisficed. In contrast, JANE tries to prove one or more
of X rany Y rany Z, and does so in some randomly se-
lected order. Rany is useful when searching for subsets
that contribute to some conclusion. For example, the fol-
lowing JANE rule offers several essential features of sta-
bleRequirements plus several optional factors relating to
monitoring change in evolving projects. The essential fea-
tures are rand-ed together while the optional factors are
rany-ed together.

stableRequirements if effectiveReviews @ 0.3
rand requirementsUsed @ 0.3
rand sEteamParticipatesInPlanning @ 0.3
rand documentedRequirements @ 0.3
rand sQAactivities @ 0.3
rand (reviewRequirementChanges @ 0.3

rany softwareConfigurationManagement@0.3
rany baselineChangesControlled @ 0.3
rany workProductsIdentified @ 0.3
rany softwareTracking @ 0.3).

Rors is useful for specifying the high-level goals of the
system. While rany will search some subset of its param-
eters, rors will search all its parameters. For example, in
this less-than-perfect world, it is unlikely we can be rich and
happy and healthy, but that should not stop us from trying;
i.e.

goal if rich rors happy rors healthy

The operators rand, ror, rors and rany have the same
satisficing criteria as and, or, ors and any respectively,
but the latter search left-to-right while the former search in a
randomly selected order. In terms of the CombineRules
described above, And and rand are conjunctive operators;
Or and ror are simple disjunctive operators; and the rest
are summing disjunctive operators.

4. The CMM2 Model

CMM2 written in JANE has 55 Items with Value ;=I�JF:K�G . Of the 55 Items, 27 were identified as management
actions that could be changed by managers (see Figure ??).
The top-level Goal was goodProject.

Within the model, Chances values were added to 79
edges of the 150 edges in the model. While each of these
values are based on expert judgement, their precise value
is subjective. Hence, each such Chances value L was
altered to be a range

chances = 0.7*X to 1.3*X

so the simulator could experiment with values nearby the
stated Chances value.

The full model is available via email from the authors.

5. Learning From JANE

One execution of JANE can be summarized by the Cost
and Chances of the top-level goal goodProject, the 79 val-
ues assigned to the subjective edges, and the values assigned
to the 27 manager’s actions. Random walking over JANE
models can hence generate an overwhelming amount of data
(79+27+2=108 data points per simulation, times the number
of simulations).

Summarization of JANE output is performed by the
TAR2 treatment learner. A treatment learner outputs a set
of possible treatments (

�
) using the process described be-

low. Each treatment is assessed by the change it makes to
the distribution of classes. A good treatment increases the
frequency of the better classes (where “better” is defined
below).

Treatment learners input a set of classified examples
( MON ). Each example is a conjunction of attribute ranges,
plus one classification P . This classification comes from a
pre-defined set of classes Q ; i.e. PO;RQ . Each classificationP is associated with a numeric score i.e. some classifications
score better than others.

For the CMM model, after 2000 random walks, a
wide range of generated Costs and Changes in good-
Project were observed. These ranges were sub-divided
into high/low bands of roughly the same size. Comb-
ing high/low Cost/Chances yields four classes. These
classes were scored as follows:
Score=0: High cost, low chance
Score=1: Low cost, low chance
Score=2: High cost, high chance
Score=4: Low cost, high chance.

That is, our preferred projects are cheap and highly likely
while expensive, low odds projects are to be avoided.



A treatment learner searches for candidate attribute
ranges; i.e. ranges that are more common in the best classi-
fication than in the not-so-best classification. In the CMM
domain, such a candidate is an attribute range that would
tend to drive the system into low cost, high chance projects.

A heuristic ranking S is given to each candidate reflect-
ing (i) how much more common is the candidate in the best
class than in some non-best-class P ; and (ii) how much bet-
ter is the best class than class P :T.U+V�WJX/YIZI[AV]\:[^W`_ba/cdX`egfCW^W�V]X:ahabikjdl m.npo!q U<r o X:esfHWtW�Uu\:[^W`_ ll m.nvo�q U<r o X`egfCW^W�UuX lxw
where y �{z

denotes an attribute y with range
z

and| M#N7}~L |
denotes the size of the subset of examples that

contain L .
Candidates with a large S score are attribute ranges that

are far more frequent in the best class (high chances, low
cost projects) than in other classes. The treatments

�
are

all subsets of candidates with a ranking higher that some
user-specified S threshold value S?� .

In reality, it is hard to change many aspects of a project
and the wise software engineer seeks the smallest number of
changes with the greatest impact. Assuming we seek three
changes, there are 560 possible treatments of size 3 in our
16 candidates. The best treatment is the one that offers the
biggest improvement to the class distributions seen in the
untreated data. To find the best treatment, we compute fol-
lowing ratio for all 560 treatments:

� Y^Z^_���V ��� aEU��<���A� l m.nvo � � o X`egfCW^W�UuX l i�W:X/YIZI[AV]XJa\`fCWJ[teg���'[ � YIZt_h� (1)

where baseline worth is the worth seen in the untreated
example set:\`fCWJ[teg���	[ � YIZt_h��U+��/��� l m.npo X:egfCWtW�UuX l i�W:X`Y^Z?[AV]XJa
6 Results

Figure 2 shows the three best treatments (
��� F ��� F ��� )

found using this technique (and Figure 1 compared the ef-
fects of these treatments to the untreated examples). Note
that the values of each attribute are reported using the tags
no, lower, middle, or upper. In treatment learning, continu-
ous attribute ranges are divided into N-discrete bands based
on percentile positions. For N=3, we can name the bands
lower, middle, upper for the lower, middle, and upper 33%
percentile bands.

In Figure 2,
���

and
���

are advising to lower the cost of:

Using requirements: This could be accomplished by
(e.g.) by sharing them around the development team
in some searchable hypertext format

�  
: requirementsUsed.Cost=lower and not periodicSoftware-

Reviews and formalReviewsAtMilestones.Cost=lower� "
: requirementsUsed.Cost=lower and

goodUnitTesting.Cost=middle and
formalReviewsAtMilestones.Cost=lower��$

: goodUnitTesting.Cost=lower and
periodicSoftwareReviews.Cost=middle and
formalReviewsAtMilestones.Cost=lower

Figure 2. The three best treatments found in
the CMM-2 model.

Performing formal reviews at milestones: This could be
accomplished by (e.g.) using ultra-lightweight formal
methods such as proposed by Leveson [2].

Performing good unit testing: This could be accom-
plished by (e.g.) hiring better test engineers.

The value no refers to missing values; a report of X=no is a
recommendation not to use L as part of a treatment. Such
a negative recommendation is seen in

���
which is advising

against periodicSoftwareReviews (plus lowering the costs of
using requirements and formal reviews at milestones). Note
that if periodicSoftwareReviews are conducted,

�7�
is saying

that there is no apparent need to reduce the cost of such
reviews.

7. DISCUSSION

Space limitations prevent a review of work related to this
research such as the goal-graphs of Chung et.al. [1] (such a
review is available from the authors). This discussion sec-
tion will hence focus on the major threat to the external va-
lidity of the above conclusions.

The knowledge source used in this study (CMM2) is
widely, but not universally, accepted. Proponents of some
other knowledge source could reject the specifics of the
above conclusions, but still use the general technique; i.e.
they could encode their preferred knowledge source in
JANE and repeat the above analysis.

References

[1] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishers, 2000.

[2] N. Leveson, S. Cha, and T. Shimall. Safety verification of ada
programs using software fault trees. IEEE Software, 8(7):48–
59, July 1991.

[3] M. Paulk, C. Weber, B. Curtis, and M. Chriss. The Capa-
bility Maturity Model: Guidelines for Improving the Software
Process. Addison-Wesley, 1995.


