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Abstract

Designmeanssearchinga spaceof optionsandthis
may be an enormousspace. A mere 20 boolean
optionsimplies 220 > 1,000,000 possibleargu-
ments. If, in the usual case,this spaceof argu-
mentscontainsmary irrelevant and repeateddis-
putes, then the spaceof critical argumentsmay
be dramaticallysmallerthanthe spaceof all argu-
ments. Thesecritical algumentscan be found via
stodhasticabductionplusinduction

1 Introduction

The late Herbert Simon characterizeddesign as a search
througha spaceof options[Simon,1969. This definitioncan
beextendedasfollows: givensomepredicateGOODthatcan
assesadesignthenadesigndiscussiorcanbecharacterized
asadebatebetweeroptionsin thedesignspacehatmaximize
the scoreof GOOD. In the usualcase the designdiscussion
is complicatedy a setof uncontollable variableswhich are
setvia somenondeterministigprocessoutsidethe control of
theanalyst.

At first glance thenumberof designdiscussionseemsle-
pressingarge. A mere20 binary optionsimplies morethan
220 > 1,000,000 options. Combinedwith the uncontrol-
lables,this impliesthatmary of theseoptionshave a nonde-
terministicresult.

Elaborateheuristictoolshave beendesignedo cull thede-
signdiscussiorproblem;e.g.[Steier 1993. But thetopical
natureof strongheuristicmethodsimpliesthattheseheuris-
tics may have to laboriouslyhand-craftedor eachnew do-
main.

Tamingthe processof designdiscussionss a pressingn-
dustrialproblem.We cant assumehatsoftwarewill be built
by asingleteamin asinglelocationusingasingletool kit for
asinglepurpose.Givenrecentadvancesn Internettechnol-
ogy (e.g. CORRA, the world-wide web), we shouldexpect
thatsoftwaredevelopmentwill begeographicallyistributed.
For suchdistributed development,it is pragmaticto permit
the paralleldevelopmentof separatéwork pieces”that will
have to be unified at somelater date. At that later date,we
will always be searchinga spaceof possibly contradictory
ideasto find consistenpartsof the unifieddesign.

Searchinga spaceof possiblycontradictoryideasis NP-
hard. Gabav et.al. shaved that building pathways across
spacescontainingcontradictions(e.g. the {z,—z}) is NP-
hardfor all but the simplestspacega spacds very simpleif
it is very small,or it is a simpletree,or it hasa dependeng
networkswith out-degree< 1) [Gabaw etal., 1974. Hence
searchinglesignsantake exponentiatime andary practical
proof procedurenustusesomeform of incompletesearch.

This article offers an optimistic alternatie to the above
pessimism. This new optimism is basedon two points.
Firstly, much researchin the 1990s showved that theoreti-
cally slow NP-hardtasksaretruly slow only for a very nar
row rangeof problems.Thatsameresearctappliedstochas-
tic searchto NP-hardproblems,with amazingsuccess.For
example, stochasticsearchmethodsare very effective for
schedulingproblemsand can solve hard planningproblems
mary timesfasterthantraditionalmethodssuchasa system-
atic Davis-Putnanprocedurd KautzandSelman, 1996 .

Secondly mary argumentspacescontainfunnels i.e. a
small numberof critical variablesthat setall othervariables
in asystem(themetaphoihereis thatall arlgumentsun down
thefunnel) [Menziesetal., 1999. The conceptof suchcriti-
calvariableshasbeenreportedn mary domains.Thesehave
beencalledavariety of namessuchas:

e Mastervariablesin scheduling[Crawford and Baker,
1994;

e Prime-implicantsin model-baseddiagnosis[Rymon,
1994 or machinelearning[Rymon, 1993, or fault-tree
analysig Lutz andWoodhouse1999.

e Badbonesin satisfiability [Parkes, 1999; Singeret al.,
2004;

e Dominancdfiltering in design(describedelow);

e Minimal ervironmentsn the ATMS [DeKleer 1986;

e The basecontoversial assumptionof HT4 [Menzies
andCompton,1997.

Thecoreintuition in all theseermsis thesame whathappens
in the total spaceof a programis controlledby a small criti-
cal region within the program.The overall size of the design
spaceis exponentialon the numberof differentassignments
to funnelvariablesin this critical region. Systemswith nar-
row funnelshave very few funnelassignmentslf suchsmall
funnelsexist, thenthe total spaceof designoptionscanre-
duceto merelythe spaceof optionssanctionedy thecritical
zones. Oncetheseare optionsare discussecdand resohed,



thentherestof theargumentspacereducegdramaticallyand
thereis little left to debate.

Finding the funnelscanbe complex. For example,com-
puting the basecontroversialassumptionss a NP-complete
task[Menzieset al., 2001]. But notethatwe don't have to
try to hardto find the funnel. Sincethe funnelscontrol the
searctspacewe neednot seekthefunnel,it will find us. Any
stochasticallyselectedpathway to goals must passthrough
the funnel (by definition). Thatis, repeatedapplicationof
somefaststochastisearchtechniquewill stumbleacrosshe
funnelvariables providing thatsearchtechniquereacheghe
goals.

Stochastidoolsarehencea possiblemethodfor exploring
andreducingdesignoptions. This paperexploresthis possi-
bility. A simple stochasticsearchenginecalled CHEETAH
exercisesaargumentspacesxpressedn the JANE rule-based
language. A monitor called TARZAN watchesfrom above
as CHEETAH chasesJANE around the argument space.
TARZAN builds a log of Janes behaiour and learnshow
to nudgeJANE into betterbehaviour. Funneltheorypredicts
thatif designspacegontainnarron funnels,thenthe nudges
will befew andfastto find.

The restof this paperis structuredasfollows. Somere-
lated work is discussedfirst. This is followed by a de-
scription of funnel theory; evidencein the literatureof nar
row funnels; and a descriptionof some experimentswith
JANE/CHEETAH/TARZAN.

2 Reated Work

The connectionof this work to abductionis discussede-
low (see§4.4). Anotherrelatedwork is the MAT SAT prob-
lem discussedy (e.g.) Asanoand Williamson [Asanoand
Williamson, 200d. In MAX SAT, eachclausegetsa weight
andtheinferenceproblemis to find a setof variablebindings
thatmaximizeghesumof theweightsof thesatisfiecdclauses.
While the problemis NP-hard,polynomialtime algorithms
areknownthatgenerateolutionswith aperformancguaran-
teeof a.. Theoreticallya < I = 0.875 exceptin theunlikely

eventthatP = N P. Thestate-of-the-arin MAX SAT areal-

gorithmsthatgeneratex = 0.8331 [AsanoandWilliamson,

200d.

StandardVIAX SAT is differentto the designdiscussion
problemdiscussedherein severalways.An openissueatthis
time is whetheror not thesedifferencesrule out the use of
MAX SAT in thisdomain.

e Thedesignoption spaceneednot be necessarilype ex-
pressibleas a finite CNF In particular if the software
being designeds for simulationpurposesthen multi-
ple assignmentsnay be madeto the samevariable, at
differenttimesin the simulation.

¢ Not all the variablesin the theory canbe setwith cer
tainty by the proof procedureRecallthatthe uncontrol-
lablevariablesaresetvia somenondeterministigprocess
outsidethe control of the analyst. That s, the assign-
mentsmadeby a proof procedureo the uncontrollables
are uncertain. Hence,the taskin designdiscussionis
to find control actions(assignment# thecontrollables)

thattendto maximizethe GOO Dnessof design,what-
everassignmentaremadeto theuncontrollables.

¢ In the example shavn below, the theory is explicitly
availableandis writtenin the JANE syntax.The CHEE-
TAH systemexploresthe optionswithin the JANE rules
to build a datasetthat TARZAN canprocess.In other
cases,only the datasetis available and not the the-
ory. For example,in §4.2,anexamplewill be presented
wherea proceduralmodel generatediatafrom Monte
Carlo simulationsof the inputs. The procesddiscussed
in the this article shouldbe ableto supportdesigndis-
cussionsn thetheory-lessase.

3 Funné Theory

Funneltheoryis a claim thatwithin the spaceof alguments,
thereexist a smallnumberof key decisionghatdetermineall
others. To introducefunnels,we first say that an argument
spacesupportsreasonsi.e. chainsof reasoninghatlink in-
putsin a certaincontet to desiredgoals. Chainshave links
of at leasttwo types. Firstly, therearelinks that clashwith
otherlinks. Secondlytherearethelinks thatdependn other
links. Onemethodof arguinglessis to first debatethe non-
dependentlashinglinks. Theresolutiongo thesearguments
will havethegreatesimpactof reducingthesubsequerdrgu-
ment(s).For example,supposehefollowing algumentspace
is explored using the invariantnogood(X,—X) and every-
thing thatis notacontext or a goal is opento debate:

a—b—c—d—e
contertl —f — g —h —i— j — goal
contert2 —k — g — | — m — —j — goal
n—o—p—q— e

While all of {a,b,..q} is subjectto discussion,in the
context of reaching some specified goals from contextl
and contt2, the only important disputesare the clashes
{g9,79,j,j}. The{e, —e} clashis notexercisedn the con-
text of contextl, context2 + goal Sinceno reasonusese
or —e. Since{j, —j} arefully dependenon {g, —g}, thenthe
coreof thisargumentis onevariable({g}) with two disputed
values:trueandfalse.

The funnel of an argument space contains the non-
dependentlashinglinks; e.g. {g}* The argumentswith
greatesinformationcontentaretheargumentsaboutthefun-
nelvariablessincethesevariablessetthe others.If thespace
containsnarrow funnelsthen the total agumentspacecan
be greatlyreducedto a small numberof highly informative
disputesaboutfunnel variables. For example, supposeour
staleholdersagreethatg is true, thenin the contet of argu-
ing abouthow contextl, context2 F goal, the agument
spacereducego:

contextl —f — g — h — i — j—> goal

!Readergamiliar with the ATMS [DeKleer 1986 will notethe
similarities betweenthe funnel and ATMS minimal ervironments
However, while both approachesely on somenogood invariant,
therearesignificantdifferencedetweerthe consisteng-basedotal
ervisionmentof the ATMS andthe set-cwering relevantervision-
mentsdiscussediere;see[MenziesandCompton,1997 for details.
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Figure 1: A stylized versionof the SFV Viewer. Adapted
from [Josephsoetal., 1999.

The reasoningstartingwith k& hasbeenculled since, by en-
dorsingg, we mustrejectsall lines of reasoninghatuse—yg.
Also, the reasoningstartingwith a, n areignoredsincethey
areirrelevantin this contet; i.e. they do not participatein
reachinga desiredgoal. Further in this contet, thereis little
pointarguingabout{ f, h, i, j } sinceif ary of thesearefalse,
thenno goalcanbereached.

This small example shavs how to amue less through
funnel-basedeasoning. Funnel-basedrgumentationfinds
the key amguments,and ignoresnumerousirrelevant argu-
ments. In the above example,a argumentspacecontaining
up to 216 = 65536 discussionsabout16 booleanvariables
{a..q} hasbeerreducedo onediscussioraboutonevariable;
i.e."is g trueorfalse?”.

4 TheFunnda Phenomena

If narrov funnelswere common,thenwe shouldfind evi-
dencethatlarge spacef optionscanbe reducedo a much
smallerspaceof key options.Thesesectionoffersseveralex-
amplesof exactly this phenomena.

41 SFV

TheSeeler, Filter, Viewerarchitecturd SFV) exploresalarge
spaceof designoptions[Josephsort al., 199§. The core
intuition of SFV wasthat algorithmic approacheso design
neednot prematurelycull designoptions. Given the space
CPUavailableto (e.g.) mostengineerindirms, a hugespace
of designoptionscould be generatedThis spacecould then
be exploredusingadominancecriteria:

We say that designcandidateA dominatescan-
didate B if A is superioror equalto B in every
dimensionof evaluationand distinctly superiorin
at leastone dimension. Dominateddesignsneed
not be consideredurther andthey may be filtered
out[Josephsoetal., 1994.

SFV wasfirst testedin the domainof hybrid electricve-
hicle design. Hybrid electric vehiclesare automobilesthat
usebothan electricalmotorandaninternal-comiostion(IC)
engineaspower sources.Suchdesignanustmake extensie

abbreiations current proposed
situation | changes

prec=0..5 precedentness 0,1

flex=0..5 developmentflexibility 1,2,3,4 1

resl=0..5 risk resolution 0,1,2 2

team=0..5 teamcohesion 1,2 2

pmat=0..5 processnaturity 0,1,2,3 3

rely=0..4 requiredreliability 4

data=1..4 databassize 2

cplx=0..5 productcompleity 4,5

ruse=1..5 level of reuse 1,2,3 3

docu=0..4 docorequirements 1,2,3 3

time=2..5 runtimeconstraints ?

stor=2..5 main memorystorage 2,3,4 2

pvol=1..4 platformvolatility 1

acap=0..4 analystcapability 1,2 2

pcap=0..4 programmercapability | 2

pcon=0..4 programmecontinuity | 1,2 2

axp=0..4 analystexperience 1,2

pexp=0..4 platformexperience 2

ltex=0..4 experiencewith tools 1,2,3 3

tool=0..4 useof softwaretools 1,2

site=0..5 multi-site development | 2

sced=0..4 time beforedelivery 0,1,2 2
# of combinations= 6 * 10°

Figure2: A NASA softwareproject.Unknownsin thecurrent
situationare shavn asrangesor, in the caseof total lack of
knowledge,a“?”.

tradeoffs betweerdesignoptimizedfor IC motorsor electric
motors.Millions of designoptionscanbe generatedHence,
afterapplyingdominancetherearestill thousandsf options
to consider SFV's Viewer displayedall theseoptionson all
pairsof assessmeititeria. Figurel shavsthatdisplay:each
dotrepresentsnedesign.Notethattheuserhasselectedre-
gionin theright-bottomplot. The userhasindicatedthatthe
selectedregion is acceptableo them. All the designswithin
the preferredregion now wink in theotherplots;i.e. theuser
canseehow their preferenceémpactson other dimensions.
Also, theusercannow remove from all plotsthedesignsout-
sidethe selectedegion;i.e. theusercanconcentrat®nly on
promisingdesigns.

In aresultconsistentvith narrav funnels,the SFV experi-
enceis 9910 99.9%of thoseoptionscouldbeculled. Joseph-
son (personalcommunication)reportsthat dominanceplus
theViewer let a designteamfind 7 bestdesigngrom a space
of 2 x 10° options.

4.2 Software Project Risk

Menziesé& Sinselfound that a spaceof 54 million options
containedfound two key variablesthat could most control
therestof the systemMenziesandSinsel,200d. In thatap-
plication,a COCOMO-basedool [Madachy 1997 wasused
to evaluatetherisk thata NASA softwareprojectwould suf-
fer from develop-timeoverrun(that projectis shawvn in Fig-
ure 2. The tool usedin that study requireda guesstimate
of the sourcelines of code (SLOC) in the systemand cer
taininternaltuning parametersvhich, ideally, arelearntfrom
historical data. Lacking suchdata,Menzies& Sinselused
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Figure3: TOP:A decisiontree(left) anda prunedtree(right)
holdingall brancheghatdo not contradictacap=2
BOTTOM: Numberof branchego differentrisk classifica-
tion. Legend: =low risk =highrisk.

threeguesse$or SLOC andthreesetsof tuningswhich they
took from the literature. Competingstaleholdersproposed
11 changedo a project. Someof the projectfeatureswere
unclearand,for thosefeaturesprojectmanagersould only
offer rangesfor the requiredinputsto the COCOMO-based
tool. Theserangesoffered 2930 possiblecombinationsfor
theinputs. Whencombinedwith the otheruncertaintiesthis
generated spaceof 54 million possibilities(2930 « 2! 1*three
guessefor SLOC* threetunings).

Facedwith this overdoseof possibilities,Menzies& Sin-
selperformed50,000Monte Carlo simulationswherethein-
putsweretakenfrom the 54 million possibilities.A machine
learning programgeneratediecisiontreesfrom the 50,000
runs. A tree query languagecalled TARZAN then swung
throughthe learnttreeslooking for the leastnumberof at-
tributerangeghathadthe biggestimpacton the overall soft-
waredevelopmentisk. TARZAN treatedhelearnttreesasa
spaceof possibilitieswithin theloggedbehaiour. TARZAN
what-if queriesby pruningall branchesén thelearnttreesthat
contradictour what-if possibility’. For example,if we won-
der“what-if acap=2"thenFigure3, topleft, wouldbepruned
to Figure3, top right. This particular‘what-if” turnsout to
beabadidea. The histogramsn Figure3, bottom,shaw that
this pruningdrivesusinto a situationwherethe ratio to low
risk to high risk projectschangedrom 3:2to 1:1. Thatis, if
acap=2 thenwe increaseour chance®f a high-riskproject.

Figure4 shavs someof thewhat-if queriesconductedver
thetreedearntfrom the50,000runs. Thebaselingisk profile
is shovn in cell A1 of Figure4: prior to the what-if queries,
thelearnttreeshold branchego 7,24,8low,medium,higtrisk
projectsrespectiely. Seven of the proposecchangesadlit-
tle impacton the baseline. Of the remainingfour proposed
changestwo are clearly superior Cell A2 shows that that
having moderatelytalentedanalystsand no schedulepres-
sure (acap=[2], sced=[2]) reducedthe risk in this project
nearlyasmuch asary other, larger subset. Exception: B2

2Thefanciful nameof TARZAN arosewhenit wasrealizedthat
thesewhat-if queriesare like beneolent agentsswinging through
the treeslooking for waysto changewhatis goingon. Tools that
extend TARZAN shouldcomefrom the samegenre.Hence, JANE
andCHEETAH.

A B C
20 20 20
1 10 10 10
O7248 O7216 06206
Baseline:no Baseline+ Baseline+
what-ifs what-if what-if
W Itex=[3] pmat=[3]
20 20 20
9 10 10 10
0 210 0 6 17 5 0 200
Baseline+ Baseline+ Baseline+
what-if what-if what-if
acap=[2] and Itex=[3] and acap=[2] and
sced=[2] pmat=[3] Itex=[3] and
pmat=[3] and
sced=[2]

Figure 4. Number of branchesto differentrisk classifica-

tions. Legend:g =low risk EFF  =mediumrisk I
=highrisk.

appliesactionsto remove all branchego mediumand high
risk projects.NeverthelessMenzies& Sinselrecommended
A2, notB2, sinceA2 seemedo achieve mostof whatB2 can
do, with muchlesseffort.

NotethatFigure4 takesth of apageto displayandshovs
the key factorsthat contro?the classificationof 54,000,000
possibilities. This astonishingreductionin the argument
spacéds consistentvith the COCOMO-basedool containing
narrav funnels.

43 MYCIN

Medical diagnosisis like a designtask in that tradesoffs
are madebetweencompetingdiagnoses.To implementthis
trade-of processtheMYCIN medicalexpertsystemallowed
authorsto expresstheir certaintyin arule asa certaintyfac-
tor (cf) between-1000to +1000 [Buchananand Shortliffe,
1984. Somead-hoccombinationrulesweredefinedto con-
trol how thesecertaintiespropagatedind combined. Subse-
quentresearchrebelledat the ad-hocnatureof the MYCIN
approachand proposedmore theoreticallysatisfyinguncer
tain reasoningschemd GordonandShortlifie, 1985.

In aresultconsistentvith funneltheory experimentssug-
gestedhatelaborateeasoningaboutoptionswithin MYCIN
wasnot necessaryClanceg andCoopermappedhe cfs into
the nearesf N values. In the original MYCIN, N=2001.
The Clancegs and Copperanalysisset N to 10,5,4,3,and 2.
Only after N < 3 did this significantly effect the compe-
teng/ of MYCIN [Buchananand Shortliffe, 1984. Further
investigationrevealedthatthe MYCIN rulesformeda broad
andshallav reasoningnetwork. Thatis, thetopologyof the
MYCIN amgumentspacewas suchthat ary the unknowvns
needonly everinteractwith a handfulof otheruncertainties.
Consequentlyarguing aboutthe detailsof large scaleinter-
actionsis irrelevantsincesuchlarge scaleinteractionscould



notoccurin thatsystem.

44 HTOand HT4

In a resultsconsistentwvith the Clancey and Cooperresults,
it wasfoundthatmostof the choicesmadewithin a spaceof
conflictshadthe sameneteffect[Menziesetal., 1999. That
study comparedwo abductiveinferencestrategies Abduc-
tion is amethodof trackingthe choicesmadewhile studying
a model. An abductve inferenceenginesearchegor goals
while ensuringthatall choicesremaincompatible[Kakaset
al., 1994. Whenfacedwith incompatiblechoicesanabduc-
tive device hasat leasttwo choices. In full worlds search,
the abductive device forks oneworld of belieffor eachpos-
sible resolutionto the choice. In stodastic worlds search,
the abductve device selectsone resolutionat random,then
continueson. Stochastiovorlds searchs usually performed
insidea “rest-retry” mechanism.Thatis, for a limited num-
berof retries,whenthe stochastisearchrunsout of new op-
tions,all optionsareretractecandthewholestochastiavorlds
inferenceprocedureruns again. In a very large casestudy
(over a million runs), Menzies,EasterbrookNuseibehand
Waughfound that the averagedifferencein reachablegoals
betweenthe stochastiavorlds searchandfull worlds search
waslessthan6% (!); seeFigure5. Thatis, stochastiacon-
flict resolutionreachedas mary partsof an argumentspace
asa morerigorousmethod. This resultcanbe explainedvia
funnel theory Assumingnarron funnels,thenthe stochas-
tic worlds searchusedby Menzies,EasterbrookNuseibeh,
Waughfound as mary goalsasthe full worlds searchsince
bothsearchesverecontrolledby the samefunnels.

In yet anotherstudy Menziesand Micheal [Menziesand
Michael, 1999 showed that stochastiovorlds searchfound
98% of the goalsfound by a full worlds search[Menzies
andMichael,1999 (aresultconsistentvith Menzies Easter
brook, NuseibehandWaugh). More interestingfrom a prag-
maticperspectie,thefull worldssearctranin time exponen-
tial to modelsize while the stochasticabductve searchcan
run muchfasterandscaledup to very large models(seeFig-
ure 6). This resultcanbe explainedvia funneltheory The
stochastiavorlds searchusedby Menzies& Michealranex-
tremelyfastsinceit couldquickly samplehefunnelswithout
all theoverhead®f themorerigoroussearch.

5 An Argument Reduction Environment

JANE/CHEETAH/TARZAN is a generaltoolkit for support-
ing lessargumentsbasedon stochasticabduction,followed
by induction. JANE is a simplerule-basedanguageor ex-
pressingoptionsin a domain. Eachrule andfactin JANE is
stampedvith the nameof theauthorandthe time anddateof
its creation. Rulesandfactsfrom differentstaleholderscan
hencebestoredtogetheiin onerule-baseAlso, eachrule and
factgetsaheuristicchancesneasurdrange0 to 1) thatstores
thelikelihoodof thatfact/rule.Finally, a dollar cost valueis
addedto eachfact/rule.In the currentversionof JANE, cost
is a once-of set-upcost. Hence,if (e.g.) afactis accessed
morethanonce,its associatedlollar costis only incurredthe
firsttime.

Chances and cost neednot be specifiedexactly. JANE
authorscanspecifya minimumandmaximumvalue,option-
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1 tim= [month=jan,day=18,year=2001

2 ,elm="tim@menzies.com’].

3  bob= [month=feb,day=10,year=2001

4 ,elm="robertf@zbm.com’].

5

6 timsays cost = 0 and chances = 1.

7 r1 if rich rors healthy rors content
8 then happy.

9 r2 if not tranquil then rich.

10 r3 if tranquil then content.

11 r4 if no sick then healthy.

12 5 if overweight then sick.

13 r6 if no exercise then overweight.
14 t7 if baseball rany running rany swimming
15 rany football then exercise

16

17 bob says cost= 1 to +4 and chances= +0 to 1.
18 8 if enthusiasm rand likesSweat
19 then baseball.

20 r9 if enthusiasm rand likesSweat
21 then running.

22 r1o if enthusiasm rand likesSweat
23 then football.

24

25 timsays cost=1to +4 and

26 ri1 if enthusiasm rand not likesSweat
27 then swimming.

28

29 timsays cost = 2 and chances = 1.
30 ri2 if true then enthusiasm.

31

32 run - prove(happy).

33 runs :- time(proves(1000, experience.dat’).

Figure7: A sampleJANE knowledgebase.

ally markedwith some"skew”. For example,asampleJANE

rule base shaving contritutionsfrom two staleholdergTim

andBob) is showvn in Figure7. Line 6 shovs anexactspec-
ification of costs and chances while line 17 shovs a range
specificatiorwith a“+” symbolshawving theskew. Internally;

theskew isimplementedasa beta(X) distributionwith mean
X. 40 to 1 meanghattherangeis thetherandomvariable
0 + beta(0.33) * (1 — 0) while 1 to + 4 meanghattherange
is arandomvariablel + beta(0.67) * (4 — 1). Notealsothat
therules {r1,r2,73,r4,r5,r6} all have the samecost and
chances shavn atline 6. Similarly, the cost andchances of

{r8,r9,r10} is setatline 17.

CHEETAH is a stochasti@abductie inferenceenginethat
interpretsruleswritten in the JANE syntax. CHEETAH sup-
ports assumption-basedeasoningand randomwalk. If a
JANE rule conditionrequiressomeassumptionandthereis
noevidencefor or againsthatcondition,thenCHEETAH just
malkestheassumptionFor example,rule »11 canonly prove
swimming if it assumesiot likesSweat. Thisassumption
rulesout baseball, running or football sincethoseconclu-
sionsrequirelikesSweat (seeline 18,20,22n Figure7).

Sinceassumptionsule out otherconclusionsCHEETAH
usesa randomwalk mechanisnfor stochasticallyselecting
which assumptiongre made. This randomwalk is a simple
adaptatiorof standardlisjunctionsandconjunctionsln stan-

dardlanguagesif atestis specifiedasX and Y and Z then
thattestis executedeft-to-rightto testX beforeY beforeZ.
CHEETAH supportghe standardeft-to-right and andor as
well asarandomorderedestrand andror. If aconditionis
specifiede.g.)

swimming ror football ror baseball

thenthe orderof traversalis pickedrandomly Recallingthe
lastparagraphthenCHEETAH may or may nottry to prove
swimming beforefootball in which caseassumptionabout
our dislike of sweatingwould favor swimmingandrule out
theothersports.

When multiple methodsexist for proving somethingX,
thenour beliefin =X shoulddecreaseThis is implemented
via the noX operatorwhich sumsthe evidencefor X into
Sum, thenreturnsl — Sum.

Otherrandomwalk operatorf interestarerors andrany
(seelines 7 and14,15in Figure 7). Rors specifiesa setof
goalswhich we desireandrany specifiesa setof required,
but not totally desirablegoals. For example, happiness
might resultfrom beingrich, healthy andcontent. How-

chances= +0 to 1.ever in thisimperfectworld it is rare that we canachiere

rich and healthy and content. Hencewe combinethem
with a rors to ask CHEETAH to try and prove asmary of
themaspossible.

Rany is similarin concepto rors, but oppositein intent.
While exercise couldbedonevia baseball andrunning and
swimming and football, we probablydon’t wantto do all
four exercisesat oncesincethis mightleadto (e.g.) muscle
damage.Hencewe combinethemwith a rany which must
prove atleastoneof them,but afterthat, it ignoressomeran-
domly selectedportion of therany goals.As with rand and
ror, the traversalorder of the testingin rany andrors is
pickedatrandom.

Rors and rany adoptsthe HTO [Menziesand Michael,
1999 methodfor traversing a spaceof assumptions:one
shot-poofs randomordering, plus reset-etry. Whenprov-
ing asetof goalsX; rors X, rors Xs..., thenthe goal X;;
only getsone-shot If a proof of X; fails, thenthe system
doesnot backtrackto find differentsolutionsto prior goals
Xi..X;(i = j —1). Instead,X; is marked as unproved
andrors skipson to thenext goal X ;1. One-shois avery
weakmethodfor proving somethingandonly it worksin do-
mainswith narrov funnels(whereary shotin thedarkwhile
hit somethingof interest). Numerousexperimentd Menzies
and Michael, 1999 strongly suggestthat when one-shotis
combinedwith reset-etry, thenone-shoigreatlyreduceghe
computationatostof searchinga spaceof contractionsNote
thatif we juggledtheorderof thegoals,thenwe mightavoid
making an assumptiorbeforesearchfor X; that makes X;
impossible.Suchorderjuggling comesfor freeaspartof the
stochastidraversalorderof arors, plus CHEETAH's reset-
retry mechanismLine 33 of Figure7 shovs that CHEETAH
is calledmary times,with theresultingbehaviour loggedto
the file experiencedat Betweeneachrun, CHEETAH re-
setsits assumptiormemoryand retriesits high-level goals
for anothettime. Duringthis latertest,if thesamerors is ac-
cessedthentherandomorderingor therors operatormeans
thatthe goalsmay be exploredin a differentorder Thisim-



operator Xcost Xchances

X = or(Y) first(Y).cost | first(Y).chances
ror(Y)

X = andY) Elli‘l cost(Y;) leill chances(Y;)
rand(Y’)

X= rors(Y)| ZCY ZCY
ors(Y) Eiill cost(Z;) Eiill chances(Z;)
rany(Y)
any(Y)

X= noY) | X (allYcost) |1 —

>~ (allY.chances)

Figure 8: The SET1 combination rules for costs and
chances. In this table, (a) the function“ first(Y')” returns
thefirst provedelementn Y’; (b) Z is thesubsebf Y thatis
provedby the operator;c) all X findsall solutionsto X; (d)
thevalueof chances is alwayscappedo one.

pliesthatdifferentassumptionsnaybemadebeforetheproof
reachesX; and,hence X; maybe provablefor somesubset
of CHEETAH’sruns.

TARZAN performsinduction over the logs of behaiour
seenwhen the CHEETAH abductve inferenceengine ex-
ploresthe JANE rules. Recallfrom Figure 7, when CHEE-
TAH runsJANE, alog of JANE's behaiour is storedin expe-
riencedat TARZAN searcheshatlog looking for the fewest
numberattribute rangesthat have the largestimpacton the
overall behaiour of the system. An exampleof TARZAN
will be presentedbelow, after somediscussionon certain
openissues.

5.1 Open Issues

Therearemary featureof theFigure7 rulebasehatareopen
to debate. For example,what exactly are the precisecosts
andchances for eachrule andhow arewe to tally themto-
gether?2JANE talliescostsandchances usingacustomizable
setof combinationoperators. This setcaneasilybe changed
but this leavesopenthe question:which operatorshouldbe
used?

One set of combinationrules is shovn are the rules
known as SET1, shawvn in Figure 8. The rules
for {or,ror,and,rand} are simple enough. However,
{rors,ors,rany, any,no} aremorecomple&, moreopento
debate.The sourceof the compleity is thattheseoperators
searchfor multiple solutionswithin a disjunction.It couldbe
armguedthat asthe amountof evidenceincreasesthe higher
the chances but the greaterthe cost (sinceevidencecollec-
tion is expensve). Hence,for {rors, ors,rany,any} both
cost andchances aresummedogether

(Notetheabsencef anot operatoiin SET1: JANE applies
deMomanstheoremto corverte.g. a and not (b and c) to
a =t and (b = false or ¢ = false). Hence,at runtime,
not is never called.)

SET2is anothersetof combinationruleswhich is almost
the sameas SET1but takesa differentstanceon how costs
are combined. In SET2, the cost of finding multiple solu-
tionswithin adisjunction(i.e. {rors, ors,rany, any}) is the
mazimum of the costof the provedpartsof thedisjunction.
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chances
o
2]

N
IN
o
o)
=
o
=
)
=
N

cost ($)

Figure9: Cost andchances from 1,000.

Cost
low if < $5 | highif > $5
Chances| lowif < 0.85 24.7% 24.3%
highif > 0.85 21.7% 29.4%

Figure10: Percentagef 1,000runsthatfall into classeghat
combinelow/high cost andlow/high chances.

In keepingwith thewhole JANE/CHEETAH/TARZAN ap-
proach,if adebates possiblewe shouldrandomlysimulate
acrosghe spaceof possibilities thenuseinductionto check
which (if ary) of the debatepointsarekey. In the casestudy
shown below, JANE simulated:

e Acrossthecost andchances rangespecifiedn Figure?.
e UsingeitherSET1or SET2(pickedoncefor eachrun).

5.2 An Example

Figure 9 shaws the cost and chances seenin 1,000 proofs
of happy (asdefinedon lines 6,7 of Figure7). TARZAN's
task of restrictingthis rangeof behaiour begins by divid-
ing the outputinto several classesThe classificationshavn
in Figure 10 were chosenso asto balancethe size of the
different classeg(classesof different sizescan bias an in-
ductive learner). Of theseclasses,oneis clearly inferior
(low chances, high cost), andoneis clearly superior(high
chances, low cost). TARZAN's taskis to find methodsfor
nudgingthe systemaway from inferior andtoward superior
classes.

The versionof TARZAN usedin this study collectedfre-
quengy countsof attribute rangesin the different classes.
Thesecountswereexpressedstherelative measure:

seenin superiorclass
seenin otherclass

It was found that, overriding issuesof variationsin costs

or chances, or the combinationrules, assumptionsabout
likesSweat greatly controlledthe behaiour of the system.
LikesSweat = false (is false)appears3.5 timesmorefre-

quently in low cost, high chances classthanin the high
cost, high chances class. This ratio of 3.5 wasthe biggest
obsened differencein the frequeng of attribute rangesbe-
tweenthe desiredand undesiredclasses. Hence,to argue
less, we could just try one what-if query: what-if we set
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Figure 11: Box plots shaving changesin the costs, and
chances beforeandafter“what-if likesSweat=dlse”.

“likesSweat = false’? The effectsof thatwhat-if queryis

shawvn in thebox plotsof Figure11. Thevariancein the cost

hasbeengreatlyreducecandmostof thechances arecloseto

one. (this explainswhy the the right-handchances “box” in

Figurellis squashedlat: the 25%to 75% percentilevalues
areall thesame).

6 Conclusion

Stochastisearcttanquickly find thekey assumptionsvithin
a spaceof conflicting designoptions. Assumingnarrav fun-
nels,then:

1. Thesekey assumptionsvill befew in number;

2. A fantasticreductionin the numberof designoptions
canberealized.
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