
First Contract: Better, Earlier, Decisions for Software Projects

Martin S. Feather
Jet Propulsion Laboratory

California Institute of
Technology

4800 Oak Grove Drive
Pasadena, CA 91109, USA
Martin.S.Feather@jpl.nasa.gov

Hoh In
Dept. of Comp. Sci.

Texas A&M University
College Station

TX 77843-3112, USA
hohin@cs.tamu.edu

James D. Kiper
Dept. of Comp. Sci.

and Systems Analysis
Miami University

Oxford, OH 45056, USA
kiperjd@muohio.edu

Tim Kurtz
Science Applications

International Corporation,
NASA Glenn Research Ctr.
4031 Colonel Glenn Hwy.
Dayton, OH 45431, USA
Tim.Kurtz@grc.nasa.gov

Tim Menzies
Dept. Elec. & Comp. Eng.
Univ. British Columbia,

2356 Main Mall,
Vancouver, B.C.
Canada, V6T 1Z4
tim@menzies.com

Abstract
Decisions made in the earliest phases of software

development have the greatest effect on the likelihood of
project success. These decisions are used to establish the
requirements of the product under development,
determine budget and schedule, plan the allocation of
resources to the development, etc. This decision making
is very challenging, given the impediments of incomplete
information, absence of a shared vision, hard-to-discern
ramifications of choices, etc.

This paper describes an ongoing effort to address
these challenges by means of a synergistic collaboration
of research tools, techniques and best-practice
knowledge. The goals of this effort are to give the end
users more soundly based estimates, enhanced abilities to
make trades amongst requirements, risks, and
development, and better optimized development plans. To
achieve these goals, our effort combines research in the
areas of estimation, planning, visualization, elicitation,
negotiation, machine learning, abduction, and knowledge
representation.

A hypothetical scenario is used to introduce and
illustrate our approach. We describe the key contributions
that each of our research efforts provides, and go on to
consider the synergistic benefits of their combination.
Realization of this combination is well underway; status
and future plans are described. Finally, this collaborative
work is related to existing research and practice, to show
how our approach furthers the ability to make critical
decisions in the early phases of software development
projects.

KEYWORDS: requirements elicitation, estimation,
project planning, negotiation, tradeoffs, IV&V, risk
management, stakeholders, optimization, visualization,
collaboration, abduction, induction

1. Introduction
Even seasoned programmers can be surprised and

alarmed at the planning effort that precedes
implementation. For example, consider the case of Kay.
After many years as a valued C++ programmer, Kay's
human shield against management work is suddenly
promoted to headquarters. Since no one else in her group
has her years of experience, Kay is made a manager and

told to lead a new project: the software for the Near Earth
Dangerous Asteroid Detection and Destruction project
(NEDAD2). Her supervisor, a haggard projects manager
(HPM), informs Kay that NEDAD2 has a schedule of
three years and a $15,000,000 budget. HPM asks Kay for
an SDP and a schedule of design reviews by next week.

"Huh?" says Kay.
HPM realizes that Kay knows a lot about memory

management in C++ and very little about project
management. He provides Kay with a reading list. Kay
learns many things including that SDP is a Software
Development Plan and that decisions made in the earliest
phases of software development have the greatest effect
on the likelihood of project success.

Trade-offs lie at the core of all early life cycle decision
making. Such trade-offs are trivial if they are between
clear alternatives, one of which was superior in all
respects to the other. This is rarely so. The norm is for
each alternative to be superior along one set of
dimensions, but inferior along another, thus necessitating
reasoning involving trade-offs. For example:
• Allocation of limited time, money and personnel

among the various development and assurance tasks;
• Selection of which requirements to fulfill, what

priority to assign to them, and how much risk to
accept;

• Trading schedule risk for product performance.
However, decision making in these early stages is hard to
do wisely. To help managers like Kay, NASA is funding
the development of an integrated tool suite to support
better early life cycle trade-off:
• Ask Pete is a software knowledge tool which acts as

a smart librarian to helps software engineers access a
large library of established software engineering
knowledge [4]

• ARRT/DDP is an exploration tool allowing groups of
stakeholders to refine and extend the knowledge from
the librarian, and effectively explore the sum total of
this knowledge [2].

• TARZAN is an options reduction tool which
automatically explores and rejects the non-critical
issues [9]. This is useful for working with the project
knowledge gathered by the other tools, to know which
areas of uncertainty need refinement, and to identify
the most effective options and tradeoffs.

• VCR/DCPT is a detailed trade-off tool which lets
stakeholders resolve their conflicts of the critical
issues [11].

These tools already exist but only as isolated utilities.
The rest of this article argues that their sum is greater than
the parts. By connecting them all, each tool can augment
and extend the capabilities of the others. In fact, without
any one of these tools, a critical function in early life cycle
trade-off cannot be performed:
• Without the software knowledge tool, managers must

manually and laboriously explore the voluminous
software engineering literature to find the knowledge
relevant to their project.

• Without the exploration tool, competing stakeholders
must manually explore and record their requirements,
the risks to their requirements, and the actions that
can reduce those risks.

• Without the options reduction tool, managers and
stakeholders will be overwhelmed by the sheer
volume of what-ifs and unknowns within their
project.

• Without the detailed trade-off tool, managers and
stakeholders will not be able to understand the
interactions and implications of the critical issues
within their projects.

The rest of this article describes these tools, their
interaction, our progress towards their integration, and
how managers like Kay can use them to make better early
life cycle trade-offs.

2. A Hypothetical Scenario
Assuming the year is 2002, then Kay could use our tool

set and proceed as follows.
Kay connects to the web and downloads the software

tool suite from http://tkurtz.grc.nasa.gov/pete [4]. The
knowledge tool guides Kay through a set of questions.
When Kay can't understand the question, extensive help
text guides her through the details. The software
knowledge tools uses it's built-in effort estimation
capability to estimate that the project will cost too much
and take too long; i.e. $77,072,000 to build and 89 months
to complete. Further, the software knowledge tool advises
that this will project will require "critical levels" of
control; i.e. elaborate management supervision. Kay is not
surprised that the supervision level is so high but knows
she must reduce the cost and schedule.

First, Kay runs some alternatives through the software
knowledge tool. These reveal that if Kay gets the most
experienced team possible, and uses the best tools
available, then:
• The required level of supervision reduces from

"critical"' to "high".
• The cost and time estimates reduce to $14,790,000

and 53 months respectively.

Since this is still too long, Kay tries something else.
She asks the software knowledge tool to postulate that the
project is split into two teams, plus an integration team to
combine the outputs of the other teams. The software
knowledge tool estimates that each subproject in this new
structure will cost $7 million and take 42 months to
complete.

Kay realizes she is on to something here. The next
alternative she tries is to split the development team into
three (plus the integration team). The three teams could
work on the space platform, the acquisition and control
system, and the tracking and firing system respectively.
The result - each system could be built in about 35 months
and would cost about $4 million apiece or $12 million for
all three systems. The schedule would be close but she
would have a $3 million cushion. She would need about
129 engineers or 43 per team.

Happy with the results, Kay then asks the software
knowledge tool to generate the initial SDP (Software
Development Plan). The software knowledge tool outputs
detailed templates of report documents and proposes a
schedule when those documents should be delivered. This
is good – programmer/manager Kay hates thinking about
all that documentation stuff and likes the idea that it's all
laid out in a near fill-in-the-box format.

 So, after a mere 24 hours, Kay thinks she has a good
grasp on the project. She still had six days to put together
the project schedules and complete the SDP. Time for
lunch.

Over lunch, Kay gets talking to some of the hardware
engineers sitting at the same table. For the first time, she
hears of "safe-mode": to avoid the adverse effects of solar
flares, satellites shut down all non-essential systems and
normal operations cease. What if an asteroid sneaks in
during the safe mode?

Lunch is followed by indigestion and doubt. How well
could the computer hardware operate under such
conditions if it had to? To what extent could software be
used to mask the hardware problems? Kay is certain of
one thing – there’s a lot about spacecraft and their
software that she doesn't know! She needs more input
from experienced engineers.

In order to structure such discussions, she turns to the
exploration tool. This second tool supports meetings
where groups gather to combine expertise from several
areas. To initiate those meetings, Kay exports the SDP
from the software knowledge tool into the exploration
tool. In discussion with her haggard program manager,
they identify domain experts with relevant skills:
• A mission design specialist who worked on near-earth

orbit spacecraft in JPL, California;
• A Pentagon scientist in Washington D.C. who

understood the atomic weapons to be used in
NEDAD2.

• A local NASA expert in San Francisco who
specializes in software for real-time systems;

• One of the Software Quality Assurance staff who
seemed to know a lot of the things to watch out for.

After some phone calls, three teleconferences are
scheduled - one a day for the next three days. The SQA
person is available that afternoon, so the two of them
make a start at laying out the major categories of project-
specific requirements, risks, and risk mitigation activities.

Wednesday morning the whole group convenes. After
some initial training with the exploration tool, they review
what inputs they have from the software knowledge tool.
Working together, they add the detailed project
requirements into the categories that Kay and the SQA
person had established. Early afternoon they are able to
make a good start at linking the requirements to the risks,
before having to depart for other meetings. At all times,
two rules guided their work:
• When stakeholders disagreed on some point, that

point was elaborated. Usually, on elaboration, it was
discovered that the "disagreement" was really a
confusion of two or more ideas - one of which had
not been previously considered by the opposing party.
When such a "hidden" point was explicated, the
feuding experts often said, "oh, I see what you mean,
I had not thought of that".

• When stakeholders truly did not know the details, a
range marker was added. Such a range marker says
that "we don't know, but we think that the possibilities
lie within this range".

Kay's last act of the day is to hook the options
reduction tool into the exploration tool. The options
reduction tool explores all the range markers looking for
critical values where the cost and chances of achieving
some requirement changes radically. Via extensive what-if
queries, the options tool learns what range points are
critical and what range points don't change the overall
conclusions of the debate. This tool’s overnight run makes
use of all the spare CPUs lying around on desktops after
their owners have gone home.

Next morning, Kay presents the options reduction
results to the group. Guided by these, the group revisits
the exploration tool’s visualizations of the risk landscape,
and its relationship to requirements, enabling them to
identify several areas of requirements that are particularly
problematic. Of the 107 range markers added in
yesterday, 10 key range values were identified that have a
critical impact on the overall satisfiability of these
requirements. As the day begins, Kay cautions her team
that while they could discuss all 107 "don't knows", it is
probably most productive to explore just those 10 key
values. The team agrees and subdivides into several
teams to work on these issues for the rest of the morning.

For the critical options, the teams use the detailed
trade-off tool to score the relative benefit (importance)

and cost of all the relevant requirements. Based on their
evaluation data, the trade-offs tool visualizes the data. It
turns out that this tool has seen debates over this kind of
software before. So the tool uploads historical, similar
project data to visually compare the currently agreed
evaluation to the historical data. For the current debate,
areas of strong consensus and disagreement are
highlighted. Further, the trade-off tool automatically
identifies and clusters several groups that are conceptually
very close. The differences between these groups are
analyzed. As a result, the teams effectively and efficiently
reach agreement with assistance of the analysis summary
provided by the detailed trade-off tool.

 After lunch the teams meet again to report some
breakthroughs in mutual understanding. The team
processes the new insights, allowing them to make some
trades among the requirements, and emerge with what
they hope will allow a feasible development effort. They
enter the new data, just as before, into the exploration
tool. Again, at the end of the day, Kay activates the
options reduction tool before going home.

The next day sees Kay at work bright and early,
studying the overnight run of the options reduction tool on
the amalgamated data. It looked promising, but still leaves
her with uncomfortably small margins in both cost and
risk. When the group has once again convened, they focus
on the choice of risk mitigations. As before, the options
reduction tool’s results point to those options that have the
most leverage. They are able to refine effectiveness values
for some of the activities within the standard CMM
categories. In the course of this, Kay is surprised to learn
that "formal inspections" and "formal methods" are not
related. She doesn't quibble, especially when it becomes
apparent that local expertise in both of these means that
they can effectively address several of the risk areas that
she had been worrying about the last couple of days. The
net result is deemed acceptable to all, much to Kay's
relief. Together, they have emerged with a plan that is not
only within cost and schedule limits, but also shows how it
addresses all the risks that this entire team of people, plus
the background data sets, could throw at the problem!

The final icing on Kay's cake is the automatic report
generation. The software knowledge tool takes the
results from the exploration tool, and generates for her
(among other things), the entire SDP her haggard project
manager had asked for by next Monday.

Kay felt she had had a great first week. Her first task
accomplished, and her notebook filling up with the
expansions of the many three-letter acronyms that these
NASA folks used incessantly. This job could be fun. She
spends her weekend shoveling snow from her driveway -
to her, it feels better than those 20-hour, 7-day a week
programming marathons! Yes indeed, she muses as she
breaks into song in the snow, these tools were just what
she NEDAD2 use.

3. Benefits of the Collaboration
This section describes the benefits that stem from our

collaboration. Section 3.1 presents an elementwise
discussion of the unique benefit that element X provides
to the collaboration as a whole, for each of our efforts.
Subsection 3.2 presents a pairwise discussion of the
synergies gained from combining X with Y, for each
pairing among our efforts.

3.1. Unique Contribution of Each Component
The five components of our effort provide their unique

strengths to the collaboration as a whole. This subsection
considers each of them in turn.

3.1.1 Unique Contribution of the Software Knowledge
Tool, Ask Pete : The Ask Pete tool integrates cost and
schedule estimation, software project tailoring and IV&V
criteria into an interview and reporting tool which
combines to provide the following capabilities to the
collaboration:
• Characterization: analysis of various aspects of the

project yields a model of the project based on risk,
complexity, resources and size,

• Tailoring : classifying the project into different levels
of effort based on the characterization,

• Planning: combining the results of tailoring the
project into detailed plans and estimates for
development and quality assurance

• Tradeoff analysis: adjusting various project,
organization and resource factors to reduce risk, and
minimize resource and control requirements.

The tool is designed for use by project managers, software
quality and IV&V personnel for planning and comparison
and negotiating the full range of development activities,
and to adjust plans as project parameters change or
evolve. It prompts the user for inputs via a series of
multiple choice questions and True/False questions preset
to gather the information needed for its behind-the-scenes
calculations. These include use of COCOMO to compute
cost and schedule estimates, and of standardized tables to
classify the project into one of a range of “control levels”
and IV&V candidacy. Ask Pete combines the results of
these computations with its built-in knowledge of center-
specific development practices and policies to yield
recommendations of software development, quality
assurance and IV&V plans.
The collaboration is dependent on Ask Pete for these
capabilities in the areas of estimation and planning. Their
lack would force the laborious consideration of these same
issues, but starting from first principles. In practice, this
would likely mean inferior results, with slipshod
guesswork replacing well-grounded estimation, and
important factors overlooked by mistake or oversight.

3.1.2 Unique Contribution of the Deliberation Tool,
ARRT/DDP: This tool, and the process it embodies, melds
requirements, risks and mitigation reasoning with
sophisticated interactive support. The tool is designed for
real-time use in a group setting, where a small set of
experts (10 - 15 has been typical in its applications to
date) pool their knowledge pertinent to the task at hand.
The premise is that the tool can significantly support, but
not supplant, their activities. ARRT is a specialization of
DDP [1] to the software domain. ARRT/DDP provides the
following key capabilities to the collaboration:
• Elicitation : facilitating the gathering of project-

specific information from human experts representing
a range of disciplines. Familiar visual metaphors ease
the activities of on-the-fly data entry and
organization, while accommodating capture of both
qualitative and quantitative information.

• Understanding: visual presentation of the sum total
of information (computed and derived) to facilitate
those same experts' understanding and exploration of
options and tradeoffs. A coordinated mix of visual
presentations allows rapid alternation of views.
Dynamically adjustable summarizations, aggregations
and hierarchical presentations facilitate navigation
through a large space of information.

Their lack would severely diminish our capacity to use
human experts’ knowledge and insights while gathering
information crucial to the planning process, and
subsequently conducting that tradeoff-based planning.
This lack would be sorely felt in our setting of early-phase
planning of the development of mission-critical software.

3.1.3 Unique Contribution of Knowledge &
Knowledge Representation In the context of this paper,
the term knowledge representation refers to the addition of
information about potential software risk and useful
mitigating activities culled from reputable sources, and
expert judgements of the impact of various mitigations on
specific risk types. This knowledge adds the following
capabilities to this collaboration.
• Experience: providing knowledge culled from best

practice sources about potential risks [13] and
associated mitigating activities [12] is a valuable
resource for managers of software projects. In
addition, the expert judgements captured in this
information about the strength of influence of
mitigating activities on specific risk gives these same
managers the ability to chose effective combinations
of mitigations.

• Expressive power: the use of an expressive set of
logical interrelationships among and between the data
elements extends our ability to more accurately model
complex relationships among software risk and
mitigating activities (e.g., logical fault trees;
mitigations that have overlapping effectiveness); the

capability to specify ranges and distributions allows
capture of our confidence in, and known bounds on,
the knowledge.

Without this knowledge of potential software risks and
best mitigating practices, managers would be left to their
own resources to determine what risks their software
project was likely to encounter, what possible mitigating
activities would be effective, and what the strength of
these mitigations would be on the predicted risks. A lack
of expressive power in this collaboration would severely
limit its capability for accurately modeling the interactions
between risk and mitigations, thereby compromising a
manager's ability to chose effectively among possible
activities

3.1.4 Unique Contribution of the Options Reduction
Tool, TARZAN . This tool exploits the average shape of
the argument space to find the key issues that control the
rest of the space. Theoretically, there are an intractable
number of such key issues. 20 binary choices implies
220=1,000,000 options. Fortunately, empirical and
theoretical evidence suggests that many of those options
are inter-dependent and the key options are a very small
subset of all options. By resolving the key options, the
other options are forced to follow.

TARZAN works via abduction and induction.
Abduction is the logic of argument and can be informally
defined as follows: find the assumptions that lead to
desired goals without violating constraint rules (for a more
formal definition, see [10]). Tacit in this definition is the
idea of multiple worlds of beliefs. When assumptions
contradict other assumptions, abduction will generate
multiple solutions, each of which represents a single
consistent set of assumptions. The number of worlds may
be huge but, in practice, is surprisingly small [7] and the
theoretical explanation for why this is so in [6]).
Consequently, if we use machine learning to induce a
summary of many abductive runs, we often find that only
a small number of the unknowns are critical to the overall
behavior of the system.

In practice, TARZAN can never endorse options.
Rather, it identifies which options can be safely ignored.
Experience with the tool strongly suggests that many
options can be ignored and only a few options are truly
key to a system.

3.1.5 Unique Contribution of Detailed Tradeoff Tool,
VCR/DCPT: Planning of complex software development
efforts involves combining inputs and accepting guidance
from experts from different development disciplines (e.g.,
end-users, developers, SQA and IV&V personnel) as well
as different aspects of software (e.g., real-time, reliability,
resource usage). Wherever their areas of expertise
overlap, there is potential for disagreement due to
conflicting goals, differences of opinion, subjective bias
etc. VCR/DCPT [11] provides the following capabilities to

enable users to identify understand and resolve these
disagreements:
• Powerful analysis: clustering analysis to identify

stakeholder subgroups having different opinions,
cause-effect analysis to extract the structure of
disagreement by analyzing stakeholder profile and
group portfolio, calculation of degree of
disagreement, etc.

• Visualization: intuitive graphical presentations of the
nature and degree of disagreement, both among
multiple experts’ risk assessment data, and against
historical data from similar projects.

• Decision evolution support for rapid reassessment:
via keeping track of all decision rationales in
stakeholder profiles, and retrieving (and comparing)
previous assessment results via visualized navigation
aids.

• Effective and efficient communication for risk
assessment among stakeholders: supporting
groupware capability [3] to allow (even
geographically-distributed) stakeholders to present
their assessment in standard ways (agreed multi-
criteria, units, voting mechanism), as well as in
flexible ways by attaching their rationales, analysis
tool results, and documents into each voting.

The collaboration is dependent on VCR/DCPT for these
capabilities in the areas of analysis, visualization,
negotiation and communication support. Their lack would
leave the entire planning process open to inefficient
conflict resolution, bias, inadvertent subjectivity, and
inequitable decisions.

3.2. Pairwise Synergies
Our collaboration comprises the five efforts described in
section 3.1. There are thus twelve possible pairings among
these. The table below is an index from these pairings to
the discussions that follow.

KT ET KR ORT

Knowledge Tool Ask Pete

Exploration Tool ARRT/DDP 3.2.1

Knowledge & Representation 3.2.2 3.2.3

Options Reduction Tool TARZAN 3.2.4 3.2.5 3.2.6

Detailed Trade-Off Tool
 VCR/DCPT

3.2.7 3.2.8 3.2.9 3.2.10

3.2.1. [ET+KR] Exploration Tool + Knowledge Tool.
Our Knowledge Tool, Ask Pete, with its focus on
estimation and planning, meshes well with our
Exploration Tool, ARRT/DDP, with its strengths in the
areas of elicitation and visualization. In their joint use,
Ask Pete is run first to gather project characteristics,
employs COCOMO and other models to generate cost,
schedule and risk criticality estimates, and makes an initial
recommendation of risk mitigating activities. This is
passed over as a plausible and detailed starting point for

ARRT/DDP. Once within ARRT/DDP, users can customize
and tailor the information according to their case at hand
and their expert understanding. At this stage, human
navigation of the "risk landscape" takes place so as to
emerge with a cost-effective and balanced risk mitigation
plan. The conclusions of this second phase are passed
back to Ask Pete for incorporation into development and
quality plans that will indicate the cost, schedule and
nature of assurance-related activities over the future life of
the project. In conjunction, therefore, the two tools
provide complementary capabilities, and couple software
factory like process knowledge with the ability to
customize, tailor and scrutinize information.

3.2.2. [KR+KT] Knowledge & Representation +
Knowledge Tool. These two efforts are complementary in
that each brings established knowledge from reputable
sources to the task of software project management one
for risk management, the other for project size and cost
estimate and planning. Ask Pete characterizes the project
and provides the initial set of suggested development
activities. Each of these has some effect on one or more of
the possible risks to the project. These effects are
quantified in ARRT/DDP and form the basis for risk
balancing. This information is used in conjunction with
the software risk information and linkages to mitigations
to tailor the activities to eliminate or replace ones that will
have a negligible affect on the development risks and to
determine additional mitigations that may be necessary to
reduce risks to acceptable levels. This information can
then be fed back to the estimation and planning tool to
determine the scheduling and cost impact of additional
mitigations and for incorporation into the development
plan.

3.2.3. [KR+ET] Knowledge & Representation +
Exploration Tool. The knowledge culled from best-
practice sources (CMM activities, SEI taxonomies of
risks), and augmented appropriately (cross-linked to
indicate which, and how much, each activity mitigates
each risk) is used to pre-populate the ARRT/DDP tool.
This has the obvious advantages of time savings, serving
as checklist-like reminders, etc. Meanwhile, the
visualization and associated manipulation capabilities of
the ARRT/DDP tool facilitate the navigation of these non-
trivial datasets (e.g., we have on the order of one thousand
non-zero effectiveness links between these activities and
risks). Navigation through the space of software risks,
mitigations, and linkages allows managers to experiment
with various combinations of mitigations (with varying
costs) to reduce risk to an acceptable level.
Future work on extending the knowledge representation
will refine the (currently rather simplistic) model that
ARRT/DDP assumes of requirement, risk and mitigation
information. The influences of mitigations on software
risks and requirements are complex and inter-related. A

language with logical connectives is necessary to
represent these interactions. This language should also
support ranges or distributions of confidence values,
rather than a simplistic numeric rating of the strength of
these relationships.

3.2.4 [ORT+KT] Options Reduction Tool +
Knowledge Tool. Our Knowledge Tool, Ask Pete,
provides the set of possible characteristics and activities
of through which TARZAN’s machine learning can churn
through to create trees. Eventually trimming them to
determine the best possible combinations to promote
project success.

3.2.5 [ORT+ET] Options Reduction Tool +
Exploration Tool. This combination aims to allow us to
scale to larger projects and more complex
interrelationships among their elements, while retaining
human input, insight and guidance. The volume of data
that we have to gather increases for larger projects - they
will have more
requirements to juggle, more risks to be concerned with,
etc. More complex interrelationships amongst our data
elements (e.g., risk mitigation options that are somewhat
overlapping) also add to the complexity with which we
must deal. It is inevitable that we will have to gather a
significant amount of project-specific information, so
elicitation and visualization of that data remains a
necessity. However, use of machine learning and
abduction allows us to perform sensitivity analysis, so that
we can know which subsets of the data are the most
critical. This can direct our attention to these subsets,
leading us to expand them to finer levels of detail,
scrutinize them more carefully, provide confidence range
information together with the data itself, etc. Another use
of machine learning and abduction is to find near-optimal
solutions (i.e., sets of risk mitigations), which can serve as
suggestions to the human experts as they formulate their
development plans.

3.2.6 [ORT+KR] Options Reduction Tool +
Knowledge & Representation Because of the number
and complexity possible software risks, mitigations to
these risk, and interactions among them, it is necessary to
have an automated way of analyzing this information and
synthesizing it so that stakeholders can make choices. We
suspect that the number of interactions is exponentially
related to the number of risks and mitigations. Machine
learning provides a technique for allowing a computer to
explore this search space and effectively learn which
factors are the most significant.

3.2.7 [DTOT+KT] Detailed Trade-Off Tool +
Knowledge Tool. When stakeholders (experts) have
different estimation results of project characteristics (cost,
schedule, risk criticality, benefits of mitigating activities),
VCR/DCPT calculates the degree of their disagreement,

visualizes the result with statistical analysis support via
eclipses, lines, and dots, and suggest insights for potential
resolution of these agreement based on stakeholder and
group profile analysis. With VCR/DCPT, it is not
necessary for all stakeholders to meet together at the same
location or even at the same time in order to estimate and
plan the project in Ask Pete. With VCR/DCPT, Ask Pete
stakeholders can eventually arrive at agreement on the
better effective and efficient way.

3.2.8 [DTOT+ET] Detailed Trade-Off Tool +
Exploration Tool. Our Exploration Tool, ARRT/DDP,
assumes that input data input can be combined into the
same one pool, within which stakeholder identity is not a
factor. Our Detailed Trade-Off Tool, VCR/DCPT, makes
no such limiting assumption. Indeed, it recognizes that
stakeholder identities are critical to identifying
mismatches of assumption areas in need of negotiation,
etc. The synergy between these two components comes
from the ability to switch back and forth between their
respective views. These two tools focus on different
aspects of the decision making process. Hence, they each
bring to bear their own, very different, set of graphical
displays and underlying reasoning capabilities.

3.2.9 [DTOT+KR] Detailed Trade-Off Tool +
Knowledge & Representation. The knowledge about
software risks, mitigations to those risks, and the rich
linkages among risks and mitigations is complex and
extensive. Decisions about which software risks are
significant for a particular project and choices of which
mitigations are most appropriate for those risks is a
function of the person or group of people making these
decisions and choices. Individual stakeholders bring their
own perspective and expertise to these tasks. The validity
of these choices and decisions is increased when
representation from the various classes of stakeholders is
broadened. Visualization has been demonstrated to be an
effective way for multiple stakeholders to come to a
consensus about complex questions and choices.

3.2.10 [DTOT+ORT] Detailed Trade-Off Tool +
Options Reduction Tool. Both the options reduction tool
and the detailed trade-off tool explore the impacts of
unknowns on the requirements. However, the tools are
different in terms of the number of options they can test.
The detailed trade-off tool excels when users are
discussing the details of a small number of options. In the
case of vast amount of options, the users could be
overwhelmed with screens. The options reduction tool
takes millions of options and culls the irrelevant and
unimportant ones. This leaves a small pool of options
which the reduction tool cannot distinguish between. The
detailed trade-off tool then activates and users can explore
the details of these remaining options.

4. Status

The collaboration among the previously discussed
tools and techniques is an ongoing research effort. The
status of this is that our Knowledge Tool, Ask Pete, and
our exploration tool, ARRT/DDP, are the nuclei around
which the collaborative components are coalescing. Both
Ask Pete and ARRT/DDP operate as stand-alone
applications. They have been used to support early-phase
project planning, each concentrating on the aspects for
which it is designed. The first major step of the
collaboration has been to make these two tools operate
together. Their combination is described in [5]. Also
completed is the population of ARRT/DDP with
knowledge drawn from SEI sources, augmented as needed
(notably to provide quantitative estimates of how much
various activities mitigate risks) [2]. Pilot studies are now
underway in which this extant combination is being
applied to assist in planning of IV&V.

Our Options Reduction Tool, TARZAN’s technique of
machine learning & abduction has been successfully
applied to the COCOMO model [8, 9] independent of this
collaboration. Its tight integration with the Ask Pete and
ARRT/DDP components is work in progress.

We have built simple data exchange mechanisms to
allow us to transfer information between components
(e.g., to pass ARRT/DDP activities to VCR/DCPT). These
have allowed us to conduct preliminary explorations of
machine learning & abduction, and of stakeholder based
conflict resolution & negotiation, on real Ask Pete and
ARRT/DDP datasets.

The most far-reaching changes will stem from the
elaboration of the knowledge representation. This will
give us the capability to capture a wide range of
relationships between and among requirements, risks and
mitigations. However, it will pose challenges to make the
activities of elicitation, visualization and reasoning scale
to the complexity and volume of information, while
retaining their convenience and intuitive appeal.

In the immediate future the primary goal for our
collaboration is to complete and enhance the integration
of the capabilities described in this paper. We also see
important opportunities for capture and reuse of the
knowledge and reasoning that takes place over multiple
projects' planning and decision making. This would
facilitate measurement and use of an organization's
institutional strengths, and permit transfer of knowledge
between similar projects.

5. Related Work, Conclusions
As part of his Requirements Engineering Research
Perspective at ICSE 2000 [14] van Lamsweerde focused
on "... modeling as a common denominator to all RE
[Requirements Engineering] processes...". The research
work that he surveys favors high-quality models that
comprise detailed and rigorously expressed product
requirements. That work employs tools to conduct

intricate formal reasoning on these representations, and
results in a detailed understanding of what the product
should be. In contrast, our approach allows users to work
with lower quality and less-detailed requirements, that
span both product and process (how the product will be
developed). We employ a mix of tools that can operate
effectively with partial, uncertain, rapidly gathered,
information, and nevertheless yield useful results. The
kind of reasoning that our tool suite conducts is more
"shallow", but must operate in a much larger space of
possibilities. Our results encompass planning the
development activities, and permit exploration of
tradeoffs in the unified arena of both product and process.

The main message of this report is that the synergistic
effect of this collaboration has increased the effectiveness
of the set of tools that are being developed. Each of these
research efforts began life with important goals. As the
individual efforts proceed, these goals are being realized.
Furthermore, the integration of these tools has expanded
their overall utility in significant ways.
• With the software knowledge tool, managers have

access to expert knowledge about risks and
mitigations from respected sources that is relevant to
their project.

• With the exploration tool, requirements, risks, and
mitigating actions are captured and summarized in
automated ways that make shared understanding and
consensus building possible.

• With the options reduction tool, managers and
stakeholders can explore the complex space of
possibilities within their project in structured ways.

• With the detailed trade-off tool, managers and
stakeholders can understand interactions and
implications of critical issues within their projects
despite the complexity of information in its raw form.

6. Acknowledgements
The research described in this paper was carried out by
Science Applications International Corporation (SAIC),
the Jet Propulsion Laboratory, California Institute of
Technology, he NASA Glenn Research Center, Texas
A&M University, Miami University, and University of
British Columbia under contracts with the National
Aeronautics and Space Administration. Funding has been
provided through the NASA Office of safety and Mission
Assurance under the NASA Software Program lead by the
NASA Software IV&V Facility, UPN 323-08-5P.
Reference herein to any specific commercial product,
process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply
its endorsement by the United States Government, the Jet
Propulsion Laboratory, California Institute of Technology,
NASA Glenn Research Center, or SAIC. The authors
gratefully acknowledge the significant contributions,
guidance and assistance of Barry Boehm, Steve Cornford,

Marcus Fisher, Michael Greenfield, Frank Huy, Kenneth
McGill, Jungwon Park, Dan Port, Siddhartha Roy, and
Siamak Yassini, with special appreciation to John Kelly
and Martha Wetherholt.

7. References
[1] S. Cornford, “Managing Risk as a Resource using the Defect
Detection and Prevention process”. Int. Conf. on Probabilistic
Safety Assessment and Management, Sept. 1998.

[2] S.L. Cornford, M.S. Feather, J.C. Kelly, T.W. Larson, B.
Sigal and J.D. Kiper, “Design and Development Assessment”,
Proc. of the 10th Int. Workshop on Software Specification and
Design, IEEE Comp. Society, Nov. 2000, San Diego, CA. pp.
105-112.

[3] In, H., Boehm, B., Rodgers, T., and Deutsch, M., “Applying
WinWin to Quality Requirements: A Case Study”, IEEE ICSE,
2001, Toronto, Canada, May (to appear).

[4] T. Kurtz, "AskPete Web site" http://tkurtz.grc.nasa.gov/pete

[5] T. Kurtz and M.S. Feather, “Putting it All Together:
Software Planning, Estimating and Assessment for a Successful
Project”, in Proc. of 4th Int. Software Quality & Internet Quality
Conf., Brussels, Belgium, Nov. 2000.

[6] T. Menzies and B. Cukic, “When to Test Less”, IEEE
Software, 17, 5, pp. 107-112, 2000

[7] T.J. Menzies, S. Easterbrook, B. Nuseibeh and S. Waugh,
“An Empirical Investigation of Multiple Viewpoint Reasoning
in Requirements Engineering”, IEEE Int. Symposium on
Requirements Engineering, 1999, pp. 100-109.

[8] T. Menzies and E. Sinsel and T. Kurtz, “Learning to Reduce
Risks with COCOMO-II”, Workshop on Intelligent Software
Engineering, an ICSE 2000 workshop, and NASA/WVU
Software Research Lab, Fairmont, WV, Tech report # NASA-
IVV-99-027, 1999.

[9] Menzies, T. and Sinsel, E., “Practical Large Scale What-if
Queries: Case Studies with Software Risk Assessment”, Proc.
15th Int. Conf. on Automated Software Engineering, 2000, pp.
165-173, Available from http://tim.menzies.com/pdf/00ase.pdf.

[10] T.J. Menzies, R.F. Cohen, S. Waugh and S. Goss,
“Applications of Abduction: Testing Very Long Qualitative
Simulations”, IEEE Transactions of Data and Knowledge
Engineering (to appear), Available from
http://tim.menzies.com/pdf/97iedge.pdf, 2001

[11] J. Park, D. Port, B. Boehm. and H. In, “Supporting
Distributed Collaborative Prioritization for WinWin
Requirements Capture and Negotiations”, Proc. of the Int. 3rd
World Multiconference on Systemics, Cybernetics and
Informatics (SCI'99), Vol. 2, pp.578-584, IIIS, July 1999

[12] M.C. Paulk, B. Curtiss, M.B. Chrissis, C.V. Weber.
“Capability Maturity Model for Software, Version 1.1”.
Technical Report CMU/SEI-93-TR-024, SEI, Carnegie Mellon
University, February 1993.

[13]F. Sisti and J. Sujoe, “Software Risk Evaluation Method
Version 1.0”. Technical Report CMU/SEI-94-TR-019, SEI,
Carnegie Mellon University, 1994.

[14] A. van Lamsweerde, “Requirements Engineering in the
Year 00: A Research Perspective”, 22nd ICSE, 2000, Limerick,
Ireland, ACM Press, pp. 5-19.

