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Abstract

Requirementsengineeringcanstall if all stakeholderdis-
putesare explored; e.g. a mere 20 booleanoptions im-
plies
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possiblearguments.Onemethod

of reducingthis argumentspaceis to focusthe arguments
on core issuesand ignore the peripheral arguments.The-
oretical and experimentalstudiesstrongly suggestthat, in
the usualcase, a spaceof argumentscontainsmanyirrel-
evantand repeateddisputes.Hence, the spaceof all criti-
cal argumentsmaybedramaticallysmallerthan thespace
of all arguments.It is arguedhere that this reductioncan
be implementedvia abductionplus induction. Abduction
canextract theconsistentconclusionsderivablefroma re-
quirementsmodel. Induction can learn from that sample
theattributesthat mostchange thebehaviourof themodel.
Experimentswith this abduction-plus-inductionapproach
havefoundthat a verysmallnumberof critical factors can
befoundwithin seeminglyhuge argumentspaces.A strong
theoretical casecanbemadethat this approach will apply
to manydomainsandscaleto verylargemodels.

1. Introduction

How cheaplycanwe build usefulrequirementsmodels?
Modelsmay be deemeduseful for many reasons,but our
sensehereis thata usefulmodelis onethatcanbeusedto
makedefiniteconclusions.Many requirementsengineering
(RE) researcherssuchasvan Lamsweerde[17] arguethat
usefulRE modelsshouldbehigh-qualityandcomprisede-
tailedandrigorouslyexpressedproductrequirements.The
benefitof suchmodelsis thatthey canbestudiedby sophis-
ticatedformal toolsto delivera detailedunderstandingof a
domain.Thecostof suchmodelsis theirconstructioneffort.
Thedetailsrequiredby suchmodelsmaybeunavailablein
earlylife cycleor tooexpensiveto collect. In safety-critical

applicationswith large budgetsfor development,the cost
of building suchmodelscanbe justified. However, other
domainsmayrequirecheaperalternativesto expensive and
time-consumingRE.

Theproblemwith cheaperREis thatit maygenerateless
usefulmodels.As thenumberof uncertaintiesgrowswithin
amodel,thenumberof possiblealternativesincreasesexpo-
nentially. For example,supposeanRE modelis unclearon
20 issues,eachwith a binary value of yes/no. 20 binary
choicesimplies
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arguments.

In the caseof multiple viewpointsRE, cheapmodeling
implies a potentialavalancheof arguments. Viewpoints-
basedRE assumesthat information comesfrom multiple
stakeholders.Eachsetof information is maintainedsepa-
ratelyasanindependentviewpoint(oneviewpoint for each
stakeholder). Each viewpoint is a partial descriptionof
someperspective on a system.Viewpointshave beenused
to characterizeentities in a system’s environment [5], to
characterizedifferent classesof users[15], to distinguish
betweenstakeholderterminologies[16], andto partitionthe
requirementsprocessinto looselycoupledwork pieces[14].
Thissupportfor looselycoupledwork piecesis akey advan-
tageof viewpoints.We canno longerassumethatsoftware
will be built by a single teamin a single locationusinga
singletool kit for a singlepurpose.Givenrecentadvances
in Internettechnology(e.g.CORBA, theworld-wideweb),
we shouldexpect that software developmentwill be geo-
graphicallydistributed.Forsuchdistributeddevelopment,it
is pragmaticto permit theparalleldevelopmentof separate
‘workpieces”(a.k.a.viewpoints)thatwill haveto beunified
at somelaterdate.Building viewpointsmustbecheaplest
theoverallcostof multi-viewpointREoverwhelmsthebud-
get. But cheapmodelsincur theuncertaintyproblem.How
arewe to managea disucssionbetweenmultiple stakehold-
ersfor our (e.g.)

�
���
arguments?

This paperpresentsa novel methodfor arguingless.Let
theunionof theviewpointsbe theargumentspace. It will



beclaimedthatmuchof anargumentspaceis irrelevant,re-
dundant,or dependentonotherpartsof theargumentspace.
Hence,onemethodof arguinglesswouldbeto focusfirston
thekey portionsof theargumentspace.Findingthekey ar-
gumentsis theoreticallyNP-hard[7] and,in practice,may
be impractical for all but the smallestmodels. However,
the funneltheoryfirst proposedat RE99by Menzies,East-
erbrook,Nuseibehand Waugh[10] givesnew hopefor a
tractablesearchfor thekey arguments.This paperpresents
arandomsearchenginecalledCHEETAH thatexercisesar-
gumentspacesexpressedin theJANE rule-basedlanguage.
A monitorcalledTARZAN watchesfrom aboveasCHEE-
TAH chasesJANE aroundthe argumentspace.TARZAN
builds a log of Jane’s behaviour and learnshow to nudge
JANE into betterbehaviour. Funnel theory (describedin�
3) predictsthatsuchnudgesarefew in numberandfastto

find.
Technically, CHEETAH is arandomizedabductiveinfer-

enceengineandTARZAN is an inductivelearner. There-
fore the core messageof this paperis that we can argue
lessby applying randomizedabductionplus induction to
ourcombinedviewpoints.

This article is structuredas follows. The next section
documentsevidencefor funnel theory. The detailsof that
theoryare thendiscussed,followed by an introductionto
the JANE/CHEETAH/TARZAN toolkit. Finally, we will
discussthegeneralityof this approach.

2. The Funnel Phenomena

Thereadermaydoubtthatbig argumentscanreduceto
a muchsmallersetof key arguments.However this section
offerssomedramaticexamplesof sucha reduction.

Menzies& Sinselfound that a spaceof 54 million op-
tions containedfound two key variablesthat could most
control the rest of the system[12]. In that application,a
COCOMO-basedtool [6] wasusedto evaluatetherisk that
a NASA softwareprojectwould suffer from develop-time
overrun. The tool usedin that study requireda guessti-
mateof thesourcelinesof code(SLOC) in thesystemand
certaininternaltuningparameterswhich, ideally, arelearnt
from historical data. Lacking suchdata,Menzies& Sin-
sel usedthreeguessesfor SLOC andthreesetsof tunings
which they took from the literature.Competingstakehold-
ersproposed11 changesto a project. Someof the project
featureswereunclearand,for thosefeatures,projectman-
agerscouldonly offer rangesfor therequiredinputsto the
COCOMO-basedtool. Theserangesoffered2930possible
combinationsfor theinputs.Whencombinedwith theother
uncertainties,this generateda spaceof 54 million possibil-
ities (
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*threeguessesfor SLOC* threetunings).

Facedwith thisoverdoseof possibilities,Menzies& Sin-
sel performed50,000Monte Carlo simulationswherethe

inputsweretaken from the54 million possibilities.A ma-
chine learningprogramgenerateddecisiontreesfrom the
50,000runs. A treequerylanguagecalledTARZAN then
swungthroughthelearnttreeslooking for theleastnumber
of attributerangesthathadthebiggestimpacton theover-
all softwaredevelopmentrisk. TARZAN found thatof the
11 proposedchanges,sevenhada little overall impact. Of
theremainingfour, two wereclearlyinferior in reducingthe
systemrisk. This left two attributerangeswith theclearest
benefitin reducingsoftwareprojectrisk.

In anotherstudy, Menzies,Easterbrook,Nuseibehand
Waugh [10] found that most of the choicesmadewithin
a spaceof conflicts had the samenet effect. That study
comparedtwo abductiveinferencestrategies. Abduction
is a method of tracking the choicesmade while study-
ing a model. An abductive inferenceenginesearchesfor
goalswhile ensuringthatall choicesremaincompatible[3].
Whenfacedwith incompatiblechoices,anabductivedevice
hasat leasttwo choices.In full worldssearch, theabductive
deviceforksoneworld of belieffor eachpossibleresolution
to the choice. In randomworlds search, the abductive de-
vice selectsone resolutionat random,then continueson.
Randomworldssearchis usuallyperformedinsidea “rest-
retry” mechanism.That is, for a limited numberof retries,
whentherandomsearchrunsoutof new options,all options
areretractedandthewholerandomworldsinferenceproce-
durerunsagain. In a very largecasestudy(over a million
runs), Menzies,Easterbrook,Nuseibehand Waughfound
that the averagedifferencein reachablegoalsbetweenthe
randomworldssearchandfull worldssearchwaslessthan���

(!!). Thatis, randomconflictresolutionreachedasmany
partsof anargumentspaceasa morerigorousmethod.

In yet anotherstudy, MenziesandMicheal [11] showed
thatrandomworldssearchfound98%of thegoalsfoundby
a full worldssearch[11] (a resultconsistentwith Menzies,
Easterbrook,NuseibehandWaugh).More interestingfrom
a pragmaticperspective, the full worldssearchran in time
exponentialto modelsizewhile the randomizedabductive
searchcranmuchfasterandscaledup to very largemodels.

3. Funnel Theory

Funneltheory is a claim that within the spaceof argu-
ments,thereexist a smallnumberof key decisionsthatde-
termineall others.As we shall see,funnel theoryexplains
theaboveobservations.

To introducefunnels,wefirst saythatanargumentspace
supportsreasons; i.e. chainsof reasoningthat link inputs
in a certain context to desiredgoals. Chainshave links
of at least two types. Firstly, there are links that clash
with other links. Secondly, there are the links that de-
pendon otherlinks. Onemethodof arguing lessis to first
debatethe non-dependentclashinglinks. The resolutions
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to theseargumentswill have the greatestimpactof reduc-
ing thesubsequentargument(s).For example,supposethe
following argumentspaceis explored using the invariant���! "�#�#$&%(' 	*) ',+ andeverythingthat is not a - �.�0/21!34/ or a "�#5"6 is opento debate:

587&9;:<7=9 - 7&9�$87&9>1
- �.�0/21!3/ � 749@?A7=9B C749>DE7=9GFH7&9JI>7&9B K�#5"6
- �.�0/21!3/ � 749@LM9 )  C7&9�6N749>OP9 ) I,7&9B K�#5"6

�Q7=9��R749PSA7&9�TU7&9 ) 1
While all of V 5 	 : 	XWYW T�Z is subject to discussion,in the
context of reachingsome specifiedgoals from context1
and context2, the only importantdisputesare the clashes
V  	�)  	 I 	�) IZ . The V 1 	*) 1�Z clashis not exercisedin the
context of - �.�0/21!3/ ��	 - �.�0/21!34/ �\[  K�#5�6 sinceno reason
uses1 or

) 1 . Since V I 	�) IZ arefully dependenton V  	�)  &Z ,
thenthecoreof thisargumentis onevariable( V g Z ) with two
disputedvalues:trueandfalse.

The funnel of an argument spacecontains the non-
dependentclashinglinks; e.g. V  4Z 1 The argumentswith
greatestinformation contentare the argumentsabout the
funnelvariables,sincethesevariablessettheothers.If the
spacecontainsnarrowfunnelsthenthetotalargumentspace
canbegreatlyreducedto asmallnumberof highly informa-
tive disputesaboutfunnel variables.Stakeholdersarestill
freeto debatewhateverthey want(andthey will, seemingly
endlessly),but with this approach,the requirementsengi-
neercansteerthediscussiontowardstheissuesthattells us
mostaboutadomain.Theneteffect canbelessarguments.
Supposeour stakeholdersagreethat g is true, then in the
context of arguingabouthow - �.�0/21!3/ ��	 - �.�0/21!34/ �][  K�#5"6 ,
theargumentspacereducesto:

- �.�0/21!3/ � 7&9^?A7&9G C7&9>D_7&9�FH7&9`I4749� "�#5"6
Thereasoningstartingwith L hasbeenculledsince,by en-
dorsingg, wemustrejectsall linesof reasoningthatuse

)  .
Also, thereasoningstartingwith 5 	 � areignoredsincethey
areirrelevant in this context; i.e. they do not participatein
reachinga desiredgoal.Further, in this context, thereis lit-
tle point arguingabout V ? 	 D 	 F 	 IZ sinceif any of theseare
false,thenno goalcanbereached.

This small example shows how to argue less through
funnel-basedreasoning.Funnel-basedargumentationfinds
the key arguments,and ignoresnumerousirrelevant argu-
ments.In theabove example,a argumentspacecontaining
up to

� ��aRb ��c�c����
discussionsabout16 booleanvariables

V 5 WdW T�Z hasbeenreducedto onediscussionaboutonevari-
able;i.e. “is  trueor false?”.

Funneltheoryexplainstheobservationsseenin
�
2:

1Readersfamiliarwith theATMS [1] will notethesimilaritiesbetween
the funnel and ATMS minimal environments. However, while both ap-
proachesrely on somenogood invariant, therearesignificantdifferences
betweenthe consistency-basedtotal envisionmentsof the ATMS andthe
set-covering relevantenvisionmentsdiscussedhere;see[7] for details.

e The 54 million options about the software project
could reduceto two sincethe COCOMO-basedtool
containednarrow funnels.e The randomworlds searchusedby Menzies,Easter-
brook, Nuseibeh,Waughfound asmany goalsasthe
full worldssearchsincebothsearcheswerecontrolled
by thesamefunnels.e TherandomworldssearchusedbyMenzies& Micheal
ran extremely fast since it could quickly samplethe
funnelswithout all theoverheadsof themorerigorous
search.

4. An Argument Reduction Environment

A naive approachto funnel-basedreasoningis to find
the funnelsusingsomesophisticateddependency-directed
backtrackingtools such as the ATMS [1] or HT4 [7].
Dependency-directed backtracking is a naive approach
since(1) suchreasoninghasbeenshown to be very slow,
both theoreticallyand in practice[7]; and (2) thereis no
needto find the funnel in order to exploit it. This second
point is thekey insightthatresultedin this paper. We don’t
needto do anything specialto find the funnel since any
reasoningpathway to goalsmustpassthroughit (by defi-
nition). Repeatedapplicationof somefast randomsearch
techniquewill stumbleacrossthefunnelvariables(provid-
ing that searchtechniquereachesthe goals). This section
describesJANE/CHEETAH/TARZAN, ageneraltoolkit for
supportinglessargumentsbasedon randomizedsearch.In
the toolkit, randomizedabductionand induction are per-
formed by CHEETAH and TARZAN respectively. Both
thesemodulesnavigagea spaceof options,definedasrules
in theJANE language.

4.1. JANE

JANE is asimplerule-basedlanguagefor expressingop-
tions in a domain. Eachrule andfact in JANE is stamped
with thenameof theauthorandthetimeanddateof its cre-
ation.Rulesandfactsfrom differentstakeholderscanhence
bestoredtogetherin onerule-base.Also, eachruleandfact
getsa heuristicchancesmeasure(range0 to 1) that stores
thelikelihoodof thatfact/rule.Finally, adollar - ��fg/ valueis
addedto eachfact/rule.In thecurrentversionof JANE, - ��fg/
is a once-off set-upcost. Hence,if (e.g.) a fact is accessed
morethanonce,its associateddollar cost is only incurred
thefirst time.h D5�� - 1#f and - ��fg/ neednot bespecifiedexactly. JANE
authorscan specify a minimum andmaximumvalue,op-
tionally markedwith some“skew”. For example,a sample
JANE rulebase,showing contributionsfrom two stakehold-
ers(Tim andBob)is shown in Figure1. Line 6 showsanex-
actspecificationof - ��fg/ sand- D5�� - 1#f while line17showsa
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1 tim= [month=jan,day=18,year=2001
2 ,elm=’tim@menzies.com’].
3 bob= [month=feb,day=10,year=2001
4 ,elm=’robertf@zbm.com’].
5
6 tim says cost = 0 and chances = 1.
7 r1 if rich rors healthy rors content
8 then happy.
9 r2 if not tranquil then rich.

10 r3 if tranquil then content.
11 r4 if no sick then healthy.
12 r5 if overweight then sick.
13 r6 if no exercise then overweight.
14 t7 if baseball rany running rany swimming
15 rany football then exercise
16
17 bob says cost = 1 to +4 and chances = +0 to 1.
18 r8 if enthusiasm rand likesSweat
19 then baseball.
20 r9 if enthusiasm rand likesSweat
21 then running.
22 r10 if enthusiasm rand likesSweat
23 then football.
24
25 tim says cost = 1 to +4 and chances = +0 to 1.
26 r11 if enthusiasm rand not likesSweat
27 then swimming.
28
29 tim says cost = 2 and chances = 1.
30 r12 if true then enthusiasm.
31
32 run :- prove(happy).
33 runs :- time(proves(1000,’experience.dat’).

Figure 1. A sample JANE kno wledg e base .

rangespecificationwith a“+” symbolshowing theskew. In-
ternally, theskew is implementedasa :i1!/25=%('j+ distribution
with mean' . k � /2� � meansthat therangeis thetheran-
domvariable

� k :i1!/25=% �W ��� + � % � 7 � + while
� /2� kml means

thattherangeis arandomvariable
� k :i1!/25=% ��W ��n + � % l 7 � + .

Notealsothat therules V!o ��	 o �K	 o ��	 o.l 	 o cK	 o � Z all have the
same- ��fg/ and - D45�� - 1#f shown at line 6. Similarly, the - ��fg/
and - D5�� - 1#f of Vgo#p 	 o ��	 o �!� Z is setat line 17.

4.2. CHEETAH

CHEETAH is a randomizedabductive inferenceengine
thatinterpretsruleswrittenin theJANE syntax.CHEETAH
supportsassumption-basedreasoningandrandomwalk.

A coreconceptwithin CHEETAH is theassumption. If
aJANE rule conditionrequiressomeassumption,andthere
is no evidencefor or againstthat condition, then CHEE-
TAH just makestheassumption.For example,rule o ��� can
only prove fgqrFsO_OmFs�= if it assumes���./N6(F2LK1#f.tNq<1.5�/ . This
assumptionrulesout :u5"f!1#:i5"6v6 	 o.w �0�0Fx�= or ?=�#�./�:u5�6y6 since
thoseconclusionsrequire6vF2LK1#f!tzq<1.5�/ (seeline 18,20,22in
Figure1).

Sinceassumptionsrule out other conclusions,CHEE-

TAH usesa random walk mechanismfor randomly se-
lecting which assumptionsare made. This randomwalk
is a simple adaptationof standarddisjunctionsand con-
junctions. In standardlanguages,if a test is specifiedas'{5���$A|}5���$Q~ thenthat testis executedleft-to-right to
test ' before | before ~ . CHEETAH supportsthe stan-
dardleft-to-right 5���$ and � o aswell asa randomordered
test o 5���$ and o � o . If a conditionis specified(e.g.)

fXq<FxO_O_Fx�= o � o ?=�#�./�:i5"6v6 o � o :i5Kf!1.:u5�6y6
then the order of traversalis picked randomly. Recalling
the last paragraph,thenCHEETAH may or may not try to
prove fXq<FxO_O_Fx�= before ?=�#�./�:u5�6y6 in which caseassump-
tionsaboutour dislike of sweatingwould favor swimming
andrule out theothersports.

Whenmultiple methodsexist for proving something' ,
thenourbelief in

) ' shoulddecrease.Thisis implemented
via the ���.' operatorwhich sumsthe evidencefor ' intot w O , thenreturns

� 7�t w O .
Other randomwalk operatorsof interestare o � o f and

o 5��0� (see lines 7 and 14,15 in Figure 1). � � o f speci-
fies a set of goalswhich we desireand o 5��0� specifiesa
setof required,but not totally desirablegoals. For exam-
ple, D5!S�SFs��1#f!f might resultfrom being o F - D , D41.5"6(/�D� and
- �.�0/21!�0/ . However, in this imperfectworld it is rarethatwe
canachieve o F - D and D1.5"6(/�D� and - �.�0/21!�0/ . Hencewecom-
binethemwith a o � o f to askCHEETAH to try andproveas
many of themaspossible.
� 5��0� is similar in conceptto o � o f , but oppositein

intent. While 1!341 o#- F2f!1 could be done via :i5Kfg1#:i5"6y6 and
o.w �0�0Fs�= and fXq<FxO_O_Fx�= and ?=�#�./�:i5"6y6 , we probablydon’t
want to do all four exercisesat oncesincethis might lead
to (e.g.) muscledamage.Hencewe combinethemwith a
o 5��0� whichmustproveatleastoneof them,but afterthat,it
ignoressomerandomlyselectedportionof the o 5��0� goals.
As with o 5���$ and o � o , the traversalorderof the testingin
o 5��0� and o � o f is pickedat random.
� � o f and o 5��0� adoptstheHT0 [11] methodfor travers-

ing a spaceof assumptions:one shot-proofs, randomor-
dering, plus reset-retry. When proving a set of goals' � o � o fm' � o � o f_'8� WYWdW , thenthe goal 'U� only getsone-
shot. If a proof of '�� fails, thenthesystemdoesnot back-
track to find differentsolutionsto prior goals ' � WYWdW '8��%vF bIR7 � + . Instead,'U� is markedasunprovedand o � o f skips
on to thenext goal 'U��� � . One-shotis a very weakmethod
for proving somethingandonly it works in domainswith
narrow funnels(whereany shotin thedarkwhile hit some-
thingof interest).Numerousexperiments[11] stronglysug-
gestthatwhenone-shotis combinedwith reset-retry, then
one-shotgreatlyreducesthe computationalcostof search-
ingaspaceof contractions.Notethatif wejuggledtheorder
of the goals,then we might avoid making an assumption
beforesearchfor 'U� that makes '�� impossible.Suchor-
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der juggling comesfor freeaspartof the randomtraversal
orderof a o � o f , plus CHEETAH’s reset-retry mechanism.
Line 33 of Figure1 shows that CHEETAH is calledmany
times,with theresultingbehaviour loggedto thefile experi-
ence.dat. Betweeneachrun, CHEETAH resetsits assump-
tion memory and retries its high-level goals for another
time. During this later test, if the sameo � o f is accessed,
thenthe randomorderingor the o � o f operatormeansthat
thegoalsmaybeexploredin a differentorder. This implies
that different assumptionsmay be madebeforethe proof
reaches'U� and,hence,'U� maybeprovablefor somesub-
setof CHEETAH’s runs.

In the casewhereorderingmust be preserved, CHEE-
TAH supportstheoperators5���$ 	 � o 	 5��0� 	 � o f whicharethe
non-randomversionsof o 5���$ 	 o � o 	 o 5��0� 	 o � o f respectively.
Usingan � o f operatorwould seta preferencecriteria for a
setof goals.For example,thegoal '�� o f�|�� o fR~ would
meanCHEETAH would attemptto provethemall in a left-
to-right order, and the assumptionsrequiredfor ' would
takeprecedenceovertheassumptionsrequiredfor | and ~ .
Usingan 5���$ operatorwouldsetapreciseorderingfor how
goalsareproved. For example,a top-down structurechart
for a projectplan written in JANE would be implemented
asfollows:

r1 if analysis and design and code and test
then softwareProject.

r2 if requirementsCapture and debate and
decisions and elaborationOfDetails

then analysis.

Given the goal f!��?&/�q<5 o 1.� o �uI�1 - / , CHEETAH would
explore this rule-basedepth-first,left-to-right; i.e. the 5���$
operatorensuresthat o 1.T w F o 1!O_1!�0/�f h 5!S/ w&o 1 would oc-
cur before $�1.:u5�/21 and both of thesewould occur before$�1#fgFx �� . Anotheruseof explicit orderingsin JANE might
beto definerestrictionson therandomwalk beforeit is ex-
ecuted. For example,pollution markersare a methodfor
markingsomepartsof therequirementstemporarilyout-of-
bounds[13]. In JANE, pollution markersto ignore(e.g.) 3
and � couldbeaddedby assumingthenegationof 3 and �
beforetestingfor thegoals. Alternatively, in orderto con-
duct a what-if query on e.g. 5 and : , theseassumptions
couldbedeclaredprior to thegoals.This would be imple-
mentedby proving thegoal $��.��1 acrossthefollowing rules:

r1 if setup and goals then done.
r2 if pollution and whatifs then setup.
r3 if not x and not y then pollution.
r4 if a and b then whatifs.
r5 if happy rors content rors rich then goals.

4.3. Open Issues

Therearemany featuresof theFigure1 rulebasethatare
opento debate.For example,what exactly arethe precise

operator ���x���s� � ���*�i�X�s�s���� ���!�Y����i���!�Y���
�#� �u���s�Y���s�  2�i��� �#� �u���s�Y���s�  2¡�¢X£� �¤��

��� ¢X£�¥#�Y����i¢X£�¥.�¦���
§,¨ ©ª¨«Y¬=  ��*���s�Y� « � ® ¨ ©ª¨«d¬=  2¡�¢u£" 2¤*�i�¦� « �

��� �i���u�i�¦�¯����u�u�Y�¯��i¢X£�°
�Y���¢X£�°
�Y���

±A² �§ ¨ ³&¨«Y¬=  ��*���s� ± « �
±A² �§ ¨ ³&¨«Y¬=  2¡
¢u£" 2¤��u� ± « �

��� £"�g�Y��� § �¦¢X´µ´d�&�  2�i�2�v� ¶"· § �Y¢g´µ´µ�&�  �¡�¢u£" 2¤*���

Figure 2. The SET1 combination rules for - ��fg/�f
and - D45�� - 1#f . In this table, (a) the function
“ ?&F o fX/u%y|U+ ” returns the fir st proved element in| ; (b) ~ is the subset of | that is proved by
the operator; (c) 5"6y6(' finds all solutions to ' ;
(d) the value of - D45�� - 1.f is always capped to
one .

- ��fg/ s and - D5�� - 1 s for eachrule andhow are we to tally
them togehter? JANE tallies - ��fg/ s and - D45�� - 1.f using a
customizableset of combinationoperators. This set can
easilybechangedbut this leavesopenthequestion:which
operatorsshouldbeused?

One set of combinationrules is shown are the rules
known as SET1, shown in Figure 2. The rules
for V � o 	 o � o 	 5���$ 	 o 5���$Z are simple enough. However,
Vgo � o f 	 � o f 	 o 5��0� 	 5��0� 	 ����Z aremorecomplex, moreopen
to debate. The sourceof the complexity is that these
operatorssearchfor multiple solutionswithin a disjunc-
tion. It could be argued that as the amount of evi-
denceincreases,thehigherthe - D5�� - 1#f but thegreaterthe
- ��fg/ (sinceevidencecollection is expensive). Hence,for
Vgo � o f 	 � o f 	 o 5��0� 	 5��0�4Z both - ��fg/ and- D5�� - 1#f aresummed
together.

(Note the absence of a ���./ operator in SET1:
JANE applies deMorgan’s theorem to convert e.g.5¸5���$,���./¹%y:¹5���$ - + to 5 b /º5���$^%x: b ?=5"6yf!1C� o»- b?=5"6yf!1#+ . Hence,at runtime, ���./ is nevercalled.)

SET2is anothersetof combinationruleswhichis almost
thesameasSET1but takesa differentstanceon how - ��fg/ s
arecombined.In SET2,the - ��fg/ of finding multiple solu-
tions within a disjunction(i.e. Vgo � o f 	 � o f 	 o 5��0� 	 5��0�&Z ) is
the OE5�34FsO w O of the costof the proved partsof the dis-
junction.

In keepingwith the whole JANE/CHEETAH/TARZAN
approach,if a debateis possible,we shouldrandomlysim-
ulateacrossthespaceof possibilities,thenuseinductionto
checkwhich (if any) of the debatepointsare key. In the
casestudyshown below, JANE simulated:

e Acrossthe - ��fg/ and - D5�� - 1#f rangespecifiedin Fig-
ure1.
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Figure 4. Percenta ge of 1,000 runs that fall
into classes that combine low/high - ��fg/ and
low/high - D45�� - 1#f .

e UsingeitherSET1or SET2(pickedoncefor eachrun).

4.4. TARZAN

TARZAN performsinductionover thelogsof behaviour
seenwhen the CHEETAH abductive inferenceengineex-
plorestheJANE rules.Recallfrom Figure1, whenCHEE-
TAH runs JANE, a log of JANE’s behaviour is storedin
experience.dat. TARZAN searchesthat log looking for the
fewestnumberattributerangesthathave the largestimpact
on theoverallbehaviour of thesystem.

Figure 3 shows the - ��fg/ and - D45�� - 1#f seenin 1,000
proofsof D45!S
S4� (asdefinedon lines6,7of Figure1). Note
the wide rangeof possibleoutcomes.At this point, a for-
mal RE researchersuchasvanLamsweerde[17] could re-
ject JANE-basedmodelsas useless.If we cannotrestrict
thiswiderange,thenJANE-stylemodelingmustberejected
sinceit cannotgeneratedefiniteconclusions.

TARZAN’staskof restrictingthisrangeof behaviourbe-
ginsby dividing theoutputinto severalclasses.Theclassifi-
cationsshown in Figure4 werechosensoasto balancethe
sizeof the differentclasses(classesof differentsizescan
biasan inductive learner). Of theseclasses,oneis clearly
inferior (low - D45�� - 1.f , high - ��fX/ ), andoneis clearlysupe-
rior (high - D45�� - 1#f , low - ��fg/ ). TARZAN’s task is to find
methodsfor nudgingthesystemaway from inferior andto-
wardsuperiorclasses.

Theversionof TARZAN usedin thisstudycollectedfre-

quency countsof attribute rangesin the different classes.
Thesecountswereexpressedastherelativemeasure:

seenin superiorclass
seenin otherclass

The results in Figure 5 shows that numerous- ��fg/�f and
- D45�� - 1.f , and assumptionscontrol JANE’s behaviour.
And, as might be expected, the ors-- ��fg/ -combination
issue is somewhat important (witness the presenceof� o f h ��fg/ h �.OA:*Fs��1 in mostof thecells in Figure5). How-
ever, over-riding issuesof - ��fg/�f , - D5�� - 1#f , and combina-
tion rulesareassumptionsabout 6vF�L�1.f.tNq¾1!5�/ . Observethat6(F2LK1#f.tNq<1.5�/ b ?=5"6xfg1 (is false)appears3.5 timesmorefre-
quently in low - ��fX/ , high - D45�� - 1#f classthan in the high
- ��fg/ , high - D45�� - 1#f class. Hence,to argueless,we could
just try onewhat-if query: what-if we set“ 6(F2LK1#f.tNq<1.5�/ b?=5"6yf!1 ”? The effectsof that what-if query is shown in the
box plots of Figure 6. Also, the variancein the - ��fg/ is
greatlyreduced(seeFigure6) andmostof the - D45�� - 1.f are
closeto one.(thisexplainswhy thetheright-hand- D5�� - 1#f
“box” in Figure 6 is squashedflat: the 25% to 75% per-
centilevaluesareall thesame).

Note what has been achieved here. Without
JANE/CHEETAH/TARZAN, the exact valuesof the - ��fg/
and - D45�� - 1#f valuescould be endlesslydebated. Numer-
oussub-committeesmightbeformedto makecontradictory
conclusionsaboutthis weightvs thatweight. Also, the is-
sueof SET1vs SET2couldbeendlesslydebated.Numer-
ous PhD projectscould make contradictorymathematical
argumentsfor SET1vs SET2.

With JANE/CHEETAH/TARZAN, wecanargueless.At
least in this example,debatingthe precisevaluesof - ��fg/
and - D45�� - 1.f , or SET1vs SET1,is a wasteof time. Other
factors,suchas whetheror not we believe in 6(F2LK1#tNq<1.5�/
out-weighsthe details of - ��fg/ and - D45�� - 1#f or f w O vsO_5�34FxO w O .

5. Generality

Theaboveexampleshowedonesmallexampleof using
funnel-basedreasoning.In what otherdomainsmight this
techniquework andhow well will it scale?

This techniqueappliesin domainswherethreefactors
are true: narrow funnels are frequent, randomsearchis
an adequatemethodof searchingfor goals, and random
searchhasa preferencefor narrow funnelsover wide fun-
nels. Thereis much evidencethat thesethreefactorsare
truein many domains.

Frequent: Menzies& Cukic discussthe averageshape
of software; i.e. how numerousand how tangledare the
pathwaysinsidea pieceof software [8]. The overwhelm-
ing evidenceis thatmostsoftwarereliesa smallnumberof
frequentlyusedstraightpathways. Straightpathways are
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to low  ��*��� , high 2¡
¢u£" 2¤��

high  2�i���
low  2¡�¢X£� �¤�� high  2�i���

high  2¡�¢X£� �¤�� low  2�i�2�
low  2¡�¢X£� 2¤*�

1.5

r11cost=0.99, r11cost=1.33,
r11cost=1.99, r11cost=2.67,
r8chances=0.89, orsCostCom-
bine=max, likesSweat=false,
swimming=t

r10chances=0, r10chances=0.44, r10chances=0.89,
r8chances=0, r8chances=0.44, r8chances=0.89,
r8cost=0.9996, r9chances=0, r9chances=0.44,
r9chances=0.89,orsCostCombine=max,likesSweat=false,
swimming=t

r10chances=0,
r11chances=1.33,
r11chances=2.22,
r11chances=2.66,
r11chances=3.11

2.0

r10chances=0, r10chances=0.44, r8chances=0.44,
r9chances=0,r9chances=0.44,r9chances=0.89,orsCost-
Combine=max,likesSweat=false,swimming=t

2.5 likeSweat=false,swimming=t
3.0 likesSweat=f,swimming=t
3.5 likesSweat=f,swimming=t

Figure 5. Attrib ute rang es frequenc y counts seen in the diff erent classes. Only those counts that
were very diff erent to the counts seen in the superior class (high - D45�� - 1#f , low - ��fX/ ) are sho wn.
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Figure 6. Box plots sho wing chang es in the
- ��fX/ s, and - D5�� - 1#f before and after “what-if
likesSweat=false”.

proneto funnelssincedownstreampartsof a pathdepend
on thecritical assumptionsmadeearlyin thepath.

Preference: Menzies & Singh explore how random
searchmight selectbetweennarrow funnelsandwide fun-
nels. Basedon known distributions of reachingpart of a
software system,they concludedthat a randomsearchis
millions of timesmorelikely to usenarrow funnels[9].

cmm1 if okToProceed then reqAuthorized.
cmm2 if peerReviewOfRequirements rany

doFormalRequirementsInspections rany
softwareAssuranceReviewOfRequirements

then reviews.
cmm3 if problemReportAndCorrectiveActionSystem

then reqStable3.
cmm4 if problemReportAndCorrectiveActionSystem

then reqCompleteness3.
cmm5 if implementFormalConfigurationManagement

rors doFormalReviews.
then reqStable4.

cmm6 if doFormalReviews then formalReviews.
cmm7 if ’planAndScheduleIV&Vactivities’ then’’iv&v’.
cmm8 if reqAuthorized rand reviews rand

reqStable3 rand reqStable4 rand iv&v
then stableRequirements.

cmm9 if reqAuthorized rand reviews rand
reqCompleteness3 rand formalReviews
rand ’iv&v’

then completeRequirements.
cmm10 if no stableRequirements rand

no completeRequirements rand
invalidRequirements rand
infeasibleRequirements rand
unprecedentedRequirements rand
(largeSize ror complexSystems)

then requirementsRisk.

Figure 7. Some CMM level 2 kno wledg e in
JANE format ( - ��fX/�f , - D5�� - 1#f , and author s not
sho wn)

Adequacy:A hugebodyof work testifiesto themeritsof
randomsearch,even for very hardtaskssuchassearching
an argumentspace.For example,randomsearchmethods
are very effective for schedulingproblemsand can solve
hardandlarger planningproblemsmany timesfasterthan
traditionalmethodssuchasasystematicDavis-Putnampro-
cedure[4]. This work, plustheMenzies& Michealexperi-
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ments[11] suggeststhatrandomsearchis bothanadequate
andfastinferenceprocedurefor argumentspaces.

In order to test this generality argument,
JANE/CHEETAH/TARZAN are being applied to sev-
eral domains. Figure 7 shows part of a JANE rule base
describingCMM level 2 bestsoftwarepractices. In other
work, amodelof computerhardwarechoicefor auniversity
departmentis being developed. Also, a translatorfrom
JPL’s AART tool [2] into JANE is underconstructionto
supportargumentreductionin theearlylife cycleof NASA
softwaredevelopments.

6. Discussion

This approachreducesthenumberof total argumentsto
a smallnumberof key arguments.However, this approach
doesnot resolveor remove thosekey arguments. This is
quite deliberate. Argumentswill not and should not go
away. To be human,to be an expert, to be an individual,
impliesthatyou oftentake a differentstanceto your peers.
Arguingsuchdifferentstancesgeneratesheatandlight and
insightsinto a domainthat may remainhiddenotherwise.
Argumentsare an importantpart of viewpoints-basedRE
and we shouldorchestratethe negotiation betweenstake-
holdersby exploring their disputes.

Nevertheless,we cannotendorseargumentsunlesswe
alsoshow how to preventtheunconstrainedargumentsthat
canstall RE.Stakeholdersmustbefreeto argueaboutany-
thing they like. But in a resource-boundedsituation(e.g.
any softwaredevelopmentprocess),we canarguelessby
sortingour argumentsaccordingto their informationgain.
Such“most informative arguments”canbe quickly found
in JANE rulesvia CHEETAH’s randomizedabductionfol-
lowedby TARZAN’s induction.
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