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Abstract

Requiement&ngineeringanstall if all staleholderdis-
putesare explored; e.g. a mere 20 booleanoptionsim-
plies 22° > 1,000,000 possiblearguments. One method
of reducingthis argumentspaceis to focusthe arguments
on core issuesand ignore the peripheal arguments.The-
oretical and experimentalstudiesstrongly suggestthat, in
the usualcase a spaceof argumentscontainsmanyirr el-
evantand repeateddisputes.Hence the spaceof all criti-
cal argumentanaybe dramaticallysmallerthanthe space
of all arguments.It is arguedhere that this reductioncan
be implementedria abductionplus induction Abduction
can extract the consistentonclusionglerivablefroma re-
guirementsmodel. Induction can learn from that sample
the attributesthat mostchange the behaviourof the model.
Experimentswith this abduction-plus-inductiorapproach
havefoundthat a very smallnumberof critical factors can
be foundwithin seeminglyhuge argumentspacesA strong
theoretical casecan be madethat this approach will apply
to manydomainsandscaleto verylarge models.

1. Introduction

How cheaplycanwe build usefulrequirementsnodels?
Models may be deemeduseful for mary reasonsput our
sensenereis thata usefulmodelis onethat canbe usedto
malke definiteconclusionsMany requirementgngineering
(RE) researchersuchasvan Lamsweerdd17] arguethat
usefulRE modelsshouldbe high-qualityandcomprisede-
tailed andrigorously expressedgroductrequirementsThe
benefitof suchmodelsis thatthey canbestudiedby sophis-
ticatedformal toolsto deliver a detailedunderstandingf a
domain.Thecostof suchmodelsstheirconstructioreffort.
Thedetailsrequiredby suchmodelsmay be unavailablein
earlylife cycle or too expensveto collect. In safety-critical
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applicationswith large budgetsfor development,the cost
of building suchmodelscan be justified. However, other
domainsmay requirecheapemlternatvesto expensve and
time-consumindRrE.

Theproblemwith cheapeRE s thatit maygeneratdess
usefulmodels.As thenumberof uncertaintiegrowswithin
amodel,thenumberof possiblealternatvesincreasesxpo-
nentially For example,supposeanRE modelis unclearon
20 issues,eachwith a binary value of yes/no. 20 binary
choicesmplies22° > 1,000, 000 arguments.

In the caseof multiple viewpointsRE, cheapmodeling
implies a potential avalancheof arguments. Viewpoints-
basedRE assumeghat information comesfrom multiple
staleholders. Eachsetof informationis maintainedsepa-
rately asanindependenvtiewpoint (oneviewpoint for each
staleholder). Each viewpoint is a partial descriptionof
someperspectie on a system.Viewpointshave beenused
to characterizeentitiesin a systems$ ervironment[5], to
characterizaifferent classesof users[15], to distinguish
betweerstaleholderterminologieg16], andto partitionthe
requirementprocessnto looselycoupledwork pieceq14].
Thissupporffor looselycoupledwork pieceds akey advan-
tageof viewpoints. We canno longerassumehat software
will be built by a single teamin a single locationusing a
singletool kit for a single purpose.Givenrecentadvances
in Internettechnology(e.g. CORBA, theworld-wideweb),
we should expectthat software developmentwill be geo-
graphicallydistributed. For suchdistributeddevelopmentit
is pragmaticto permitthe paralleldevelopmentof separate
‘work pieces’(a.k.a.viewpoints)thatwill haveto beunified
at somelaterdate. Building viewpointsmustbe cheaplest
theoverall costof multi-viewpoint RE overwhelmshebud-
get. But cheapmodelsincur the uncertaintyproblem.How
arewe to managea disucssiorbetweermultiple stalehold-
ersfor our (e.g.)22° arguments?

This papempresentsa novel methodfor arguingless.Let
the union of the viewpointsbe the argumentspace It will



beclaimedthatmuchof anargumentspaces irrelevant,re-
dundantpr dependenbn otherpartsof theargumentspace.
Hence pnemethodof arguinglesswouldbeto focusfirston
the key portionsof the argumentspace Findingthekey ar-
gumentsds theoreticallyNP-hard[7] and,in practice,may
be impracticalfor all but the smallestmodels. However,
thefunneltheoryfirst proposecat RE99by Menzies,East-
erbrook, Nuseibehand Waugh[10] gives new hopefor a
tractablesearchor the key aguments.This paperpresents
arandomsearckenginecalledCHEETAH thatexercisesar-
gumentspacegxpressedn the JANE rule-basedanguage.
A monitor called TARZAN watchesrom above asCHEE-
TAH chasesANE aroundthe argumentspace. TARZAN
builds a log of Janes behaiour andlearnshow to nudge
JANE into betterbehaiour. Funneltheory (describedin
§3) predictsthatsuchnudgesarefew in numberandfastto
find.

Technically CHEETAH is arandomizedbductivanfer-
enceengineand TARZAN is aninductivelearner. There-
fore the core messagef this paperis that we can argue
less by applying randomizedabductionplus induction to
our combinedviewpoints.

This article is structuredas follows. The next section
documentsvidencefor funnel theory The detailsof that
theory are then discussedfollowed by an introductionto
the JANE/CHEETAH/TARZAN toolkit. Finally, we will
discusghe generalityof this approach.

2. The Funnel Phenomena

The reademay doubtthat big agumentscanreduceto
amuchsmallersetof key aguments However this section
offerssomedramaticexamplesof suchareduction.

Menzies& Sinselfound thata spaceof 54 million op-
tions containedfound two key variablesthat could most
control the rest of the system[12]. In that application,a
COCOMO-basedool [6] wasusedto evaluatetherisk that
a NASA software projectwould suffer from develop-time
overrun. The tool usedin that study requireda guessti-
mateof the sourcelines of code(SLOC)in the systemand
certaininternaltuning parametersvhich, ideally, arelearnt
from historical data. Lacking suchdata, Menzies& Sin-
selusedthreeguessedor SLOC andthreesetsof tunings
which they took from the literature. Competingstalehold-
ersproposedl1 changeso a project. Someof the project
featureswere unclearand,for thosefeatures projectman-
agerscould only offer rangedor the requiredinputsto the
COCOMO-basediool. Theserangesnffered2930possible
combinationgor theinputs.Whencombinedwith theother
uncertaintiesthis generated spaceof 54 million possibil-
ities (2930 * 21 *three guessefor SLOC* threetunings).

Facedwith this overdoseof possibilities Menzies& Sin-
sel performed50,000Monte Carlo simulationswherethe

inputsweretaken from the 54 million possibilities. A ma-

chine learning programgeneratediecisiontreesfrom the

50,000runs. A tree querylanguagecalled TARZAN then

swungthroughthelearnttreeslooking for theleastnumber
of attribute rangeshat hadthe biggestimpacton the over-

all softwaredevelopmentrisk. TARZAN foundthat of the

11 proposecchangesseven hada little overall impact. Of

theremainingfour, two wereclearlyinferior in reducingthe

systenrisk. This left two attribute rangeswith the clearest
benefitin reducingsoftwareprojectrisk.

In anotherstudy Menzies,EasterbrookNuseibehand
Waugh [10] found that most of the choicesmadewithin
a spaceof conflicts had the samenet effect. That study
comparediwo abductiveinferencestrategies Abduction
is a method of tracking the choicesmade while study-
ing a model. An abductve inferenceenginesearchedgor
goalswhile ensuringhatall choicesemaincompatible3].
Whenfacedwith incompatiblechoicesanabductve device
hasatleasttwo choices In full worldsseach, theabductie
device forks oneworld of belieffor eachpossibleresolution
to the choice. In randomworlds seach, the abductve de-
vice selectsone resolutionat random,then continueson.
Randomworlds searchis usuallyperformedinsidea “rest-
retry” mechanism.Thatis, for alimited numberof retries,
whentherandomsearchrunsoutof new options,all options
areretractedandthewholerandomworldsinferenceproce-
durerunsagain. In a very large casestudy (over a million
runs), Menzies, EasterbrookNuseibehand Waughfound
that the averagedifferencein reachablegoalsbetweenthe
randomworlds searchandfull worlds searchwaslessthan
6% (). Thatis, randomconflictresolutiorreachecsmary
partsof anargumentspaceasa morerigorousmethod.

In yet anotherstudy MenziesandMicheal[11] shoved
thatrandonworldssearcifound98%of the goalsfound by
afull worldssearch11] (aresultconsistentvith Menzies,
EasterbrookNuseibehrandWaugh).More interestingfrom
a pragmaticperspectie, the full worlds searchranin time
exponentialto modelsizewhile the randomizedabductve
searctcranmuchfasterandscaledupto very largemodels.

3. Funnel Theory

Funneltheoryis a claim that within the spaceof argu-
ments,thereexist a smallnumberof key decisionghatde-
termineall others. As we shall see,funneltheoryexplains
theabove obsenations.

To introducefunnels,wefirst saythatanargumentspace
supportsreasonsi.e. chainsof reasoninghatlink inputs
in a certaincontet to desiredgoals. Chainshave links
of at leasttwo types. Firstly, there are links that clash
with other links. Secondly there are the links that de-
pendon otherlinks. Onemethodof arguinglessis to first
debatethe non-dependentlashinglinks. The resolutions



to theseargumentswill have the greatesimpactof reduc-
ing the subsequenargument(s).For example,supposehe
following agumentspaceis explored using the invariant
nogood(X,—X) andeverythingthatis not a context or a
goal is opento debate:

a—b—c—d—e
contextl —f — g—h—1i—j — goal
contexrt2 —k — -g — | — m — =5 — goal
n—o—p—q— e

While all of {a,b,..q} is subjectto discussion,in the
context of reachingsome specifiedgoals from contextl
and contet2, the only importantdisputesare the clashes
{9,79,j,—j}. The {e,—e} clashis not exercisedin the
context of contextl,context2 F goal sinceno reason
usese or —e. Since{j, —j} arefully dependenon{g, g},
thenthecoreof thisarguments onevariable({g}) with two
disputedvalues:trueandfalse.

The funnel of an argument space containsthe non-
dependentlashinglinks; e.g. {g}! The argumentswith
greatestinformation contentare the argumentsaboutthe
funnelvariables sincethesevariablessetthe others.If the
spacecontainsgnarrowfunnelsthenthetotalagumentspace
canbegreatlyreducedo asmallnumberof highly informa-
tive disputesaboutfunnel variables. Staleholdersare still
freeto debatevhateverthey want(andthey will, seemingly
endlessly) but with this approachthe requirementengi-
neercansteerthe discussiortowardstheissueghattells us
mostaboutadomain.The neteffectcanbelessarguments.
Supposeour staleholdersagreethat g is true, thenin the
context of arguingabouthow contextl, context2 + goal,
theargumentspacereducego:

contextl —f — g — h — i — j—> goal

Thereasoningstartingwith £ hasbeenculledsince,by en-
dorsingg, we mustrejectsall linesof reasoninghatuse—g.
Also, thereasoningstartingwith a, n areignoredsincethey
areirrelevantin this context; i.e. they do not participatein
reachinga desiredgoal. Further in this context, thereis lit-

tle pointarguingabout{ f, h, %, j} sinceif ary of theseare
false,thennogoalcanbereached.

This small example shovs how to argue less through
funnel-basedeasoning.Funnel-basedrgumentatiorfinds
the key arguments,andignoresnumerousirrelevant argu-
ments.In the above example,a agumentspacecontaining
upto 216 = 65536 discussionsbout16 booleanvariables
{a..q} hasbeenreducedo onediscussiomaboutone vari-
able;i.e. “is g trueor false?”.

Funneltheoryexplainsthe obsenationsseenin §2:

1Readergamiliarwith the ATMS [1] will notethesimilaritiesbetween
the funnel and ATMS minimal ervironments However, while both ap-
proachesely on somenagood invariant, therearessignificantdifferences
betweenthe consisteng-basedtotal envisionmentf the ATMS andthe
set-coeringrelevantenvisionmentsliscussedhere;see[7] for details.

e The 54 million options about the software project
could reduceto two sincethe COCOMO-basedool
containecharrow funnels.

e The randomworlds searchusedby Menzies,Easter
brook, Nuseibeh Waughfound asmary goalsasthe
full worldssearchsinceboth searchesverecontrolled
by the samefunnels.

e Therandomworldssearchusedby Menzies& Micheal
ran extremely fast sinceit could quickly samplethe
funnelswithout all the overhead®f the morerigorous
search.

4. An Argument Reduction Environment

A naive approachto funnel-basedeasoningis to find
the funnelsusing somesophisticatediependeng-directed
backtrackingtools such as the ATMS [1] or HT4 [7].
Dependeng-directed backtrackingis a naive approach
since (1) suchreasoninghasbeenshownn to be very slow,
both theoreticallyand in practice[7]; and (2) thereis no
needto find the funnelin orderto exploit it. This second
pointis thekey insightthatresultedn this paper We don't
needto do arnything specialto find the funnel since any
reasoningpathway to goalsmustpassthroughit (by defi-
nition). Repeatedapplicationof somefastrandomsearch
techniquewill stumbleacrosshe funnelvariables(provid-
ing that searchtechniquereacheghe goals). This section
describesANE/CHEETAH/TARZAN, ageneratoolkit for
supportinglessargumentsbasedon randomizedsearch.In
the toolkit, randomizedabductionand induction are per
formed by CHEETAH and TARZAN respectiely. Both
thesemodulesnavigagea spaceof options,definedasrules
in the JANE language.

4.1. JANE

JANE is asimplerule-basedanguagédor expressingop-
tionsin a domain. Eachrule andfactin JANE is stamped
with the nameof theauthorandthetime anddateof its cre-
ation. Rulesandfactsfrom differentstaleholderscanhence
bestoredtogetherin onerule-baseAlso, eachrule andfact
getsa heuristicchancesmeasurgrange0 to 1) that stores
thelikelihoodof thatfact/rule.Finally, adollar cost valueis
addedo eachfact/rule.In thecurrentversionof JANE, cost
is aonce-of set-upcost. Hence,|if (e.g.) afactis accessed
morethanonce,its associatediollar costis only incurred
thefirst time.

Chances andcost neednot be specifiedexactly. JANE
authorscan specify a minimum and maximumvalue, op-
tionally markedwith some“skew”. For example,a sample
JANE rule base shawving contributionsfrom two stakehold-
ers(Tim andBob)is shovnin Figurel. Line 6 shovs anex-
actspecificatiorof costsandchances while line 17 shavsa



tim=[month=jan,day=18,year=2001
,elm="tim@menzies.com’].

bob= [month=feb,day=10,year=2001
,elm="robertf@zbm.com’].

timsays cost = 0 and chances = 1.
rl if rich rors healthy rors content
then happy.
r2 if not tranquil then rich.
10 r3 if tranquil then content.
11 r4 if no sick then healthy.
12 15 if overweight then sick.
13 r6 if no exercise then overweight.
14 t7 if baseball rany running rany swimming
15 rany football then exercise

©CoOoO~NOUOhWNPE

17 bob says cost = 1 to +4 and chances = +0 to 1.

18 r8 if enthusiasm rand likesSweat

19 then baseball.

20 9 if enthusiasm rand likesSweat

21 then running.

22 rlo if enthusiasm rand likesSweat

23 then football.

24

25 timsays cost = 1 to +4 and chances = +0 to 1.
26 rll if enthusiasm rand not likesSweat
27 then swimming.

28

29 timsays cost = 2 and chances = 1.
30 rl12 if true then enthusiasm.

31
32 run prove(happy).
33  runs time(proves(1000, experience.dat’).

Figure 1. A sample JANE knowledg e base.

rangespecificatiorwith a“+” symbolshowving theskew. In-

ternally, the skew is implementedasabeta(X) distribution

with meanX. +0 to 1 meanghattherangeis thetheran-

domvariable0 + beta(0.33) * (1 — 0) while 1 to +4 means
thattherangeis arandomvariablel + beta(0.67) (4 — 1).

Notealsothattherules{r1,r2,r3,r4,r5,76} all have the

samecost andchances shovn atline 6. Similarly, the cost

andchances of {r8,r9,r10} is setatline 17.

4.2. CHEETAH

CHEETAH is a randomizedabductie inferenceengine
thatinterpretsuleswrittenin the JANE syntax.CHEETAH
supportsassumption-base@asoningandrandomwalk.

A coreconceptwithin CHEETAH is the assumption If
aJANE rule conditionrequiressomeassumptionandthere
is no evidencefor or againstthat condition, then CHEE-
TAH justmakestheassumptionFor example,rule r11 can
only prove swimming if it assumesot likesSweat. This
assumptiorrulesout baseball, running or football since
thoseconclusiongequirelikesSweat (seeline 18,20,22in
Figurel).

Since assumptiongule out other conclusions,CHEE-

TAH usesa randomwalk mechanismfor randomly se-
lecting which assumptionsare made. This randomwalk
is a simple adaptationof standarddisjunctionsand con-
junctions. In standardianguagesif a testis specifiedas
X and Y and Z thenthattestis executedeft-to-right to
test X beforeY beforeZ. CHEETAH supportsthe stan-
dardleft-to-right and andor aswell asa randomordered
testrand andror. If aconditionis specified(e.g.)

swimming ror football ror baseball

thenthe order of traversalis picked randomly Recalling
the last paragraphthenCHEETAH may or may not try to

prove swimming before football in which caseassump-
tions aboutour dislike of sweatingwould favor swimming
andrule outtheothersports.

Whenmultiple methodsexist for proving somethingX,
thenourbeliefin =X shoulddecreaseThisis implemented
via the noX operatorwhich sumsthe evidencefor X into
Sum, thenreturnsl — Sum.

Otherrandomwalk operatorsof interestare rors and
rany (seelines 7 and 14,15in Figure 1). Rors speci-
fies a setof goalswhich we desireand rany specifiesa
setof required,but not totally desirablegoals. For exam-
ple, happiness might resultfrom beingrich, healthy and
content. However, in thisimperfectworld it is rarethatwe
canachieverich andhealthy andcontent. Hencewe com-
binethemwith arors to ask CHEETAH to try andproveas
mary of themaspossible.

Rany is similar in conceptto rors, but oppositein
intent. While exercise could be donevia baseball and
running andswimming and football, we probablydon't
wantto do all four exercisesat oncesincethis might lead
to (e.g.) muscledamage.Hencewe combinethemwith a
rany whichmustprove atleastoneof them,but afterthat, it
ignoressomerandomlyselectecportion of therany goals.
As with rand andror, the traversalorderof the testingin
rany andrors is pickedat random.

Rors andrany adoptstheHTO [11] methodfor travers-
ing a spaceof assumptions:one shot-poofs randomor-
dering, plus reset-etry. When proving a set of goals
X rors X, rors Xs..., thenthe goal X; only getsone-
shot If aproofof X; fails, thenthe systemdoesnot back-
trackto find differentsolutionsto prior goals X; ... X;(i =
j —1). Instead,X; is markedasunprovedandrors skips
onto thenext goal X ;. One-shois avery weakmethod
for proving somethingand only it works in domainswith
narrov funnels(whereary shotin thedarkwhile hit some-
thing of interest).Numerousexperimentg11] stronglysug-
gestthatwhenone-shots combinedwith reset-etry, then
one-shofgreatlyreduceghe computationatostof search-
ing aspacenf contractionsNotethatif we juggledtheorder
of the goals,thenwe might avoid making an assumption
beforesearchfor X; thatmakes X; impossible. Suchor-



derjuggling comesfor free aspartof the randomtraversal
orderof arors, plus CHEETAH’s reset-etry mechanism.
Line 33 of Figure 1 shavs that CHEETAH is calledmary
times,with theresultingbehaiour loggedto thefile experi-
encedat Betweeneachrun, CHEETAH resetsts assump-
tion memory and retries its high-level goals for another
time. During this later test, if the samerors is accessed,
thenthe randomorderingor the rors operatormeansthat
thegoalsmaybeexploredin a differentorder Thisimplies
that differentassumptionsnay be madebefore the proof
reachesX; and,hence,X; may be provablefor somesub-
setof CHEETAH'sruns.

In the casewhereorderingmustbe presered, CHEE-
TAH supportdheoperatoraind, or, any, ors whicharethe
non-randonversionof rand, ror, rany, rors respectiely.
Usinganors operatorwould seta preferenceeriteriafor a
setof goals. For example,thegoal X ors Y ors Z would
meanCHEETAH would attemptto provethemall in aleft-
to-right order, andthe assumptionsequiredfor X would
take precedencevertheassumptionsequiredfor Y andZ.
Usinganand operatomwould seta preciseorderingfor how
goalsareproved. For example,a top-dovn structurechart
for a projectplanwritten in JANE would be implemented
asfollows:

rl if analysis and design and code and test

then softwareProject.
r2 if requirementsCapture and debate and
decisions and elaborationOfDetails
then analysis.

Given the goal softwareProject, CHEETAH would
explore this rule-basedepth-first,left-to-right; i.e. theand
operatorensuresthat requirementsCapture would oc-
cur before debate and both of thesewould occur before
design. Anotheruseof explicit orderingsin JANE might
beto definerestrictionson the randomwalk beforeit is ex-
ecuted. For example, pollution markers are a methodfor
markingsomepartsof therequirementsemporarilyout-of-
boundq13]. In JANE, pollution markersto ignore(e.g.) z
andy could be addedby assuminghe negationof z andy
beforetestingfor the goals. Alternatively, in orderto con-
duct a what-if queryon e.g. a andb, theseassumptions
could be declaredprior to the goals. This would be imple-
mentedby proving thegoaldone acrosshefollowingrules:

rl if setup and goals then done.
r2 if pollution and whatifs then setup.
r3 if not x and not y then pollution.
r4 if a and b then whatifs.
r5 if happy rors content rors rich then goals.

4.3. Open Issues

Therearemary featuref theFigurel rule basethatare
opento debate.For example,what exactly arethe precise

operator Xecost Xchances
X = or(Y) first(Y).cost first(Y).chances
ror(Y)
= and(Y) E‘-Yl cost(Y;) Hlvy‘ chances(Y;)
i=1 2 i=1 z
rand(Y)
= vrors(Y) | ZCY ZCY
ors(Y) E‘ii‘l cost(Z;) E‘ii‘l chances(Z;)
rany(Y)
any(Y)
X = no(Y) > (allY.cost) 1—> (allY.chances)

Figure 2. The SET1 combination rules for costs
and chances. In this table, (a) the function
“first(Y)” returns the first proved element in
Y; (b) Z is the subset of Y that is proved by
the operator; (c) allX finds all solutions to X;
(d) the value of chances is always capped to
one.

costs and chances for eachrule andhow are we to tally
them togehter? JANE tallies costs and chances using a
customizableset of combinationoperators. This setcan
easilybe changedout this leavesopenthe question:which
operatorshouldbeused?

One set of combinationrules is shavn are the rules
known as SET1, shawvn in Figure 2. The rules
for {or,ror,and,rand} are simple enough. However,
{rors,ors,rany, any,no} aremorecomple, moreopen
to debate. The sourceof the compleity is that these
operatorssearchfor multiple solutionswithin a disjunc-
tion. It could be argued that as the amount of evi-
denceincreasesthe higherthe chances but the greaterthe
cost (sinceevidencecollectionis expensve). Hence,for
{rors,ors,rany, any} bothcost andchances aresummed
together

(Note the absenceof a mot operator in SET1:
JANE applies deMomgans theorem to corvert e.g.
a and not (b and ¢)toa =t and (b = false or ¢ =
false). Henceatruntime,not is nevercalled.)

SET2is anothersetof combinatiorruleswhichis almost
the sameasSET1hut takesa differentstanceon how costs
arecombined.In SET2,the cost of finding multiple solu-
tions within a disjunction(i.e. {rors,ors, rany,any}) is
the maxzimum of the costof the proved partsof the dis-
junction.

In keepingwith the whole JANE/CHEETAH/TARZAN
approachif a debatds possiblewe shouldrandomlysim-
ulateacrosghe spaceof possibilities,thenuseinductionto
checkwhich (if ary) of the debatepointsare key. In the
casestudyshowvn belov, JANE simulated:

e Acrossthe cost and chances rangespecifiedin Fig-
urel.
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Figure 3. Cost and chances from 1,000.

Cost
low if <$5 | highif > $5
Chances| low if < 0.85 24.7% 24.3%
highif > 0.85 21.7% 29.4%

Figure 4. Percentage of 1,000 runs that fall
into classes that combine low/high cost and
low/high chances.

e UsingeitherSET1or SET2(pickedoncefor eachrun).
44 . TARZAN

TARZAN performsinductionover thelogsof behaiour
seenwhenthe CHEETAH abductve inferenceengineex-
ploresthe JANE rules. Recallfrom Figure1, whenCHEE-
TAH runs JANE, a log of JANE's behaiour is storedin
experiencedat TARZAN searcheshatlog looking for the
fewestnumberattribute rangeghathave the largestimpact
ontheoverallbehaiour of the system.

Figure 3 shows the cost and chances seenin 1,000
proofsof happy (asdefinedonlines6,7 of Figurel). Note
the wide rangeof possibleoutcomes.At this point, a for-
mal RE researchesuchasvan Lamsweerdg17] couldre-
ject ANE-basedmodelsas useless.If we cannotrestrict
thiswide range thenJANE-stylemodelingmustberejected
sinceit cannotgeneratalefiniteconclusions.

TARZAN' staskof restrictingthisrangeof behaviour be-
ginsby dividing theoutputinto severalclassesTheclassifi-
cationsshown in Figure4 werechosersoasto balancethe
size of the differentclasseqclassewf differentsizescan
biasan inductive learner). Of theseclassespneis clearly
inferior (low chances, high cost), andoneis clearly supe-
rior (high chances, low cost). TARZAN's taskis to find
methoddor nudgingthe systemaway from inferior andto-
wardsuperiorclasses.

Theversionof TARZAN usedin this studycollectedfre-

gueny countsof attribute rangesin the different classes.
Thesecountswereexpressedistherelative measure:

seenin superiorclass
seenin otherclass

The resultsin Figure 5 shavs that numerouscosts and
chances, and assumptionscontrol JANE's behaiour.
And, as might be expected, the orscost-combination
issue is somavhat important (witness the presenceof
orsCostCombine in mostof thecellsin Figure5). How-
ever, overriding issuesof costs, chances, and combina-
tion rulesareassumptionsbout/ikesSweat. Obsene that
likesSweat = false (is false)appears.5timesmorefre-
qguentlyin low cost, high chances classthanin the high
cost, high chances class. Hence,to argueless,we could
just try onewhat-if query: what-if we set“likesSweat =
false™? The effectsof thatwhat-if queryis showvn in the
box plots of Figure 6. Also, the variancein the cost is
greatlyreducedseeFigure6) andmostof the chances are
closeto one.(this explainswhy thetheright-handchances
“box” in Figure 6 is squashedlat: the 25% to 75% per
centilevaluesareall thesame).

Note what has been achieved here. Without
JANE/CHEETAH/TARZAN, the exact valuesof the cost
and chances valuescould be endlesslydebated. Numer
oussub-committeemightbeformedto make contradictory
conclusionsaboutthis weightvs thatweight. Also, theis-
sueof SET1vs SET2could be endlesslydebated Numer
ous PhD projectscould make contradictorymathematical
argumentgor SET1vs SET2.

With JANE/CHEETAH/TARZAN, we canargueless.At
leastin this example, debatingthe precisevaluesof cost
andchances, or SET1vs SET1,is awasteof time. Other
factors,suchaswhetheror not we believe in likeSweat
out-weighsthe details of cost and chances or sum vs
marimum.

5. Generality

The above exampleshoved onesmallexampleof using
funnel-basedeasoning.In what otherdomainsmight this
techniquework andhow well will it scale?

This techniqueappliesin domainswherethreefactors
are true: narrov funnels are frequent randomsearchis
an adequatemethodof searchingfor goals, and random
searchhasa prefeencefor narrav funnelsover wide fun-
nels. Thereis much evidencethat thesethreefactorsare
truein mary domains.

Frequent: Menzies& Cukic discussthe averageshape
of software;i.e. how numerousand how tangledare the
pathwaysinside a pieceof software[8]. The overwhelm-
ing evidenceis thatmostsoftwarereliesa smallnumberof
frequentlyusedstraight pathways. Straightpathwaysare



Frequeng w.r.t. | highcost high cost low cost
to low cost, high | low chances high chances low chances
chances
rllcost=0.99, rllcost=1.33,| rl0chances=0, rlOchances=0.44, rl0chances=0.89| rl0chances=0,
rllcost=1.99, rllcost=2.67,| r8chances=0, r8chances=0.44, r8chances=0.89| rllchances=1.33,
15 r8chances=0.89, orsCostCom-| r8cost=0.9996, r9chances=0, r9chances=0.44| rllchances=2.22,
bine=max, likesSweat=lse, | r9chances=0.8%rsCostCombine=matikesSweat=flse, | rllchances=2.66,
swimming=t swimming=t rllchances=3.11
rl0chances=0, rlOchances=0.44, r8chances=0.44
r9chances=0r9chances=0.44r9chances=0.89prsCost-
2.0 Combine=maxlikesSweat=lse,swimming=t
25 likeSweat=dlse,swimming=t
3.0 likesSweat=fswimming=t
35 likesSweat=fswimming=t

Figure 5. Attrib ute ranges frequenc y counts seen in the diff erent classes. Only those counts that
were very diff erent to the counts seen in the superior class (high chances, low cost) are shown.
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Figure 6. Box plots showing changes in the
costs, and chances before and after “what-if
likesSweat=false”.

proneto funnelssincedownstreampartsof a pathdepend
onthecritical assumptionsnadeearlyin the path.

Prefeence: Menzies & Singh explore how random
searchmight selectbetweemarrav funnelsandwide fun-
nels. Basedon known distributions of reachingpart of a
software system,they concludedthat a randomsearchis
millions of timesmorelik ely to usenarrown funnels[9].

cmml if okToProceed then regAuthorized.
cmm2 if peerReviewOfRequirements rany
doFormalRequirementsinspections rany

softwareAssuranceReviewOfRequirements
then reviews.
cmma3 if problemReportAndCorrectiveActionSystem
then reqgStable3.
cmm4 if problemReportAndCorrectiveActionSystem
then regCompleteness3.
cmmb if implementFormalConfigurationManagement
rors doFormalReviews.
then regStable4.

cmm6 if doFormalReviews then formalReviews.
cmm7 if ‘planAndSchedulelV&Vactivities’ then”iv&v'.
cmm8 if regAuthorized rand reviews rand

reqStable3 rand reqStable4 rand iv&v
then stableRequirements.

cmm9 if regAuthorized rand reviews rand
reqCompleteness3  rand formalReviews
rand 'iv&v’

then completeRequirements.

cmm10 if no stableRequirements rand
no completeRequirements rand
invalidRequirements rand
infeasibleRequirements rand
unprecedentedRequirements rand

(largeSize ror complexSystems)
then requirementsRisk.

Figure 7. Some CMM level 2 knowledg e in
JANE format (costs, chances, and author s not
shown)

AdequacyA hugebodyof work testifiesto themeritsof
randomsearch.evenfor very hardtaskssuchassearching
an argumentspace. For example,randomsearchmethods
are very effective for schedulingproblemsand can solve
hardandlarger planningproblemsmary timesfasterthan
traditionalmethodssuchasa systemati®avis-Putnanpro-
cedurg[4]. Thiswork, plusthe Menzies& Micheal experi-



ments[11] suggestshatrandomsearchis bothanadequate
andfastinferenceprocedurdor argumentspaces.

In order to test this generality amgument,
JANE/CHEETAH/TARZAN are being applied to ser-
eral domains. Figure 7 shows part of a JANE rule base
describingCMM level 2 bestsoftware practices. In other
work, amodelof computethardwarechoicefor auniversity
departmentis being developed. Also, a translatorfrom
JPLs AART tool [2] into JANE is underconstructionto
supportagumentreductionin the earlylife cycle of NASA
softwaredevelopments.

6. Discussion

This approachreduceghe numberof total algumentgo
a smallnumberof key arguments.However, this approach
doesnot resolveor remore thosekey arguments. This is
quite deliberate. Argumentswill not and should not go
away. To be human,to be an expert, to be an individual,
impliesthatyou oftentake a differentstanceto your peers.
Arguingsuchdifferentstancegeneratefieatandlight and
insightsinto a domainthat may remainhiddenotherwise.
Argumentsare an importantpart of viewpoints-basedRRE
and we should orchestratehe negotiation betweenstale-
holdersby exploring their disputes.

Neverthelesswe cannotendorseargumentsunlesswe
alsoshav how to preventthe unconstraineérgumentghat
canstall RE. Staleholderanustbefreeto argueaboutary-
thing they like. But in a resource-boundesituation(e.g.
ary software developmentprocess)we canargue lessby
sortingour agumentsaccordingto their informationgain.
Such“most informative arguments”can be quickly found
in JANE rulesvia CHEETAH’ s randomizedabductionfol-
lowedby TARZAN's induction.
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