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ABSTRACT

In practice, requirements engineering is complicated by the
valid interests of multiple stakeholders. Meeting these varied
and sometimes conflicting needs of multiple stakeholders is
the primary task of requirements engineering. One method
of helping requirements engineers in this task is to treat
requirements as a theory, then to write simulators to exercise
that theory. This exploration of the requirements theory
can help identify the leverage points and critical differences
among stakeholder views. This can then be used to generate
insightful debates among these human stakeholders.

Such requirements theory simulators can generate an over-
whelming amount of data. Machine learners can summarize
this excess of data and report the key features of a simula-
tion. In our case study, the TAR2 machine learner uses a
model of CMM level-2 to find a minimum set of changes to
a software project that increase the likelihood of low cost,
better projects.

KEYWORDS: knowledge acquisition tools, knowledge en-
gineering and modelling methodologies, abduction, machine
learning, requirements engineering, stochastic search, treat-
ment learning, CMM level-2.

1. INTRODUCTION

Requirements engineering (RE) is (1) the elicitation of
high-level goals of some envisioned system followed by (2) the
refinement of these goals into services and constraints, and
(3) the assignment of responsibilities for the resulting re-
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quirements to agents such as humans, devices, and soft-
ware [26]. RE is typically performed within a community
of stakeholders, who may have different goals and priorities.

Tools that support RE should (a) assist the stakehold-
ers in finding the key disputes, (b) find trade-offs between
the stakeholders that address those disputes; (c) discourage
debates over issues with little impact to the overall goals,
and (d) refine and evaluate the early life cycle models. The
intent of RE tools is to generate insightful debates between
human stakeholders. Hence, it is both misguided and im-
possible for RE tools to fully automate the RE process since
such total automation would prevent human participation
and human acceptance of the conclusions of the debate.

Model-based RE converts English requirements documents
into some formal theory. For example, Mylopoulos et.al. use
goal-graphs which are directed and-or graphs of literals [19].
Van Lamsweerde’s work focuses on the product aspects of a
system. The core data structure in that work is a goal hier-
archy where every node contains assertions about products
in the domain, expressed as fragments in the UML syntax.
As system goals change, parts of this hierarchy are pruned
and the implemented system is designed from the remaining
UML fragments [26]. The ARRT tool focuses on the process
aspects of a system [5].The core data structure in ARRT is
a network of faults and risk mitigation actions that effect
a tree of requirements written by the stakeholders (e.g. see
Figure 1). Potential faults within a project are modelled
as influences on the edges between requirements. Potential
fixes are modelled as influences on the edges between faults
and requirements edges. Each edge in the network is aug-
mented with a numeric strength. These numerics quantify
the relationships among requirements, risks, and the activi-
ties we use to mitigate these risks. ARRT-style RE outputs
a minimum set of risk-mitigation “control actions” which
address the potential faults.

The research described here began with the speculation
that the Bratko et.al. process of “simulation+summarization”
could augment ARRT-style RE. Bratko et.al. [1] use machine
learning to understand theories. Given a domain theory ex-
pressed as horn clauses, they use a resolution-based simu-
lator (some Prolog program) to generate a log of possible
behaviors from the theory. This log is then given to some
machine learner to generate a summary of the essential fea-
tures of a theory. This summary must be useful for RE. For
example, the the RE control problem studied here is that of
treatment learning; i.e. learn minimum treatments from the
behavior logs that improve the overall behavior of a system.
Suppose a log entry lists the values seen in the theory at-
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Disjunctions are marked with two arcs; e.g. fault! if fault2 or
fault3.

Numbers denote impacts; e.g. actiond greatly reduces the im-
pact of fault3, fault! reduces the impact of require5, and
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attributel A

treatmentl {

clusterl:
high zone

1 cluster 2:
04 4 1.0 low zone
0 ¢ 3
T J » attribute2
treatment2

Figure 2: Treatments in attribute space.

tributes during a run; e.g. attributeX = 3.1, attributeY =
3.2. The worth of such a log entry is scored according to
some domain-specific predicate; e.g.

worth<score( Attribute X, AttributeY’)

For example, Figure 2 shows the assigned scores generated
from 29 entries in a log. If the control attributes could be
constrained into the two treatments shown in Figure 2, then
subsequent executions of the RE theory would yield a higher
ratio of the more desired behaviors (those that get scored
with a higher worth). Note that a prerequisite for treatment
learning is that some attributes are control variables; i.e.
they have some causal influence on the system.

The rest of this paper explores learning treatments via
the simulation and summarization of RE theories. Bratko
et.al. argue that off-the-shelf machine learners are suitable
for the summarization. Our experience does not support
that claim, at least for the theories we studied and the soft-
ware managers we work with. Firstly, the problem shown
in Figure 2 is subtlety different from the standard machine
learning problem solved by (e.g.) C4.5 [22]. Standard learn-
ers output some descriptor of the clusters in attribute space.
Our ideal RE learner learns difference between clusters. Sec-
ondly, as discussed in §2.1, several issues complicate the sim-
ulation of RE theories. Thirdly, as argued in §2.2, standard
learners such as C4.5 can be unsuitable for summarizing the
logs from the simulation of nondeterministic RE theories.
We argue in §3 that if the topology of RE theories contain

narrow funnels (defined below) then simpler simulation and
summarization can be implemented. Assuming narrow fun-
nels, then simple learners like the TAR2 system discussed in
§4 can solve the treatment learning problem for RE theories.
§2.1 to §3 discuss past work. §4 is the novel contribution of
this paper.

2. OPEN ISSUES

2.1 Simulation I ssues

Five problems complicate the process of simulating RE
theories. Firstly, the theories themselves may be open to
debate. For example, in the above sample of a ARRT-style
RE model, the magnitude of the influence strengths may be
unknown with certainty.

Secondly, Bratko et.al. exhaustively executed their mod-
els and this proved impractical in our test domains. For
example, Menzies & Sinsel reported a domain where ex-
haustive execution of an RE theory, plus all combinations
of the control actions, needed 10° runs [14].

Thirdly, in the Menzies & Sinsel domain, experiments
with random sampling within the 10° possibilities yields
decision trees with tens of thousands of nodes. Such tree
are too large for human comprehension and must be further
summarized.

Fourthly, the simulator itself can be non-trivial to imple-
ment. RE theories are generated very early in the software
life cycle and may contain contradictions (especially if they
are built by a community of competing stakeholders). Sim-
ulators for RE theories must be contradiction tolerant. A
general framework for contradiction-tolerant inference pro-
cedure is abduction, as used in HT4 [17] and truth main-
tenance systems such as the ATMS [4]. (the connection of
TMS to abduction is discussed in [2]). Abduction seeks as-
sumptions that lead to goals from inputs without causing
contradictions. A consistent set of assumptions defines a
world of belief. Intuitively, each world is a set of ideas that
can be believed at the same time. Even simple abductive
inference engines can be complex to build [16].

A fifth problem with simulating an RE theory is that such
a simulation can take exponential time and memory. Gabow
et.al. showed that building proofs across theories contain-
ing contradictions (e.g. {z,z}) is NP-hard for all but the
simplest theory (a theory is very simple if it is very small,
or it is a simple tree, or it has a dependency networks with



abbreviations current proposed
situation | changes
prec = 0..5 precedentness 0,1
flex = 0..5 development flexibil- [ 1,2,3,4 |1
ity
resl = 0..5 risk resolution 0,1,2 2
team = (0..5 | team cohesion 1,2 2
pmat = 0..5 | process maturity 0,1,2,3 |3
rely = 0..4 required reliability 4
data = 1..4 database size 2
cplx = 0..5 product complexity 4,5
ruse = 1.5 level of reuse 1,2,3 3
docu = 0..4 | doco requirements 1,2,3 3
time = 2..5 runtime constraints ?
stor = 2..5 main memory storage | 2, 3, 4 2
pvol = 1.4 platform volatility 1
acap = 0..4 | analyst capability 1,2 2
pcap = 0..4 | programmer capabil- | 2
ity
pcon = 0..4 | programmer continu- | 1, 2 2
ity
aexp = 0..4 | analyst experience 1,2
pexp = 0..4 | platform experience 2
Itex = 0.4 experience with tools | 1, 2, 3 3
tool = 0..4 use of software tools | 1, 2
site = 0..5 multi-site  develop- | 2
ment
sced = 0..4 | time before delivery 0,1,2 2
# of combinations= 6 % 10°

Figure 3: A NASA software project. Unknowns in
the current situation are shown as ranges or, in the
case of total lack of knowledge, a “?7”.

out-degree < 1) [6]. Subsequent research reached the same
pessimistic conclusion (see the review in [17]). For example,
both the ATMS and HT4 exhibited runtimes exponential on
theory size [17]. In order to tame the runtime problem, RE
analysts have imposed severe restrictions on the nature of
their theories or the questions being asked of that theory
(e.g. [13]). Our goal is to permit such extensions, without
requiring slow or complex processing.

2.2 Summarization | ssues

Initially it was hoped that off-the-shelf machine learners
could summarize logs generated from RE theories. Initial ex-
periments with treatment learning using TAR1 system were
encouraging [14]. However, the drawbacks with TAR1 dis-
cussed below prompted the development of TAR2.

Menzies & Sinsel studied a log of 50,000 examples gener-
ated from a COCOMO-based risk evaluation tool [8] applied
to the NASA project shown in Figure 3. That tool required
a guesstimate of the source lines of code (SLOC) in the sys-
tem and certain internal tuning parameters which, ideally,
are learnt from historical data. Lacking such data, Men-
zies & Sinsel used three guesses for SLOC and three sets
of tunings which they took from the literature. Compet-
ing stakeholders proposed 11 changes to a project. Some
of the project features were unclear and, for those features,
project managers could only offer ranges for the required
inputs to the COCOMO-based tool. These ranges offered
2930 possible combinations for the inputs. When combined
with the other uncertainties, this generated a space of 54
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Figure 4: TOP: A decision tree (left) and a pruned
tree (right) holding all branches that do not contra-
dict acap=2.

BOTTOM: Number of braﬁs to different i
classification. Legend: =low risk
=high risk.

million possibilities (2930 % 2'**three guesses for SLOC *
three tunings).

Faced with this overdose of possibilities, Menzies & Sin-
sel performed 50,000 Monte Carlo simulations where the in-
puts were taken from the 54 million possibilities. A ma-
chine learning program generated decision trees from the
50,000 runs. A tree query language called TARZAN then
swung through the learnt trees looking for the least num-
ber of attribute ranges that had the biggest impact on the
overall software development risk. TARZAN treated the
learnt trees as a space of possibilities within the logged be-
haviour. TARZAN what-if queries by pruning all branches
in the learnt trees that contradict our what-if possibility?.
For example, if we wonder “what-if acap=2", then Figure 4,
top left, would be pruned to Figure 4, top right. This partic-
ular “what-if” turns out to be a bad idea. The histograms
in Figure 4, bottom, show that this pruning drives us into
a situation where the ratio to low risk to high risk projects
changes from 3:2 to 1:1. That is, if acap=2, then we increase
our chances of a high-risk project.

Figure 5 shows some of the what-if queries conducted over
the trees learnt from the 50,000 runs. The baseline risk pro-
file is shown in cell Al of Figure 5: prior to the what-if

queries, the learnt trees hold branches to 7,24,8 low,medium,high

risk projects respectively. Seven of the proposed changes
had little impact on the baseline. Of the remaining four
proposed changes, two are clearly superior. Cell A2 shows
that that having moderately talented analysts and no sched-
ule pressure (acap=[2], sced=[2]) reduced the risk in this
project nearly as much as any other, larger subset. Excep-
tion: B2 applies actions to remove all branches to medium
and high risk projects. Nevertheless, Menzies & Sinsel rec-
ommended A2, not B2, since A2 seemed to achieve most of
what B2 can do, with much less effort.

Note that Figure 5 takes %th of a page to display and

shows the key factors that control the classifications of 54,000,000

possibilities. This astonishing reduction in the argument
space is consistent with the COCOMO-based tool contain-
ing narrow funnels.

!The fanciful name of TARZAN arose when it was realized
that these what-if queries are like benevolent agents swing-
ing through the trees looking for ways to change what is
going on. Tools that extend TARZAN should come from
the same genre. Hence, JANE and CHEETAH.
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While this experiment was encouraging, the technique
had a major drawback for summarizing general RE theo-
ries. The COCOMO system is a well developed determinis-
tic theory. Each run assigns values to the same attributes.
A nondeterministic abductive simulation may not reach the
same variables during each run and the datasets collected
from such a run may have a very large number of unknown
values. For example, in one example we studied, 45% of the
attributes were unknown in each vector. This leads to very
large error rates in theories learnt from C4.5 and very un-
reliable treatments. Hence, we concluded that decision tree
learners like C4.5 were unsuitable for summarizing the logs
of a nondeterministic simulation.

3. FUNNEL THEORY

To understand our resolution to the above issues, we first
must introduce funnel theory. Funnel theory is a claim that,
on average, the number of goals reached via the generation
of proof trees from inputs to goals is not greatly effected by
nondeterministic search. As we shall see, this claim simpli-
fies both the simulation and summarization of RE theories.

Consider a proof tree that connects inputs to goals. In
the HT4 framework, a node in a proof tree is either a facts
or an assumption. (In HT4, a node is an assumption if it is
not a member of the inputs or goals.) We assume that a sin-
gle tree is consistent (i.e. it does not contain contradictory
assumptions) but trees may contradict other trees (if one
tree assumes something that contradicts the assumptions of
another tree). Depending on which consistent subset of the
assumptions is believed, different sets of proof trees will be
believed and different goals will be reachable.

After discarding the non-contradictory assumptions, and
the assumptions that can be proved from other assumptions,
a set of minimal contradictory assumptions can be found
with a proof tree that control the assumptions made in the

rest of the tree. This union of this set across all known proof
trees is the funnel. If the average size of this set is very small
then the total number of distinct sets of consistent proof
trees that can be generated is very small.

Research analogous to funnel theory has been reported
in many domains (see §6). The funnel theory work reported
here arose from two experimental studies and one theoretical
study. The O(2") runtimes of the HT4 abductive inference
engine motivated a review of the algorithm’s performance.
It was observed that the maximum number of goals reached
by all worlds generated by HT4 was often similar to the num-
ber of goals reached in any single world. This observation,
plus the stochastic reasoning work of Selman, Levesque, and
Mitchell [24] prompted the following experiment in random
world generation. HT4 collects together all the proof trees
that connect inputs to goals, then sorts those proofs into
worlds; i.e..maximal consistent subsets. That is, HT4 finds
all worlds. In contrast, HT0 uses a randomized world gener-
ation strategy first [12]. Whenever a nondeterministic point
is reached, HTO assumes one option, picked at random. Fu-
ture inferences must be consistent with this selected option.
Occasionally, HTQ will retract all assumptions and restart.
In this manner, some worlds will be generated, one at a time,
each with a different set of randomly selected assumptions.
The process continues until the number of reached goals by
Worlds; is about the same as the maximum reached goals
for Worlds,.Worlds;—1. In numerous experiments, HT4
was observed to run in time O(2") while HT0 was observed
to run in time O(N?). Further, for the problems which ter-
minated with both HT0 and HT4, HT0 reached 98% of the
goals found by HT4.

This result was unexpected (to say the least). HTO is
much simpler than HT4 and yet performs much better. More
experiments were performed [18]. It was found that for mil-
lions of runs over tens of thousands of theories containing a
varying number of artificially introduced errors, the result
was the same: the difference in the number of goals reached
by the full-worlds search of HT4 was only 6% different (on
average) to the goals reached via the random world genera-
tion.

These empirical results were followed by a mathemati-
cal analysis of proof tree generation over an and-or graph
containing contradictions [9,10]. The analysis showed that
the above empirical observations where not mere quirks of
their domain. Rather, they reflect a basic feature of build-
ing proof trees through a space of inconsistencies. A random
search will find some subset of the total number of possible
proof trees within a theory that connects inputs to goals.
The funnels used by these proofs may hence be different. A
necessary, but not sufficient, condition for the optimism of
funnel theory is that, when faced with a choice of funnels,
random search will take the easy way out and use narrow
funnels.

Mathematical simulations by Menzies, Cukic, Singh and
Powell suggest that this is indeed the case [9, 10,15]. The
probability distribution of successfully building a proof tree
from randomly selected inputs to a random term in a horn
clause theory can be determined [15]. These distributions
have pessimistic and optimistic bounds. For example, in the
pessimistic case, 100 randomly selected input sets will miss
over 95% of the terms in the theory. In the optimistic case,
100 randomly selected input sets will miss only 50% of the
terms in the theory. If it is assumed that the goal required



a conjunction of all funnel terms, then a worst-case prob-
ability of reaching a term via a funnel can be computed.
The optimistic and pessimistic distributions can be used to
compute the probability of (1) reaching all the funnel terms,
then (2) reaching the goal from the funnel. After comput-
ing these distributions for wide<—a * narrow, the effects of
increasing funnel size on funnel choice can be calculated.

Simulations of this mathematical model offer some inter-
esting results. As might be expected, given two funnels of
the same size (i.e. a<1) then the probability of using one
of them is 50%. As the difference in their size grows (i.e.
« increases), then increasingly the narrower funnel is pre-
ferred to the wider funnel. The effect is quite pronounced.
For example, for all the studied distributions, if a wider
funnel is 2,3,4,5,6 times bigger than a narrow funnel, then
in 60%,70%,80%,90%,95% (respectively) of the simulations,
random search will be over 1,000,000 times as likely as to
use the narrow funnel [10].

Narrower funnels imply fewer distinct behaviors since the
cardinality of the funnels controls the range of behaviors in
a theory containing contradictions. Narrow funnels explains
the above empirical results. A random worlds search finds as
many goals as the full worlds search since both searches were
controlled by the same funnels. Further, the random worlds
search runs faster since it can quickly sample the funnels
without all the overheads of the more rigorous search.

4. TAR2

Assuming narrow funnels, then it is very simple to sim-
ulate and summarize RE theories. If the funnels are nar-
row, then HTO0-style inference simulations of RE theories
will quickly sample the range of behaviors in a system. Fur-
ther, in the logs of those behaviors, the funnel attributes
will appear very frequently since all pathways must use the
same small set of attributes. Hence, assuming funnels, the
treatment learning problem reduces to the task of finding
high frequency attribute ranges that occur more often in
the preferred behaviors than in the less desirable behaviors.

TAR2 is a treatment learning system that assumes (1) a
partial ordering exists between classes and (2) datasets are
generated from simulations of theories with narrow funnels.
The goal of the learner is to find some minimal treatment
strategy that improves the distribution of classes in the
dataset. TAR2’s input/output is shown in Figure 6. The
terminology of that figure is explained below. Reserved vari-
able names and types are shown in talics.

TAR2 will be explained using a case study based on the
software capability maturity model from CMU’s Software
Engineering Institute (SEI-CMM) [21]). The chapter of [21]
relating to CMM level 2 (informally defined software pro-
cesses) was manually converted from text into a directed

Inputs: granularity, nchanges : postint;
promising,useful : posnum;
classes : associationArray;
dataset : set
score(), classify() : function
now, changes : select
Outputs: treatment : bandSelect

Figure 6: TAR2: inputs and outputs.

and-or graph. Each node represents some software man-
agement action. Each edge was augmented with numeric
weights for the dollar cost of use some technique and the
chances that this technique will contribute to the down-
stream node. These numerics are highly subjective and are
drawn from cost € {10, 20, 30,40, 50} and chances € {0.1,
0.3,0.9}. The resulting system had 124 control variables (all
the costs and chances) and was executed 1000 times using
the HTO-style inference engine described in [11]. This en-
gine defines combination rules for costs and chances across
an and-or network (for details, see [11]).

Since our cost and chances were so subjective, our case
study tested if a £30% change in any of these control vari-
ables had a significant impact in the total cost and chances of
producing a good software project (as defined by SEI-CMM
level 2). Hence, every numeric edge weight was converted
to a random variable with a range 0.7X < X < 1.3X.

All the classes known to TAR2 are stored in the classes
association array which, in BNF? appears as:

classes :== {index class}+

where classes[i] is “significantly worse” than classes[j] (¢ < 7).
In our case study, the classes were:

classes« < (0, hilo), (1,10lo), (2, hihi), (3, lohi) >

denoting high/low, low/low, high/high, low/high (respec-
tively) for the cost/chances of a good SEI-CMM level 2
project.

The user-supplied function “score()” operationalizes “sig-
nificantly worse”. We found an exponential scoring scheme
works adequately such as score(classificaions[i]) = 2°; i.e.
low cost, high chance projects (lohi) are eight times better
that high cost, low chances projects (hilo). A requirement
of the score() function is that it must be able to compute
one or more best classes; in this case best<lohi.

A dataset was generated from the 1000 runs over our
CMM level 2 theory. A classify() function was used to
add a class to each item in the dataset.

dataset == {{attribute = value}+} +

instances == {{attribute = value} + class}+

All values in the current implementation of TAR2 must be
numeric so booleans are expressed as 0,1. In that imple-
mentation, -1 represents unknown. TAR?2 descretized these
numeric values by sorting all values for one attribute, then
dividing them into a number of percentile bands. The num-
ber of bands is preset by the granularity variable. Note
that as granularity increases, TAR2 explores the impact
of more combinations of finer-grain ranges. By default,
granularity<3.

It is recommended that classify() be designed such that
instances of the “best classes” are nearly as common as the
other classes. Our case study showed adequate performance
using a classify() that generated the distribution seen in
Figure 7A. This untreated distribution is called the base-
line distribution. The baseline’s worth was computed by
summing relative frequencies of each class, weighted by the

*In this BNF notation, W :== XY|Z denotes that the
structure W can contain the structures X,Y or Z. Also,
{X}+ denotes one or more occurrences of the structureX.
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Figure 7: Improvements in distributions of classes generated by TAR2. At granularity=3 (e.g. Figure TA,
Figure 7B), a treatment of X=1 means reduce X to the lowest one-third percentile band. At granularity=5 (e.g.
Figure 7C), a treatment of X=1 or X=2 means reduce X to the lowest or second lowest (respectively) one-fifth

percentile band.

score() of that class; i.e.

worth<« Z

i€classes

score(i) * |instances with classes|i|
|instances|

The histogram of Figure 7A displays this baseline’s worth
as “l” since TAR2 reports the worth of other distributions
as ratios of this baseline.

From a business perspective, the baseline distribution looks
bad since it is highly skewed towards the worse classes. The
goal of TAR2 is to find some treatment that improves on
this baseline; e.g. change Figure 7A to Figure 7C. In the
general case, a treatment is a select statement that restricts
the ranges of an attribute:

select === true|l{attribute {comp}+} +
comp === opvalue
op n== =<|<|=|>]|>=

A comp set bigger than one is a disjunction; e.g. age=2
or age=3. Otherwise, all the restrictions on attributes are
“and-ed” together. The operation SETASELECT extracts
the subset of SET that satisfy SELECT.

TAR2 accepts as input two select statements: now and
changes. Now represents the current state of the domain.
Ideally, now < true; i.e. the dataset was generated using
only current conditions in the domain. However, it is not
uncommon that users are accessing some historical dataset
that may contain items not relevant to current conditions.
The irrelevant parts are culled by now. Changes represents
some desired zone within the dataset that the user wishes to
approach. The attributes of the changes set are the control
variables; i.e. the things that the user is willing to change
in order to improve current conditions. The ranges within
changes specify exactly what changes the user is consider-
ing.

In our case study, we sought any changes that make a sig-
nificant difference to the worth of the dataset; i.e. now «
true and changes contains all A > —1 for all attributes
A; i.e. any change to any known band of an attribute
was acceptable. In the current implementation, TAR2’s
treatments are limited to equality selects on percentile bands
and no disjunctions; i.e.

bandSelect ::==

percentileBand ==

{attribute = percentile Band} +

1..granularity

The restriction of TAR2’s treatment operators to “=" sim-

plifies the implementation: everything internally can be han-
dled as descrete sets. However, it does means that TAR2
cannot learn a continuous treatment such as X > 1.

The set

relevant < instances A (now V changes)

contains all instances in the current or desired situation.
TAR2 searches relevant for attribute bands condoned by
the changes set that have very different frequency in the
best than in the non-best classes. Relevant may require
much less memory than instances. Firstly, since we are only
searching for treatments amongst the attributes mentioned
in changes, relevant only needs to store the attributes found
in the change set. Secondly, since descretization clumps to-
gether different values, many entries in instances could map
to the same relevant entry. Relevant therefore contains a
counter showing how many instances map into this relevant
entry:

relevant ::== {bandSelect class repeats}+

Treatments are constructed by exploring subsets of the at-
tribute bands seen in relevant. An interesting attribute
band is one with a “sufficiently different” distribution in the
best class than in the other classes. The input parameter
promising represents our threshold for ”sufficiently differ-
ent”. Let a; = by denote one attribute band within changes

and
Z r.repeats

r€relevantBest

bestf

denote the number of times a; = by occurs in the best classes
where

relevantBest <+ (relevent A az = by A class = best)

Let

xf Z

rerelevantX

r.repeats

denote the number of times a; = by occurs in some other
class x where

relevantX < (relevent A az = by A class = )

The value

zf
* bestf

deltaf < (score(best) — score(x))
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Figure 8: Distribution of rounded(deltaf).

denotes the ratio of these two frequencies, weighted by the
difference in the score of these two classes. The delta fs seen
in the CMM-2 instances are shown in Figure 8. T'reatments
are formed from subsets of all bands a, = b, with

deltaf > promising

where promising is a user-supplied variable. Note that
promising increases, the size of candidates decreases. Re-
ferring to Figure 8, at promising<1, all 216 bands are
candidates but at promising<12 there are only 7 candidates
(the last 3 rows of the histogram).

The bulk of the time within TAR2 is spent exploring
subsets of the candidates. Two parameters constrain this
process. Firstly, only treatments of size nchanges (a user-
supplied parameter) are explored. Since we seek to minimize
the number of treatments, nchanges should be initialized to
a low value (e.g. one) and only increased if the best treat-
ments found so far are inadequate. Secondly, we only report
treatments that have a worth > wuseful where useful is
slightly more than the most worthy treatment found so far.
Useful is initialized to 1.05; i.e. initially we seek at least a
5% improvement in the worth of a treatment.

5. USING TAR2

An analyst using TAR2 manipulates < use ful, nchanges,
promising, granularity > to discover a minimal treatment
that has the most effect on the worth of the system. This
manual manipulations of < use ful, nchanges, promising,
granularity > described above could be automated. How-
ever, recalling the introduction, an RE tool should not au-
tomate the options exploration process. If an analyst and a
domain expert walk through this process together, then the
domain expert can usefully refine their purpose. For exam-
ple, the original purpose of this case study stated above was
somewhat vague:

PURPOSE 1. Test the subjective nature of the numerics
via o £30% perturbation to all numerics.

Based on our experience with the dataset, this purpose was
refined several times (see below).

Our case study took 10 minutes to execute. TAR2 was
run several times with analysts musing over the results in
between each run. Initially we sought at least a 5% improve-
ment using treatments on a single attribute after descretiz-

ing the continuous variables into three percentile bands; i.e.

< useful+1.05, nchanges<1, promising<1, granularity<3 >.

The biggest improvement was small: worth<1.135. It was
hence concluded that we needed to try treatments that used
more attributes. However, at nchanges > 1, TAR2 timed
out due to too many candidates.

The number of candidates can be reduced by increasing
promistng. This is an effective strategy if there exists a
small number of high-impact attribute ranges within the
instances. To test this, the next run used promising<S8 to
find nchanges<2 treatments. This second run found a best
worth found of 1.32. Experimenting further, the next run
used promising<12 to find nchanges<3 treatments. This
third run found the best worth of 1.57 shown in Figure 7B.

Note the recommendation of w&vCOST = 1 in Fig-
ure 7B. This recommendation requires a significant reduc-
tion in the cost of iw&wv (independent software verification
and validation); i.e. into the the lowest one-third percentile
band. This research is partially funded by an IV&V group
and that group might prefer methods that improve a projects
without a major reduction in resources allocated to IV&V.
Hence, we refined the purpose of the case study:

PURPOSE 2. Find a change to the numerics that leads to
better projects, without a major reduction in the IVEV ef-
fort.

After recognizing this purpose, our business sense sug-
gested we should try to generalize this refinement across all
the variables. An interesting question to ask would be “is
there anything we can reduce just a little to greatly improve
the project?”. At granularity<3, such small reductions are
hard to see. Hence, we increased the granularity and made
two new definitions. With granularity<5, we say that a
treatment of the form X = 1 is a major reduction since it
requires a reduction into the lowest one-fifth percentile; i.e.
the 0% to 20% band. We also say that treatment of the form
X = 2 is a minor reduction since it requires a reduction into
the second lowest one-fifth percentile; i.e. the 21% to 40%
band. With these definitions, we refined our purpose again:

PURPOSE 3. Find a change to the numerics that leads to
better projects, without a major reduction in most of the
attributes in the treatment

At < useful<2, nchanges<3, promising<+12,
granularity<5 >, the best worth seen was Figure 7C. In
this final distribution, all the low chances projects were re-
moved and the majority of the remaining projects were low
cost. Note that Figure 7C satisfies PURPOSE2 since it
makes no comment on the IV&V costs. Further, since most
of the recommended treatments are minor, Figure 7C also
satisfies PURPOSES3.

6. DISCUSSION & EVALUATION

Case studies like the above example are useful under three
conditions. Firstly, the managers of software projects must
be able to implement the treatments proposed in Figure 7C.
This is a domain-specific issue. By adjusting the changes
select statement, TAR2 users can constrain the treatment
generation process to just those attributes which can be
changed.

Secondly, the treatment size must be a small subset of
the possible values. Without this second condition, TAR2



users still need to debate numerous points. Where this sec-
ond condition is satisfied, TAR2 is useful for RE since it
focuses the stakeholders away from numerous low impact
issues towards a small set of highly-critical issues. For ex-
ample, in the above example, the space of 124 actions in
our SEI-CMM level 2 model has been reduced to the three
shown in Figure 7C.

Thirdly, the TAR2 algorithm must terminate. Most of
TARZ2’s code is simple linear-time frequency counts of the at-
tribute ranges in the instances. However the search through
the subsets of the candidates is clearly exponential on the
size of the candidates. TAR2 is only tractable if there ex-
ists a small number of attribute ranges with a large impact
on the overall system; i.e. in domains with narrow fun-
nels. The evidence for narrow funnels in §3 is encourag-
ing, but hardly conclusive. However, looking further in the
literature, we have much anecdotal evidence that domains
often contain a small number of variables that are crucial
in determining the behavior of the whole system. Concepts
analogous to funnels have been called a variety of names in-
cluding master-variables in scheduling [3]; prime-implicants
in model-based diagnosis [23]; backbones in satisfiability [25];
dominance filtering in design [7]; and minimal environments
in the ATMS [4].

Traditional methods of finding funnel-like variables can
be complex; e.g. computing the minimal environments in
the ATMS or the highest controversial assumptions of HT4
takes exponential time [17]. The core intuition of this paper
was that such a search is a unnecessary. Since the fun-
nels control the search space, any randomly selected path-
way from inputs to goals must pass through the funnel (by
definition). Hence, very simple tools like HT0 will suffice
and the complexities of alternate truth-maintenance tech-
nologies (e.g. the ITMS [20]) is not required. In domains
with master-variables of small sets of prime-implicants or
small backbones or highly dominated solutions or small min-
imal environments, then (1) solutions generated via random
search that cover goals will contain funnel variables with
a high frequency; (2) simple treatment learners like TAR2
should work. One simple test for narrow funnels is to ap-
ply HTO to an RE theory then try to find treatments using
TAR2. If effective treatments can’t be found, then narrow
funnels are unlikely.

Random world generation with HT0 and treatment learn-
ing with TAR2 reduces, but does not resolve or remove, the
arguments seen during RE. This is quite deliberate. Debates
during RE will not and should not go away. Such debates
can generates heat and light and insights into a domain that
may remain hidden otherwise. Stakeholders must be free to
argue about anything they like. But in a resource-bounded
situation (e.g. any software development process), we can
argue less by sorting the arguments according to their infor-
mation gain. Our claim here is that these “most informative
arguments” will be the ones relating to the minimal treat-
ments.

It would be inappropriate to view TAR2 as a replacement
for general learning tools like C4.5. The utility of TAR2 for
tasks other than treatment learning from datasets generated
from theories with narrow funnels using randomized world
generation is an open research issue.

It would also be inappropriate to view TAR2’s recommen-
dations as perfect guarantees of better performance. RE the-
ories are developed early in the software product life cycle

and are therefore somewhat imprecise. Hence treatments
learnt from RE theories can never be certain strategies.
However, the generation of such treatments meets many of
the requirements listed in the introduction for an RE tool.
Treatments contain control actions that change the overall
behavior of an RE tool. Hence the key disputes are the ones
that effect which treatment is chosen. To assess the im-
pact of different trade-offs, we only need to look for where
those trade-offs appear in the treatments. If the trade-offs
are not found in the treatments then they have little overall
impact on the system and need not be discussed. Lastly,
treatment learning lets us evaluate an RE theory: if the RE
theory cannot generate acceptable projects then it needs to
be changed.
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