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Mostof softwareengineeringresearchis notaboutmostsoftwareengineering.
Much of that researchis fundedby large organizations(e.g. DARPA) to support
the needsof large softwareorganizations.Large governmentorganizationshave
the following features: projectslast many years; funds are available for exten-
sive,prolonged,anddetailedanalysis;stablelong-termrelationshipsexist between
clientsandconsultantsor contractors;thereis no pressurefor immediatedelivery;
andteamsarevery large.Thesefeaturesthatarenot reflectedin thewidersoftware
engineeringwheremostsoftware is written by teams(lessthana dozenpeople)
anddeadlinepressurecanbevery tight. This mis-matchbetweenresearchedthe-
ory andgeneralpracticewasstarklyvisibleat therecentInternationalSymposium
on SoftwareReliability (SanJose,California,2000).A keynoteaddressfrom Sun
Microsystemsshocked theresearchersin theaudience:few of the techniquesen-
dorsedby theSEresearchcommunityarebeingusedin fast-moving dot-comsoft-
warecompanies.For suchprojects,developersandmanagerslack the resources
to conductheavyweightsoftware modeling; e.g. theconstructionof completede-
scriptionsof thebusinessmodelor theuserrequirements.

To bettersupportthe fast paceof modernsoftware, we needa new genera-
tion of lightweightsoftware modelingtools. Lightweightsoftwaremodelscanbe
built in a hurry andsoaremoresuitablefor thefast-moving softwarecompanies.
However, software modelsbuilt in a hurry can contain incompleteand contra-
dictory knowledge. For example,Figure 1 (left handside) shows a lightweight
model hurriedly assembledabouthappiness and health and exercise.
This modelis ambivalenton numerousdetails. Lines 13 and14 make contradic-
tory assumptionsabouttranquil andLines28-31make contradictoryassump-
tions aboutlikesSweat. Sincethe model containsno rules to prove tran-
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1 domain= ’tutorial e.g. 1’.
2 tim= [month=jan,day=18,year=2000,
3 elm=’tim@menzies.com’].
4 known= [baseball ,content ,exercise ,
5 football ,happy ,healthy
6 ,likesSweat ,overweight ,rich ,
7 running ,sick ,smoker ,swimming
8 ,tranquil].
9

10 tim says cost=0 and chances=1.
11 happy if rich rors healthy rors content.
12
13 rich if not tranquil.
14 content if tranquil.
15
16 healthy if no sick.
17
18 tim says cost=0 and chances=1.
19 sick if smoker.
20 sick if overweight.
21
22 overweight if no exercise.
23
24 exercise if baseball rany running
25 rany swimming rany football.
26
27 tim says cost= 1 to ++4 and chances=0 to +1.
28 baseball if likesSweat.
29 running if likesSweat.
30 football if likesSweat.
31 swimming if not likesSweat.
32
33 run :- prove(happy).

1 =============================
2 ** FINDINGS
3 happy=t [cost=3.9626,chances=1]
4
5 ** REASONS
6 content=t [cost=0,chances=1]
7 happy=t [cost=3.9626,chances=1]
8 healthy=t [cost=3.9626,chances=0]
9 likesSweat=t [cost=0,chances=1]

10 overweight=t [cost=3.9626,chances=0]
11 running=t [cost=3.9626,chances=0.2225]
12 smoker=t [cost=0,chances=1]
13 tranquil=t [cost=0,chances=1]
14 no exercise=t [cost=3.9626,chances=0]
15 no sick=t [cost=3.9626,chances=0]
16
17 =============================
18 ** FINDINGS
19 happy=t [cost=1.54203,chances=1]
20
21 ** REASONS
22 happy=t [cost=1.54203,chances=1]
23 healthy=t [cost=1.54203,chances=0]
24 likesSweat=f [cost=0,chances=1]
25 overweight=t [cost=1.54203,chances=0]
26 rich=t [cost=0,chances=1]
27 smoker=t [cost=0,chances=1]
28 swimming=t [cost=1.54203,chances=0.1219]
29 tranquil=f [cost=0,chances=1]
30 no exercise=t [cost=1.54203,chances=0]
31 no sick=t [cost=1.54203,chances=0]

Figure1: A lightweightmodel(left) andsomeoutputs(right) generatedusingthe
techniquesdiscussedin this paper.

quil or likesSweat sowe might assume
�
tranquil andlikeSweat � or�

tranquil andnot likeSweat � or
�
not tranquil andlikeSweat � or�

not tranquil andnot likeSweat � . Also, theprecisefinancialcostand
chancesof thedifferentexerciseregimesis notknown to greatdetail.Theconstruct
cost= 1 to ++4 at line 27 meansthatthesethesesportscancostbetweenone
andfour unitseach,with themeanleaningheavily towardsfour. Theoddsthatthis
authorwill playsportsarecost=0 to +1 (seeline 27). Thismeansthatthatthe
chancesof meplayingsportsarebetween0 and1, with themeanleaningslightly
towardsone. The otheruniquefeaturesof the languageusedin Figure1 will be
discussedbelow.

Thepresenceof uncertainandcontradictoryknowledgein lightweightmodels
complicatestheir processing.Supposesomeinferenceengineis trying to build a
proof treeacrossa lightweightsoftwaremodelcontainingcontradictions.Gabow
et.al.[4] showedthatbuilding pathwaysacrossprogramswith contradictionsis NP-
hard for all but thesimplestsoftwaremodels(asoftwaremodelis verysimpleif it is
very small,or it is a simpletree,or it hasa dependency networkswith out-degree���

). No fast and completealgorithm for NP-hardtaskshasbeendiscovered,
despitedecadesof research.

Empiricalresultsoffersnew hopefor thepracticalityof NP-hardtaskssuchas
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reasoningaboutlightweightmodelslikeFigure1. A repeatedandrobustempirical
resultfrom thesatisfiabilitycommunity(e.g.[12, 1]) is thattheoreticallyslow NP-
hardtasksareonly truly slow in a narrow phasetransitionzonebetweenunder-
constrainedandover-constrainedproblems.Further, it hasbeenshown empirically
that in boththeunder/over-constrained zones,seeminglynaive randomizedsearch
algorithmsexecutefasterthan, and nearly as completely, as traditional, slower,
completealgorithms[12]. It is easyto seewhy this might be so. In the over-
constrainedzones,it is impossibleto satisfyall constraintssowe neednot search
very long. In theunder-constrainedzone,many solutionsexist so,onceagain,we
neednot searchvery long. In relatedresearch:

� A literature review by Menziesand Cukic found numerouscasesin the
SE andknowledgeengineeringliteraturewherea small numberof random
probesinto a systemyieldedasmuchinformationasa muchlargernumber
of probes[8].

� Menzieset.al.developedageneralmathematicalmodelof randomabductive
searchwhich, on simulation,found that a small numberof randomprobes
into a systemusuallyyieldedasmuchinformationasa muchlargernumber
of probes[9, 10].

Theseempiricalresultssuggestthatwemightbeableto simply theexploration
of Figure1 usingrandomizedsearch.Notethatwhatwecan’t dois simplytranslate
theresultsfrom thesatisfiabilitycommunityinto SE.Thepredictorsfor thephase
transitionzoneareexpressedin aform thatis toolow-level for theaveragesoftware
engineer;e.g.Selman’s linearclausemodeldoesnot referto designstructuresthat
the averagesoftwareengineerwould recognize[12]. Recentresultssuggestthat
theavailablepredictorsfor thephasetransitionzoneareincomplete[5]. We have
somepreliminaryresultsstronglysuggestingthatwe cangetbetterandmorede-
tailedpredictorsfor thephasetransitionzoneby assumingtheoriesareexpressedas
horn clausesandnot theconjunctive normalform usingby thesatisfiabilitycom-
munity [10]. For example,theseresultscancomputea mathematicalprobability
thatrandomizedsearchwill beanadequatesearchstrategy for particularsystems.
Computingthis probabilitywill beessentialif randomizedsearchis to beapplied
to safety-criticalsoftware.

My researchhencefocuseson randomabductivesearch over horn clausethe-
ories. In many domains,softwareengineerscanunderstandhorn clauserepresen-
tationsof their models.For example,databasemodelersfind it easyto mapfrom
SQL into the horn clausesof Prolog. Also, oneway to formalizeFigure1 is to
expresstherulesashornclauses.
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Abductionis computationalintelligenceprocedurethat is a naturalmethodof
processingtheoriescontainingcontradictions.Whenabductionfindsa contradic-
tion, it forks oneworld of belief for eachpossibility. Eachworld fixestheuncer-
taintiesin a theoryby committingto aparticularsetof consistentassumptions[7].
Randomizedabductionexploresasmallnumberof randomlyselectedfixes.

For example,Figure1 (right handside) shows two randomabductionsover
our lightweight models. To explain this figure, we have to explain the inference
proceduresusein thatfigure.

� Every known term hasa default cost andchances of 0 and1 respec-
tively.

� Rulesinfer termsand rules have a headanda body, separatedby the if
keyword.

� Our belief in a rule headarechances timesour belief in its bodyandthe
costof believing a ruleheadis thecostof believing in its body, pluscost.

� Termsthat appearin no rule headareassumptions(e.g. tranquil and
likesSweat). Oncean assumptionis made,all contradictoryassump-
tionsareforbidden;e.gif we assumelikesSweat thenwe mustnot later
assumenot likesSweat.

� Rulebodiesareconnectedby thestandardoperatorsand, or, not and
by somerandomsearchoperatorssuchasrors, no, rany.

� Rors( ���
	��
��	������ ) first randomly shuffles the order of ��� , then tries to
provethemin theshuffledorder. If any ��� is proved,thensubsequentproofs
mustbeconsistentwith thoseprior assumptions.If any ��� is disproved,then
rors moveson to try andprove �
� ( ����� ).

� Rany( ���
	��
��	������ ) acts like Rors expect that it runs on a subsetof ���
(subsetchosenat random).

� No( � ) collectsall theevidencefor � andsubtractsthatfrom one.

By runningtheabove procedure� times,ananalystcansampletherangeof pos-
sibilities within a lightweighttheory. Two suchrunsareshown in Figure1 (right).
Note that we have found two differentwaysto prove happyness(at lines 3 and
19) but with very differentcosts.By sortingall theserunson increasingcostand
decreasingchances,we canfind the high chancelow costmethodsof achieving
our goals.In this example,we canbehappy with a costof 1.54(line 19) if we go
swimming. However, if we go running instead,happynesswill costus3.96
(line 3).
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Related Work

Abduction hasbeenextensively studiedelsewhereand appliedto fields suchas
model-baseddiagnosis[7].

Thegeneralproblemof reasoningaboutinconsistentSEmodelshasbeenwell
studied. For example,in the SE literature,requirementsengineeringresearchers
have explored conflicting requirementsgeneratedeither from non-functionalre-
quirements(e.g.[11]) or from multiplestake holders(e.g.[2, 3]). A standardtech-
niquefor thisexplorationissomecontradictiontolerantlogicsuchastheLTMS[11]
or thequasi-consistentlogics[6]. This researchis anattemptto simplify thestan-
dardtechnique.In systemswhererandomsearchcanadequatelyprobea spaceof
uncertainties,thenvery simpleinferencetechniqueswill suffice to probethespace
of “maybes”.If we candemonstratethatrandomizedsearchis widely useful,then
we candesignanew generationof very simplecontradictiontolerantreasoners.

Discussion

The above casestudyis a small studywherea few randomabductive adequately
explored a theory and found cost-effective strategies for achieving happyness.
Theopenresearchissueis this: for whatdomainscanweguaranteethata practical
numberof runswill sufficefor samplingthebehaviors of a theory?

If we canbuild a generalpredictorfor wherefastrandomsearchwill suffice
for lightweight softwaremodeling,thenwe could bettersupportthe fast-paceof
modernSE.For example:

� Supposewe could definelightweightdesignprinciples that always leadto
softwaremodelsthatcanbequickly andadequatelyprobedvia randomized
search.For thosesystems,we canquickly discover the implicationsof the
uncertaintieswithin our lightweightsoftwaremodels.

� Also, we could useour randomizedabductivetheoremprovers to optimize
taskssuchasgeneratingtestcasesfrom specifications,diagnosingthecause
of faulty outputs,or understandingtheconsequencesof conflictingrequire-
mentsfrom differentstake holders.

� Further, we coulddefineearly stoppingrules for the testinga specification.
In systemswherefastrandomprobingwill suffice,asmallnumberof random
probeswill revealmostof whatwe will reachvia a muchlargernumberof
probes.
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