
Random Search of AND-OR Graphs Representing Finite-State Models

Tim Menzies David Owen
SE, ECE Depts., CSEE Dept.,

Univ. of British Columbia West Virginia Univ.
Vancouver, BC, Canada Morgantown, WV, USA

tim@menzies.com dowen@csee.wvu.edu

1 Introduction

One of the benefits of model-based reasoning is that
automatic methods can assess that model. Such as-
sessment is particularly important early in the soft-
ware lifecycle when decisions are being made that will
greatly affect the rest of the project.

Automatic formal methods can be impractically ex-
pensive. Formal tools that explore the entire state
space of a program can require exponential time and
memory. Despite years of research, this state space ex-
plosion problem remains. Model checkers that exploit
the simplicity of the JAVA virtual machine [3] only
work on implemented systems—not until long after
the requirements phase has ended. Certain optimiza-
tions require expensive pre-processing, such as [9].
Also, these methods may rely on certain topologi-
cal features of the system. For example, exploiting
symmetry to avoid repeating prior searches (e.g. as
done in [3]) is only useful if the system under study
is highly symmetric. Also, clustering larger problems
into smaller, simpler problems [2] fails for tightly con-
nected models.

This paper proposes a method of stochastic search
for counter-examples to temporal properties. The dis-
advantage of stochastic search is that randomly prob-
ing a theory can miss important features of that the-
ory. This incompleteness of stochastic search makes it
unpopular amongst software engineers; for example,
“nondeterminacy is the enemy of reliability” [11].

If the incompleteness problem can be avoided,
then the benefits of stochastic search are consider-
able. Stochastic search has proved effective for (e.g.)
scheduling problems and has solved hard planning
problems many times faster than traditional methods
such as a systematic Davis-Putnam procedure [10].
One explanation for this surprising phenomenon is the
funnel theory of Menzies, Easterbrook, et.al. [14]. The
funnel theory is a claim that search spaces within pro-

grams contain funnels; i.e. a small number of critical
variables that set all other variables (the metaphor
here is that all arguments run down the funnel). The
concept of such critical variables has been reported
in many domains. These have been called a variety
of names such as master-variables in scheduling [4];
prime-implicants in model-based diagnosis [16] or ma-
chine learning [17]; backbones in satisfiability [15]; and
the minimal environments in the ATMS [5]. All of
these terms share the same core intuition: what hap-
pens in the total space of a program is controlled by
a small critical region within the program.

Theoretically, for systems with narrow funnels, the
incompleteness of stochastic search may be minimal.
Any stochastically selected pathway to goals must pass
through the funnel (by definition). That is, repeated
application of some fast random search technique will
stumble across the funnel variables; i.e. stochastic
search will be adequate for searching for counter ex-
amples to temporal properties.

Menzies et.al. show how a simple finite-state model
written for the model checker SPIN [8] (see Figure 1)
might be translated into a type of AND-OR graph
called a NAYO [12]. The NAYO is small, but slow
to search exhaustively—in some sense the opposite
of finite-state models, which may be very large but
faster to search exhaustively. It has been shown that
a random (not exhaustive) search of a NAYO graph
can quickly tell us a lot [12, 13], but this conclusion
is based on randomly generated NAYO’s. Would we
learn as much from the random search of a NAYO
translated from a finite-state model representing a real
program?

In this paper we present an automatic transla-
tion from a simple finite-state model form to NAYO
graphs. As an example, a program model written for
the model checker SPIN is written in in this form and
then automatically translated to a NAYO graph. A
larger NAYO graph translated from a different finite-

1



state model, based on an SCR (“Software Cost Re-
duction”) requirements specification, is subjected to a
random search, with encouraging results.

2 Translating to NAYO

2.1 Finite State Model

The first step toward automatic translation is to for-
mally define a simplified version of the finite-state
model used by Promela, which is the input language
used by the model checker SPIN. Consider a set S of
finite-state machines:

1. Each finite-state machine F ∈ S is a 3-tuple (Q,Σ, δ);

2. Q is a finite set of states;

3. Σ is a finite set of input/output symbols;

4. δ : Q×B −→ Q×B, where B is a set of zero or more
symbols from Σ, is the transition function.

byte a=1, b=1; bit f=1;

active proctype A() {

do :: f==1 -> if :: a==1 -> a=2;

:: a==2 -> a=3;

:: a==3 -> f=0; a=1;

fi od}

active proctype B() {

do :: f==0 -> if :: b==1 -> b=2;

:: b==2 -> b=3;

:: b==3 -> f=1; b=1;

fi od}

Figure 1: Promela input example (from [13]).

proctype A

state 11 ...-> state 9 ...line 3 => ((f==1))

state 9 ...-> state 3 ...line 3 => ((a==1))

state 9 ...-> state 5 ...line 3 => ((a==2))

state 9 ...-> state 7 ...line 3 => ((a==3))

state 3 ...-> state 11 ...line 3 => a = 2

state 5 ...-> state 11 ...line 4 => a = 3

state 7 ...-> state 8 ...line 5 => f = 0

state 8 ...-> state 11 ...line 5 => a = 1

proctype B

state 11 ...-> state 9 ...line 8 => ((f==0))

state 9 ...-> state 3 ...line 8 => ((b==1))

state 9 ...-> state 5 ...line 8 => ((b==2))

state 9 ...-> state 7 ...line 8 => ((b==3))

state 3 ...-> state 11 ...line 8 => b = 2

state 5 ...-> state 11 ...line 9 => b = 3

state 7 ...-> state 8 ...line 10 => f = 1

state 8 ...-> state 11 ...line 10 => b = 1

Figure 2: finite-state machines for Figure 1 as output by
SPIN.

From
State

Input Output
To

State
11 f==1 9

δA 9 a==1 3

9 a==2 5

9 a==3 7

3 a=2 11

5 a=3 11

7 f=0 8

8 a=1 11

11 f==0 9

δB 9 b==1 3

9 b==2 5

9 b==3 7

3 b=2 11

5 b=3 11

7 f=1 8

8 b=1 11

Figure 3: transition function chart for Figure 2 SPIN out-
put.

Figure 1 shows a simple Promela model of two con-
current processes with access to three global variables.
Promela has been designed to look like a high-level
computer language, but is actually used to write finite-
state models. Figure 2 shows SPIN’s finite-state model
interpretation of the code in 1, and Figure 3 shows a
chart with the transition functions for the finite-state
machines output by SPIN. In terms of the formal de-
scription above:

S = {FA, FB};
FA = (QA,ΣA, δA);

QA = {11,9,3,5,7,8};
ΣA = { f==1,a==1,...a=2,a=3,...}, etc.

2.2 NAYO

A NAYO graph G = (N,A, Y,O) [12] consists of:

1. A set Y of directed YES-edges;

2. A set O of OR-nodes—an OR-node is TRUE if any
of its YES-edge parents are TRUE;

3. A set A of AND-nodes—an AND-node is TRUE if all
of its YES-edge parents are TRUE;

4. A set N of undirected NO-edges connecting incom-
patible nodes.

In the NAYO graph representing a finite-state
model we do distinguish between the equality test
(“==”) and assignment (“=”) operators. For each value
taken by a particular variable there is one node as-
signed by YES-edge parents and tested by YES-edge
children; it is connected by NO-edges to all nodes
representing other values for that variable. Because

2



of this, the finite-state model for proctype A (from
Figure 3) can be simplified to Figure 4, which shows
proctype A as input to an automatic NAYO trans-
lator. Here each finite-state machine description be-
gins with a list of its states; then transitions are listed
(current state, input, output, next state). Global vari-
ables a and f are represented by machines without any
transitions, but with states accessible to the other ma-
chine.

begin A begin a

11; "a=1";

9; "a=2";

3; "a=3";

5; end a

7;

8; begin f

11; "f=1"; -; 9; "f=0;"

9; "a=1"; -; 3; "f=1;"

9; "a=2"; -; 5; end f

9; "a=3"; -; 7;

3; -; "a=2"; 11;

5; -; "a=3"; 11;

7; -; "f=0"; 8;

8; -; "a=1"; 11;

end A

Figure 4: proctype A and variables a, f from Figure 2 as
input for NAYO translator.

2.3 Translation Algorithm

The following algorithm translates from the finite-
state machine form shown in Figure 4 to a NAYO
graph:

For each finite-state machine:

1. Make an OR-node for each state, and connect all of
this machine’s OR-nodes with NO-edges;

2. For each transition:

i. If input is listed make an AND-node, make the
current state and the input(s) YES-edge parents
of the AND-node, and make the next state and
any output(s) YES-edge children of the AND-
node;

ii. If no input listed make the next state and
any output(s) YES-edge children of the current
state.

Figure 5 shows the NAYO graph produced by this
algorithm from the input shown in Figure 4. For a
system of k finite-state machines with n states and
m single-input, single-output transitions per machine,
the resulting NAYO has:

m · k AND-nodes + n · k OR-nodes = O(m + n)k
nodes;

a = 2 a = 1

&

&

a = 3

&

f = 1f = 0

&

9

11

3

&

5

7

8

Figure 5: finite-state model from Figure 4 as NAYO (NO-
edges are dotted; AND-nodes are shaded).

4m · k YES-edges + 1
2
n(n− 1) · k NO-edges = O(m+

n2)k edges.

A finite-state machine composite for the same sys-
tem will in the worst case require O(nk) states and
O(mk2) transitions [7].

3 Random NAYO Search

The NAYO graph search begins with a random input
set of OR-nodes, consistent with each other (no NO-
edges between any nodes in this set) and TRUE at
time = 0. The search expands this set to include all
consequences of the input, including a frontier of nodes
inconsistent with the input. The frontier set is the
input for the next time value. The search progresses
through the graph, finding a set of consistent nodes
TRUE at each time value, until a time is reached at
which no new nodes are found.

Figure 6 shows the result of repeated random
searches of a 73-node, 139-edge NAYO graph, trans-
lated from the SCR requirements specification in [1].
Like Promela, the SCR notation (see [6]) is based on
finite-state machines, and can easily be written in the
form of Figure 4. The plot in Figure 6 rises early to a
plateau of reached nodes, suggesting that this is a sys-

3



22

50 100 1000

Figure 6: results for search of SCR specification example;
horizontal axis: number of random searches, vertical axis:
number of goals reached.

tem with a funnel of key variables, as described in the
introduction. A small number of of random searches
(in this case approximately equal to the number of
nodes in the graph) finds the funnel, and therefore
finds everything that will be found by a much larger
number of searches.

4 Conclusion

The finite-state model form used in this paper (Fig-
ure 4) for automatic translation to NAYO graphs is
too simple to represent many systems. It cannot han-
dle communication protocols, which require a scheme
by which messages may be sent and received and
should be consumed by the receiver, so that they are
no longer available to be received by another. Also,
variables require an entry for every possible value,
so floating point or even integer variables are out of
the question. But for all its shortcomings this simple
finite-state model can represent many real systems,
and our preliminary results with one of these produced
just the funnel behavior expected. Based on these en-
couraging results we suggest more thorough testing of
NAYO random search, working from an extension of
our finite-state model, which would include a message-
passing capability and would be able to handle vari-
ables more efficiently.

References

[1] B. Atanacio. Modeling the Space Shuttle Liquid
Hydrogen Subsystem, available fromhttp://
www.sei.cum.edu/publications/documents/
00.reports/00tn002.html. SEI, Carnegie
Mellon University, 2001.

[2] E.M. Clark and D. E. Long. Compositional Model
Checking. Fourth Annual Symposium on Logic in
Computer Science, 1989.

[3] J. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach,
C.S. Pasarenu, Robby and H. Zheng. Bandera:
Extracting Finite-State Models from Java Source
Code. ICSE2000, Limerick, Ireland, 2000, pp.
439-448.

[4] J. Crawford and A. Baker. Experimental Results
on the Application of Satisfiability Algorithms to
Scheduling Problems. AAAI ’94, 1994.

[5] J. DeKleer. An Assumption-Based TMS. Artifi-
cial Intelligence, Vol. 28, 1986, pp. 163-196.

[6] C. Heitmeyer, B. Labaw and D. Kiskis. Consis-
tency Checking of SCR-Style Requirements Spec-
ifications. International Symposium on Require-
ments Engineering, York, England, March 26-27,
1995.

[7] G. Holzmann. Design and Validation of Com-
puter Protocols. Prentice Hall, 1990.

[8] G. Holzmann. The Model Checker SPIN. IEEE
Transactions of Software Engineering, 23(5), May
1997.

[9] Y. Ishida. Using Global Properties for Qualitative
Reasoning: A Qualitative System Theory. Pro-
ceedings of IJCAI ’89, 1989, pp. 1174-1179.

[10] H. Kautz and B. Selman. Pushing the En-
velope: Planning, Propositional Logic and
Stochastic Search. Proceedings of the Thir-
teenth National Conference on Artificial In-
telligence and the Eighth Innovative Applica-
tions of Artificial Intelligence Conference, avail-
able from http://www.cc.gatech.edu/~jimmyd
/summaries/kautz1996.ps, AAAI PRess / MIT
Press, Menlo Park, 1996, pp. 1194-1201.

[11] N. Leveson. Safeware System Safety and Comput-
ers. Addison-Wesley, 1995.

[12] T. Menzies, B. Cukic, H. Singh and J. Powell.
Testing Nondeterminate Systems. ISSRE 2000,
San Jose, California, October 8-11, 2000.

[13] T. Menzies and B. Cukic. Maintaining Maintain-
ability = Recognizing Reachability. WESS 2000,
San Jose, California, October 14, 2000.

[14] T. Menzies, S. Easterbrook, Bashar Nuseibeh
and Sam Waugh. An Empirical Investigation
of Multiple Viewpoint Reasoning in Require-
ments Engineering. RE ’99, available from
http://tim.menzies.com/pdf/99re.pdf, 1999.

4



[15] A. Parkes. Lifted Search Engines for Satis-
fiability. PhD Thesis, University of Oregon,
available from http://citeseer.nj.nec.com
/parkes99lifted.html, 1999.

[16] R. Rymon. An SE-tree-based Prime Implicant
Generation Algorithm. Annals of Math. and
A.T., Special Issue on Model-Based Diagnosis,
available from http://citeseer.nj.nec.com
/193704.html, Vol. 11, Console & Friedrich, Ed.,
1994.

[17] R. Rymon. An SE-tree based Characterization of
the Induction Problem. International Conference
on Machine Learning, 1993, pp. 268-275.

5


