
Reusing Models For Requirements Engineering
�

Tim Menzies � , Ying Hu �
University of British Columbia �

tim@menzies.com, yingh@ece.ubc.ca

September 11, 2001

Abstract

A problem with model-based requirements engineering is
that new projects may lack the data required to customize
old models. Such data droughts are a common prob-
lem in software engineering and are particularly acute in
early life cycle activities such as requirements engineer-
ing. When specific data relevant to a new project is miss-
ing, one technique is to simulate a model across the range
of possibilities that might be relevant to a project. This
generates voluminous output which can be summarized
via a new machine learning technique called treatment
learning.

KEYWORDS: Software engineering, requirements engi-
neering, machine learning, data mining, knowledge farm-
ing, treatment learning, risk assessment, COCOMO.

1 Introduction

At requirements time, much is unknown about a project.
Nevertheless, requirements engineers must still make de-
cisions that have far reaching implications for a project.
Errors in those decisions is one of the major costs in de-
veloping software. Fixing bugs in development or after

1Submitted to the first International Workshop on Model-based Re-
quirements Engineering, November 30, 2001, San Diego, http://
www.bfsng.com/mbre01/.

2http://tim.menzies.com, phone (604) 822-3381
3http://www.ece.ubc.ca/twiki/bin/view/

Softeng/YingHu.
4Department of Electrical & Computer Engineering; 2356 Main

Mall; Vancouver, B.C. Canada V6T1Z4.

delivery costs 20 to 200 times (respectively) the cost of
repair those same bugs in the requirements phase [3].

Nowhere is the data draught problem more acute than
in the model-based requirements engineering (MBRE).
Models can be built, or borrowed, to assist in early life-
cycle decision making. Often, these models require more
data than what is available. For example, suppose a soft-
ware manager wants to reduce the odds that their project
will run over-schedule. The risk of this event can be as-
sessed by the COCOMO risk model [7]. Figure 1 shows
the inputs to that model from KC-1: a NASA software
project. The column now1 shows the current state of the
project, expressed in the language of COCOMO tool [1].
The �����
	������� column describes some proposed changes
to the project. Where precise values are unknown, a range
of possibilities has been supplied. �����
	������� shows 11
proposed changes. That is, there exist ����������� �
! com-
binations of proposed changes to this project. Also, when
combined with the ranges in the 	#"�$%� column, there are&�' �(��) options shown in this table. Other uncertainties
exist as well:* COCOMO models need an estimate of source lines

of code (SLOC) and this may be hard to determine
early in the lifecycle.* COCOMO needs a set of internal tunings which
should be calculated from prior projects. Due to the
data draught, such tunings are often unavailable.

Hence, our software manager would have great difficulty
in using the COCOMO risk model to assess the risk of
estimate over-runs.

Data draughts can occur for a variety of reasons. Com-
panies often lack the resources to collect and maintain

1

KC-1
(very new
project)

ranges now1 changes1
prec = 0..5 precedentness 0, 1

Scale flex = 0..5 development flexibility 1, 2, 3, 4 1
drives resl = 0..5 architectural analysis or risk resolution 0, 1, 2 2

team = 0..5 team cohesion 1,2 2
pmat = 0..5 process maturity 0, 1, 2, 3 3

rely = 0..4 required reliability 4
Product data = 1..4 database size 2

attributes cplx = 0..5 product complexity 4, 5
ruse = 1..5 level of reuse 1, 2, 3 3
docu = 0..4 documentation requirements 1, 2, 3 3

Platform time = 2..5 execution time constraints ?
attributes stor = 2..5 main memory storage 2, 3, 4 2

pvol = 1..4 platform volatility 1

acap = 0..4 analyst capability 1, 2 2
Personnel pcap = 0..4 programmer capability 2
attributes pcon = 0..4 programmer continuity 1, 2 2

aexp = 0..4 analyst experience 1, 2
pexp = 0..4 platform experience 2

ltex = 0..4 experience with language and tools 1, 2, 3 3
Project tool = 0..4 use of software tools 1, 2

attributes site = 0..5 multi-site development 2
sced = 0..4 time before delivery 0, 1, 2 2

of what-ifs (combinations of +�,.-0/214365 78+
9�:<;=/) = >@?A/CB8D

Managed (4)
Process

measured and
controlled

Defined (3)
Process

characterized,
fairly well

understood

Repeatable (2)
Can repeat
previously

mastered tasks

Initial (1):
unpredictable

and poorly
controlled

Optimizing (5)
Focus on
process

improvement

most
software
projects
< 3

Attributes in this figure come from the COCOMO-II software cost estima-
tion model evolved by Boehm, Madachy, et.al. [1]. Attribute values of “2”
are nominal. Usually, attribute values lower than “2” denote some undesirable
situation while higher values denote some desired situation.

The Software Engineering
Institute’s capability matu-
rity model [11].

Figure 1: LEFT: The KC-1 NASA software project. RIGHT: The CMM hierarchy.

such data. Alternatively, companies may not been de-
veloping their product(s) long enough to collect an ap-
propriately large data set; Also, companies may be bas-
ing their development on COTS (commercial off-the-shelf
software). While the COTS authors may have much data
on the package, this data is rarely distributed. More fun-
damentally, much of the software industry operates at less
than CMM-3 (see Figure 1, right); i.e. they neither docu-
ment their processes nor record data based on those pro-
cess descriptions (personal communication with SEI re-
searchers).

Whatever the cause, model-based requirements engi-
neering must be practical during data droughts. Hence,

we explore an MBRE technique for data-starved domains:

When data is scarce, we can grow data sets
via simulations across the space of possibilities
within the available models.

That is, if we can access some general model from a
previous project, but lack specific data to customize that
model, we simply run the model through the space of pos-
sibilities that may be relevant to the certain project.

The generated data sets may be too large to under-
stand. Hence, after growing the data sets, they must
be summarized. This paper proposes a summarization
technique based on machine learning. Machine learn-

2

ing is a summarization technique for extracting the im-
portant ideas from examples. Techniques such as pattern
recognition, bayesian reasoning, neural networks, associ-
ation measures, and decision trees have matured dramat-
ically in recent years. These techniques have been suc-
cessfully applied to software engineering tasks such as
cost-estimation (e.g. [5]), or prediction of faulty modules
(e.g. [14]). Typically, machine learning is seen as a data
mining activity; i.e. summarizing large data sets. Data
mining is impractical during data droughts. We call our
alternative to data mining knowledge farming. It has three
steps:

1. Using large scale simulations, we quickly grow data
from some seed; i.e. a model describing the options
within a domain. This is easy to do using exhaustive
or monte-carlo simulations of the model.

2. Once we have grown the data, we use machine learn-
ing to harvest the data; i.e. build useful summaries.

3. Validation: We can validate the summarized knowl-
edge by feeding them back into the model to observe
their impact on the model’s behavior. This also pro-
vides a way for us to gain deeper understanding and
to further refine that domain model.

In essence, this is the same idea as Bratko’s behavioral
cloning but here it is applied to software process mod-
els not qualitative models of physical devices [4, 13]. The
harvested knowledge contains no more knowledge than in
the original domain models. However, knowledge in do-
main models can be hard to access as it may be expressed
verbosely, or it may be spread out over disperse parts of
the model. In contrast, the harvested knowledge can be
simpler and far more succinct.

This approach is demonstrated by describing how it
works on Figure 1. The domain in which we performed
our experiments was that of software development risk as-
sessment. Firstly, we disucss our prior research in this
area. Secondly, we use the COCOMO risk model to
build the space of possible situations for a NASA software
project. Thirdly, we describe the TAR2 treatment learner
(defined below) which summarizes data generated by that
model. Fourthly, we present the experimental results and
ways to validate those results.

2 Prior Work

Earlier reports of this research [10] used complex com-
binations of tools called tree query languages (TQL) to
analyze (e.g.) Figure 1. In summary, our experience is
that treatment learners are far simpler to explain, under-
stand, and implement that TQL. Also, in the KC-1 study,
treatment learning gives (almost) the same results as TQL.
One treatment found by TQL were rejected by treatment
learners. This two treatment had a very low utility and
ignoring it has minimal impact on the overall worth of the
final treatments.

Treatment learners also runs much faster than TQL.
Our treatment learner takes minutes to accomplish what
TQL took hours to perform. One reason for this is that
TQL is a post-processor to a decision tree generation al-
gorithm. That is, to run TQL, a decision tree learner has
to be run as well. Treatment learners have no need for this
external call to a decision tree learner.

Finally, our prior report on TQL never validated its out-
put. This study offers several validation studies of treat-
ment learning.

3 Case Study

3.1 The COCOMO Risk Model

For our experiments, we used the Madachy COCOMO-
based effort-risk model. The COCOMO project aims at
developing an open-source, public-domain software ef-
fort estimation model. It allows one to estimate the cost,
effort, and schedule when planning a new software de-
velopment activity [1]. The Madachy extension to CO-
COMO was an experiment in explicating the heuristic na-
ture of effort estimation. The model contains 94 tables,
each of which implements a context-dependent modifica-
tion to internal COCOMO parameters [7]. Two important
features of the COCOMO risk model are its classifications
and its validation. In the first case, the model generates a
numeric effort-risk index which is then mapped into the
classifications low, medium, high, very high. In the sec-
ond, the model has survived at least one validation study
(see [7]). Most risk models come with no validation infor-
mation. The COCOMO risk model is the rare exception.

3

3.2 Growing Data

The COCOMO risk model was exercised using Monte
Carlo simulations. That is, instead of running all �E�
) pos-
sible simulations described in Figure 1, we ran a small
number F picked at random to see what we could learn.
We then ran a larger number (e.g. � F , G�F) of randomly
picked simulations. A conclusion was deemed stable if it
did not change when we used a larger sample size. Our
simulation was conducted using randomly selected inputs
as follows:

* The outputs of a COCOMO model are dependent
on its internal tunings. In practice, users tune CO-
COMO parameters using historical data in order to
generate accurate estimates. For our projects, we
lacked the data to calibrate the model. Therefore, we
picked our tunings from several published sources.
Those sources showed tunings generated via genetic
algorithms [6], tunings generated via bayesian learn-
ing [5], and the standard tunings found within the
COCOMO risk model [1].* COCOMO estimations are based on SLOC (deliv-
ered source lines of uncommented code). SLOC is
notoriously hard to estimate. From Boehm’s text
Software Engineering Economics, we saw that us-
ing SLOC=10k, SLOC=100k, SLOC=2000k would
cover an interesting range of software systems [2].* Next, for the three different SLOCs and three tun-
ings, we generated random examples by picking
one value at random for each of the parameters
from KC-1 in Figure 1. With our machine learner
TAR2(see below), we get stabilized conclusion at
sample size=30,000.

Part of the data log is shown on Figure 2. Each line
contains 24 attributes(SLOC + 23 cost drivers) and a
classification. There are total 4 classes indicating the
software development risk is “low”,“medium”,“high” or
“very high”, denoted H I0JLKCH MONPKCH QPR2KCH S%QTR (re-
spectively).

Given this data, there are two questions we could ask:

1. Does our KC-1 project belong to low risk project or
high risk project?

sloc prec flex resl ... site sced class
100k 0 2 1 ... 2 0 T MD
100k 1 4 2 ... 2 1 T LO
100k 0 1 2 ... 2 0 T MD
10k 0 4 0 ... 2 2 T LO
2000k 0 3 0 ... 2 0 T HI
10k 1 3 0 ... 2 1 T HI
2000k 1 2 1 ... 2 2 T MD
2000k 1 2 0 ... 2 0 T LO
100k 1 1 2 ... 2 1 T LO

Figure 2: A log of risk estimation of kc-1 project.

2. What strategy can we take to reduce the development
risk ?.

The first question is the question answered by standard
machine learners which build classifiers that map exam-
ples to classes. In our experience, this question is asked
less than the second questions. Managers care less for de-
tailed descriptions of the current situation than for advice
on how to improve the current situation. Hence we say
that managers want controllers (i.e. an answer to ques-
tion 2) more than mere classifiers (i.e. an answer to ques-
tion1). To understand the distinction, consider the case of
someone reading a map. Classifiers say “you are here”
on the map while controllers say “go this way”. After
much experimentation, our preferred method of learning
controllers is treatment learners.

3.3 TAR2 Treatment Learner

In our case study, the TAR2 treatment learner is imple-
mented to explore the mass data generated by the CO-
COMO risk model. Classical machine learners like C4.5
aim at discovering classification rules: i.e. given a classi-
fied training set, they output rules that are predictive of the
class variable. TAR2 differs from those learners in that:

1. TAR2 assumes the classes are ordered by their score
(some domain-specific measure). Highly scored
classes are preferable to lower scoring classes. Fur-
ther, one class is more desirable than all others,
which is called the best class.

2. Rather than finding the classification rules, TAR2
finds rules that predict both increased frequency of

4

outlook temp(U F) humidity windy? class
1 sunny 85 86 false none
2 sunny 80 90 true none
3 sunny 72 95 false none
4 rain 65 70 true none
5 rain 71 96 true none
6 rain 70 96 false some
7 rain 68 80 false some
8 rain 75 80 false some
9 sunny 69 70 false lots

10 sunny 75 70 true lots
11 overcast 83 88 false lots
12 overcast 64 65 true lots
13 overcast 72 90 true lots
14 overcast 81 75 false lots

Figure 3: A log of some golf-playing behavior.

the best class and decreased frequency of the worst
class. That is, TAR2 finds discriminate rules that
drive the system away from the worst class to the
best class.

3. TAR2 output treatments rather than classifications.
A treatment is one or a conjunction of attribute value
ranges. It is a constraint on future control inputs of
the system.

TAR2 can find the input ranges of KC-1 that decrease
the project’s risk. Before showing that, we illustrate the
TAR2 method using a small example. Figure 3 shows a
small training set, in which there are four attributes and 3
classes. Recall that TAR2 assesses a score for each class.
For a golfer, the classes in Figure 3 could be scored as
none=2 (i.e. worst), some=4, lots=8 (i.e. best). TAR2
then seeks attribute ranges that occur more frequently in
the highly scored classes than in the lower scored classes.
Let �V�XW be some attribute range e.g. outlook=overcast)
and Y[Z\�]�^W _ be the number of occurrences of that at-
tribute range in class Y (e.g. lots(outlook=overcast)=4).`]a=b#c

is a measure of the worth of �d�eW to improve the
frequency of the f=���g class.

`Va8b#c
uses the following def-

initions:

f=��(g : the highest scoring class; e.g. f=���gh�jik"�gC� ;
W����g : the non-best class; e.g. W����gl�Om(#"�	#
K��E"�no�p ;

0
1
2
3

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Figure 4:
`

distribution seen in golf data sets. Outstand-
ingly high

`
values shown in black. Y-axis is the number

of attribute ranges that have a particular
`

.

qsrut�v
w q�x�y r�z
{}|~r(r(���r�� y=�(t.w��<{

0
2
4
6

5 3 6
0
2
4
6

0 0 4

= none (worst)

= some

= lots (best)

Figure 5: Finding treatments that can improve golf play-
ing behavior. With no treatments, we only play golf lots
of times in)���#�.�) ���
��� of cases. With the restriction
that outlook=overcast, then we play golf lots of times in
100% of cases.

�(��"�W� : The score of a class Y is ��Y ;.`La8b#c
is calculated as follows:���8�s��� ���� �6�}�}� �A���<� :�;C��� �� �¡ ? �~� :<;6� � 7 �£¢ ¡ � ¤� 7 �¥¢ ¡\¡¦ :.§ 78¨�© ª«:<; � 7 �¥¢ ¡6¦ ¬

where E®¯��nL°2ik���Zk�P�±W _� is the number of examples in
which �e�²W occurs ; The attribute ranges in our golf
example generate the

`
histogram shown in Figure 4.

A treatment is a subset of the attribute ranges with an
outstanding

`]a=b#c
value. For our golf example, such at-

tributes can be seen in Figure 4: they are the outliers with
outstandingly large

`
s on the right-hand-side.

To apply a treatment, TAR2 rejects all example entries
that contradict the conjunction of the attribute rages in the
treatment. The ratio of classes in the remaining examples
is compared to the ratio of classes in the original example
set. The best treatment is the one that most increases the
relative percentage of preferred classes. In our golf ex-
ample, the best treatment is outlook=overcast; Figure 5
shows the class distribution before and after that treat-
ment. i.e. if we bribe disc jockeys to always forecast
overcast weather, then in 100% of cases, we should be
playing lots of golf, all the time.

5

A: ³ r���{}v%�^´qsr�{}�(y=w�{}µ]y=q�{

0
20
40
60
80

100

0 18 62 20

B: ³ r(�8{¶v%�·´(¸ ¹�º» �<t<y=¼½�[¹=¾

0
20
40
60
80

100

0 0 56 43

C: w�¿�{¶y=�E¿�y8y8¼�À.w t<�
treatment

» �<t<y=¼Á�Â¹=¾

0
20
40
60
80

100

0 0 56 43

=T VHI(worst)

= T HI

= T MED

= T LO(best)

D: ³ r���{}v%�·´E¸ ¹E¹» Ã µ�w {Ä�ÆÅuw�t.w Ã �Ç¹=¾

0
20
40
60
80

100

0 7 53 40

E: ³ r(�8{¶vÁ�^´(¸ ÅEº» Ã µ�w {Ä�ÆÅÈ�=t�y=¼É�[¹=¾

0
20
40
60
80

100

0 0 45 55

F: ³ r���{}v%�^´(¸ Ê�Ë» w t�w Ã �Â¹Ì�<t<y=¼4�Â¹8¾

0
20
40
60
80

100

0 0 36 64

Figure 6: Improvements in class distributions generated by TAR2 from kc-1 data.

4 Experiment Results

Figure 6 shows the results from the KC-1 risk estimate
data generated by TAR2. Since the classes are ordered,
we introduce a variable “worth” to measure the class dis-
tribution of a data set. “worth” is calculated as follows:

³ r��8{¶v¤� Í����Î}Ï �=�}�Ð�}��Ñ¥Ò�ÓOÔ�Õ ÓdÕÕ y=Ö�w µ Ã |×y�� Õ�Ø
where YÇ is the number of examples that belong to class
X. TAR2 reports the worth’s of the treated data sets as
the ratio of the untreated raw data set. From Figure 6 we
could see that 3 attribute values are particularly important
in improving the class distribution; i.e., �(��EÙ¤�X� , ���8�E°¥�� and °�no��gd�ÚG . When combined, the best treatment
found by TAR2 was Figure 6F:

Acap=2 Use adequate analysts (near the 55% percentile).

Sced=2 Allow the team 100% of the estimated time to
finish the project

Ignorables: One of the benefits of TAR2 is that it tells
an analysts what factors are ignorable. In this case,

of the 11 proposed modifications seen in Figure 1’s
changes1 column, most of the modifications (i.e.
flex, resl, team, ruse, docu, stor, pcon, ltex) were
comparatively less effective that just changing acap
and sced.

Figure 6F claims that in the case of acap=2 and sced=2,
our KC-1 project should have a 64% possibility to be low
risk project(class=T LO) and a 0% possibility of being a
high risk project (class=T HI). This is a considerable im-
provement over Figure 6A where the majority of projects
were medium risk and there was a possibility (18%) of a
high risk project.

TAR2 yields much information that can assist in soft-
ware management. For example, suppose that in KC-1,
schedule pressure is hard to avoid; i.e. using sced=2 may
be impractical. Fortunately, Figure 6D offers an alterna-
tive. In the case of acap=2 AND pmat=3 (i.e. moving to
an SEI CMM level3 style project [11]), an improvement
over Figure 6A can be achieved. Note that the improve-
ment is not as good as Figure 6E. That is, managers now
can assess the merits of one treatment over another.

6

5 Validation

The treatments learnt from KC-1 and the COCOMO ex-
pert must be carefully assessed for their stability, external
validity and generality. Stability and external validity are
discussed below. Utility can be assessed using at least the
following methods:

N-way cross-validation In this procedure, the available
data is divided into N blocks so as to make each
block’s number of cases and class distribution as
similar as possible. Next, N times, learning is per-
formed on Û4Ü �Û of the data and tested on the remain-
ing �Û th of the data.

Model Feedback Ideally, the results can be applied to
the model that generated the data. This is a more
robust validation because the treatments are assessed
by an outside device, avoided the effect of the train-
ing data.

5.1 Assessing Utility via Model Feedback
Studies

In our case study, we are able to apply our treatments to
the COCOMO risk model. For example, in order to test
the treatment �E�8�Ù¤�X� , we did the following:

1. With other attribute remain randomized according
to their available values seen in the now1 column
of Figure 1, we restrict �E�8�ÙÝ�²� (i.e. used only�E�8�ÙV�Ý� as the input value of �E�8�Ù), and generate a
new data set of 30,000 cases.

2. If the treatment is valid, it should influence the
model’s behavior to generate data sets that have class
distribution similar to the distribution seen in Fig-
ure 6B

3. Our validation results are quite satisfying: the new
data set has exactly the same class distribution as
Figure 6B predicted.(see Figure 6C.)

5.2 Stability

The essence of knowledge farming is:* Identify ranges of possible values.

* Many times, pull input parameters from those ranges
and run a model.* Summarize the generated data using treatment learn-
ing.

Knowledge farming is a failure if emergent stable con-
clusions can’t be found amongst the simulated data.

In this study, a model was run through the �(�
) possi-
bilities shown in Figure 1, through three possible tunings
and 2 possible SLOCs. Emergent stable properties were
detected which, when tested, provided adequate control
of KC-1 (recall the discussion in the last section).

5.3 External Validity

Are the treatments see in Figure 6 specific to KC-1 or gen-
eral to other software projects? To test this, we did a con-
trol experiment:* Without all the constrains on the KC-1 project, we

ran the COCOMO risk model across all the possibil-
ities. This simulation generated another data set of
30,00 examples. We called this data set the generic-
COCOMO data set.* TAR2 was applied to the generic-COCOMO data.

The treatments learnt from generic-COCOMO were dif-
ferent to the treatments learnt from the KC-1 data set. In
generic-COCOMO, the best found treatment was:

Pmat=4: i.e. use a very mature software process;

Sced=4: i.e. stretch the development schedule by 160%;

These results are hardly surprising: given an over-
abundance of development time and a highly mature soft-
ware process, of course we get low risk projects! How-
ever, there is a more serious lesson from this study:* Treatments that are “best” in generic data sets may

not be relevant to particular projects.* Project specifics should always be used to constraint
the simulations in order to generate treatments rele-
vant to a particular project.

7

While the knowledge source used in this study (the CO-
COMO expert mode) has passed international peer re-
view, it is hardly universally accepted. Proponents of
some other knowledge source could reject the specifics of
the above conclusions, but still use the general technique;
i.e. they could encode their preferred knowledge source
as a model, execute it, then summarize it using treatment
learners. For example, Menzies and Kipers [9] explore
the use of treatment learning to study a model of CMM
level2 [12]. Elsewhere, we have discussed general princi-
ples for rapidly building models in early lifecycle [8].

6 Conclusion

Data droughts are an acute problem impeding which im-
pede model-based requirements engineering. This paper
explores a three-part solution to data droughts. An initial
knowledge farming stage simulates the available models
across the space of possibilities relevant to a particular
project. This is followed by a second harvesting stage that
uses the TAR2 treatment learner to summarize the logs
of the simulations. If insights are found during the sum-
marization stage, then these must be validated in a third
and final stage using techniques such as N-way cross-
validation or model feedback.

This three-part solution was explored here via an ex-
ample based on a COCOMO-based risk model. For this
case study, the proposed solution is both a practical (i.e.
fast to run and simple to organize) and effective (i.e. as
determined by our validation studies) method for reusing
models during requirements engineering.

TAR2’s summaries are controllers to the model. Such
treatments, when applied to the model, actually change
the model’s behavior and drive it towards a preferred
mode of operation. We are encouraged by the above
results since it is possible that TAR2 can generate con-
trollers even in the presence of data droughts.

References

[1] C. Abts, B. Clark, S. Devnani-Chulani, E. Horowitz,
R. Madachy, D. Reifer, R. Selby, and B. Steece.
COCOMO II model definition manual. Techni-
cal report, Center for Software Engineering, USC,,

1998. http://sunset.usc.edu/COCOMOII/
cocomox.html#downloads.

[2] B. Boehm. Software Engineering Economics. Prentice
Hall, 1991.

[3] B. Boehm and P. Papaccio. Understanding and control-
ling software costs. IEEE Trans. on Software Engineering,
14(10):1462–1477, October 1988.

[4] I. Bratko, I. Mozetic, and N. Lavrac. KARDIO: a Study
in Deep and Qualitative Knowledge for Expert Systems.
MIT Press, 1989.

[5] S. Chulani, B. Boehm, and B. Steece. Bayesian analysis of
empirical software engineering cost models. IEEE Trans-
action on Software Engineerining, 25(4), July/August
1999.

[6] R. Cordero, M. Costamagna, and E. Paschetta. A ge-
netic algorithm approach for the calibration of cocomo-
like models. In 12th COCOMO Forum, 1997.

[7] R. Madachy. Heuristic risk assessment using cost factors.
IEEE Software, 14(3):51–59, May 1997.

[8] T. Menzies and Y. Hu. Building models for require-
ments engineering. In Submitted to the first Interna-
tional Workshop on Model-based Requirements Engineer-
ing, 2001. Available from http://tim.menzies.
com/pdf/01buildre.pdf.

[9] T. Menzies and J. Kiper. Better reasoning about software
engineering activities. In ASE-2001, 2001. Available from
http://tim.menzies.com/pdf/01ml4re.pdf.

[10] T. Menzies and E. Sinsel. Practical large scale what-if
queries: Case studies with software risk assessment. In
Proceedings ASE 2000, 2000. Available from http://
tim.menzies.com/pdf/00ase.pdf.

[11] M. Paulk, B. Curtis, M. Chrissis, and C. Weber. Capability
maturity model, version 1.1. IEEE Software, 10(4):18–27,
July 1993.

[12] M. Paulk, C. Weber, B. Curtis, and M. Chriss. The Capa-
bility Maturity Model: Guidelines for Improving the Soft-
ware Process. Addison-Wesley, 1995.

[13] D. Pearce. The induction of fault diagnosis systems from
qualitative models. In Proc. AAAI-88, 1988.

[14] J. Tian and M. Zelkowitz. Complexity measure evaluation
and selection. IEEE Transaction on Software Engineering,
21(8):641–649, Aug. 1995.

8

