

Assessment of a Lightweight Formal Method for
Specifying and Analyzing Requirements

K. Cooper
The University of Texas at Dallas

Erik Jonnson School of
Engineering and Computer

Science
kcooper@utdallas.edu

Tim Menzies
The University of
British Columbia

Department of Electrical and
Computer Engineering

Tim@menzies.com

Mabo Ito
The University of
British Columbia

Department of Electrical and
Computer Engineering

mito@ece.ubc.ca

Abstract
Tools in requirements engineering are recognized as

a key component in achieving the goal of building
systems better, faster, and cheaper. Tools don't get
distracted, don't need a lunch break, don't have another
meeting to attend, don't make (as many) mistakes, and
they don't get bored. Despite this, few of the research
tools in RE are being adopted in the broader SE
community. Why?

Our thesis is that many of the research tools excel at
tasks that are not interesting to commercial
practitioners. For example, users are more likely to use
a tool if it can be quickly applied to their current
practice and many research tools are not widely
applicable.

The article describes a general approach for the
construction and evaluation of domain-specific RE tools
of high applicability. By using this methodology, it can
be shown that developing a notation and its tool support
is cost-effective. The evaluation is so precise that a
"break-even" point can be defined after which this
approach is clearly useful.

1. Introduction

Tools in requirements engineering are recognized as

a key component in achieving the goal of building
systems better, faster, and cheaper. Tools don�t get
distracted, don�t need a lunch break, don�t have another
meeting to attend, don�t make (as many) mistakes, and
they don�t get bored. One of the puzzles in modern RE
research is the increasing number of tools being
developed without any hard evidence that these tools are
widely accepted in the community of RE practitioners.
This is not to say that, in isolated case studies, these
tools have not proved useful for RE. Many such case
studies exist based on using the SCR tool, the SPIN tool,
and the KAOS tool [1,2,3]. However, looking beyond

the particulars of these studies, what can we say to
commercial RE practitioners in order to convince them
to use these tools?

Our thesis is that we lack a convincing demonstration
of the power of these tools for several reasons. The first
reason is that these tools excel on tasks that are not
interesting to commercial practitioners. For example, the
SPIN tool optimizes for completeness and expressive
power of the temporal logic queries [4]. The SP2 tool
optimizes for the tractability of the inference procedure
[5]. However, in our experience, commercial
practitioners care less for these issues and more about
how understandable the tools are.

A second issue, also related to understandability, is
that users are more likely to use a tool if it is
immediately applicable, i.e., it is compatible with how
things are already being done. A tool that optimizes for
applicability would not require a time consuming and
confusing translation of the local domain documents
into a format suitable for the RE tool.

Thirdly, we lack convincing experiments regarding
the merits of a particular tool or the relative merits of
different tools. In order to assess the results of such
experiments, we need to clearly identify the goals of the
tool. Hence, the above two points are vital for the design
of convincing experiments.

In this article we report an experiment that evaluates
two techniques for requirements capture and analysis.
Two key parts of this evaluation are 1) The definition of
a "break-even" point, below which the experimental tool
is not useful and above which it is considered desirable.
Secondly, our tools optimize for applicability; i.e., how
well they do they support the already occurring
documents in the domain. Note that, in our view, such
an assessment experiment must be defined alongside the
development of any new tools. An objection to the use
of some new tool, particularly if that tool has domain
specific elements, is that new tools can be ad hoc, time
consuming to build, and hard to assess.

mailto:kendrac@ece.ubc.ca
mailto:menzies@ece.ubc.ca

The article is structured as follows. Section 2
discusses related work. Section 3 presents the process
we use to develop our formal notation and the results of
our assessment of the notation. The conclusions and
future work are presented in Section 4.

2. Related Work

Requirements engineering techniques have been
assessed, or evaluated, using case studies, pilot projects,
and experiments [7,8,9,10]. Evaluations are used to
discover strengths and weaknesses in a technique,
determine the costs of applying a technique, or
determine the benefits of using a technique. The
evaluations provide qualitative and/ or quantitative
results that can be used by project managers to decide if
the technique is going to be used on a particular project
[11]. For new techniques developed in the academic
world, such evaluations are important because the
results may be used to encourage the transfer of the new
technique to industry. The costs of introducing a formal
notation include the cost of training employees in the
tools and in the formal notation. The benefits include the
availability of tools to assist the authors in automatically
parsing, typechecking, and analyzing the specifications.
With this tool support the author can detect and correct
defects earlier in the develop lifecycle and reduce the
cost of developing the software. These costs and
benefits are subjective unless data is rigorously gathered
and analyzed through empirical studies. These studies
are expensive and time consuming to perform.

Much recent research explores the merits of various
tools for assessing requirement models. In this related
work section, we comment on three examples of that
research: KAOS [2], applications of the SPIN tool to
[3], and SCR [1]. In addition, we discuss natural
language based techniques in terms of their strengths
and weaknesses.

In the KAOS system, analysts generate a properties
model by incrementally augmenting object-oriented
scenario diagrams with temporal logic statements. The
KAOS methodology is tightly linked to standard object
oriented (OO) methods and extends them with temporal
logic constraints. For domains that use OO, KAOS
would score high on our applicability scale, i.e., KAOS
would be a useful way to explore OO requirements
documents. In domains where the locals use some
specific, possibly idiosyncratic, extension to established
methodologies, general tools like KAOS would have to
be adapted in order to satisfy the applicability criteria.
For example, in the domain studied here, the existing
documents adopted the functional style of the Threads-
Capabilities system. The tool discussed above was
required in order to support the particulars of that tool.
One argument against developing a local tool for a local

dialect is that such a tool can be complex to develop and
hard to assess. In the work done here, a novice to
compiler theory could use off-the-shelf technology
(LEX and YACC) to develop such a local tool. Further,
that same developer could conduct a well-designed
experiment to assess the utility of that tool versus some
existing method.

In other work, Schneider [3] used SPIN, a full-
featured temporal logic model checker, to assess NASA
documents. Such full-featured model checkers can
incur an extremely high start-up cost as analysts struggle
to fit their knowledge into the syntax of that model
checker. To reduce this cost to a manageable level,
Schneider used lightweight formal modelling, i.e., only
partial descriptions of the systems and properties models
were constructed. Despite their incomplete nature,
Schneider found that such partial models could still
detect significant systems errors. While exciting
research, this approach still scores low on our
applicability scale since the naturally occurring models
had to be contorted to be processed by SPIN.

The SCR notation and parts of the SCR toolset have
recently been used in many applications including a
recent case study for a light control system [1]. In this
work, a requirements specification was developed for a
system that controls the lighting in an office building.
Three tools in the SCR toolset were used: the automated
consistency checker; the simulator; and a tool (Salsa)
that analyzes a specification for desired properties.
These tools were been selected for use because applying
these tools is relatively easy. Other tools in the toolset
have been recognized as requiring more effort: the SPIN
model checker and the TAME tool (an interface to the
PVS theorem prover). The requirement specification
contains many numbers and large ranges of numbers
(e.g., a light level can range from 0 to 10,000), which
lead to a large state space. The state space explosion
makes this requirement specification less suitable for
using a model checker. Using the PVS system requires
more effort because additional properties must be
defined for the light control system. Although using
these additional tools would have provided more
confidence in the requirements specification, the
researchers chose not to use them because of their
additional cost.

Use case and scenario based requirements
specification techniques are popular choices in industry
today. Both families of specification techniques use
natural language, which make the requirements readable
and understandable, and encourage a user-centric
partitioning of the requirements, which make the
requirements straightforward to review for
completeness. However, if natural language techniques
are compared to formal methods, then some significant
drawbacks with the natural language based approaches

become apparent. One significant difference is the level
of tool support that is available for use.

Formal methods offer a wide range of tools that have
automated two major tasks in software development: the
analysis of requirements for defects and the generation
of test specifications. The tools available for detecting
defects include parsers, typecheckers, consistency
checkers, simulators, model checkers, and theorem
proving systems [1,4, 12,13,14,15]. These tools can be
used to find and correct defects as early as possible in
the software development lifecycle. An error introduced
in the requirements specification phase that is not
detected until the system has been deployed is estimated
to cost 200 times what the correction costs if it is found
and corrected in the specification phase [16]. Processes,
notations, and tool support for detecting and correcting
as many defects as possible when writing the
requirements are an essential part of reducing the cost of
development. The better the requirements specification,
the less rework that must be done and, as a result, the
lower the development costs. The result is an
improvement in the quality of the requirements and a
reduction in the time and cost to develop them.

Although numerous formal methods are available,
they have not been applied routinely in industry. The
lack of readability for methods such as Z, VDM, or the
HOL meta-language by customers who are not trained
in formal methods is a significant deterrent. In addition
to the customer struggling with the notation, the
requirements authors and the design team must learn to
use the notation and the tool support effectively. The
classroom and on the job training time to accomplish
this is high. For example, an introductory classroom
course in the Z notation is five days long.

The natural language approaches and the formal
methods appear to be at extreme ends of a scale for
requirements specification approaches. If the priority is
on having readable requirements, then a natural
language approach is the appropriate choice and
automated tool support is sacrificed. If the priority is on
having automated tool support, then a formal method is
the appropriate choice, and readability is sacrificed.
Ideally, a notation that is readable and provides tool
support could be developed. The solution presented in
this work is a lightweight formal method. The notation
is designed to support the automated detection of
grammar and typechecking defects. The notation also
supports the automated generation of system level test
specifications [22].

3. Developing a Formal Notation

Our process for developing the new notation has

been organized in five basic steps (refer to Figure 1). It
is important to note that one of the goals of formalizing

the notation is to keep it as similar as possible to the one
already used in industry. Accomplishing this goal is
important in retaining the high applicability rating of the
notation. The first step is to evaluate the strengths and
weaknesses of the existing, semi-formal notation that
has already been used in industry. The second step is to
correct deficiencies found in the notation. For example,
a problem discovered in the semi-formal notation is the
lack of a definition of how to match the stimuli and the
responses. The third step is to define the syntax and the
semantics for the new notation. The fourth step is to
evaluate the new notation in terms of its costs and
benefits. The fifth step is to move the notation out of the
lab and into a small, pilot study in industry. This step
allows the notation and tool support to be exercised and
evaluated in a real world setting. At this point, the
notation is likely to need updates.

3.1 Evaluating The Existing Notation

The requirements specification techni
in this paper is based on a technique that
at Raytheon Systems Canada Limited on
large scale, air traffic control systems:
Automated Air Traffic Control System (
the Military Automated Air Traffic Co
(MAATS). These projects have contracts
Million and 73 million respectively
software requirements specification for
project is documented in approximately 31

The in-house notation at Raytheon
Threads-Capabilities technique [19]. A
specification unit that specifies the actions
the system as the result of receiving one or
The thread specification unit is built on th

Evaluate
Current
Notation

1 Correct
Problems in

Notation
2

Define
Syntax and
Semantics

3
Evaluate
Notation

(academic)
4

Figure 1. Developing a Formal Nota

Strengths, weaknesses

Updated, semi-formal notation

Formal notation,
Tool support
Costs and
Benefits

que presented
has been used
two complex,
the Canadian
CAATS) and
ntrol System
valued at 500
[17,18]. The
the CAATS

00 pages.
is called the

thread is a
 performed by
 more stimuli.
e concept of a

Evaluate
Notation
(industry)

5
tion

path through the system that connects an external event
or stimulus to an output event or response. The threads,
or tasks, are straightforward to identify with domain
expert's assistance because they describe what tasks the
user needs to do. The threads are similar in their purpose
as a concrete use case. A capability is like an abstract
use case, in that it is a re-use mechanism and is triggered
internally.

There are a number of strengths for the Thread-
Capabilities technique. The technique:
• is based on natural language. Using English as the

notation, the requirements are considered readable
and understandable. The training time is also low
because the notation is already familiar to the
trainees.

• prescribes a user-centric (i.e., external) partitioning
of the requirements. Each thread or capability
describes a task the user needs to perform. This
organization of the requirements eases the
development and validation of the requirements
specification document because a reviewer can work
through a listing of the titles of the threads and
capabilities and look for missing, duplicated, or
extraneous threads or capabilities. This organization
of requirements specification documents is scaleable
and maintainable. When a new task is identified, it
can be added in with little impact on the document.

• provides template phrasing for the authors to re-use.
The template phrasing accomplishes three important
things. First, the template phrasing promotes
consistency among a group of authors. Without
recommended or standardized phrasing, each author
is left to devise their own writing style. On projects
with a large team of requirements authors, this could
lead to an inconsistent document. The template
phrasing contributes to the ease of writing,
reviewing, and validating the requirements. The
template phrasing is also designed to promote a
black-box style. The verbs used in the template
phrasing are restricted to a set of externally visible
action verbs including, for example, �send� and
�update�. The black-box style reduces the inclusion
of details that may need to be updated as the
software development lifecycle progresses.

• has a mechanism in the notation that allows the
author to generalize a set of stimuli or responses into
a group. This is convenient for large systems because
stimuli from different sources may all trigger the
same requirement and responses for different
destinations may all be the result of a single
requirement. It is convenient to describe the
requirement once, rather than repeating the
requirement for each possible source and destination.

• has an integrated data dictionary. The data dictionary
is a repository for the names and definitions of the

data used in the system as well as documenting the
relationships among the data elements. For large,
complex systems, having a clear and consistent set of
terms is critical in developing correct and consistent
requirements.
Even with all of the strengths of the Threads-

Capabilities technique, there are areas in which the
technique could be improved. For example,
improvements include:
• develop tool support to check for conformance to the

recommended template phrasing. The Threads-
Capabilities technique only has a manual, peer
review process for detecting and subsequently
correcting defects in the requirements. The manual
process is time consuming and, as a result,
expensive. To support this, the syntax of the notation
must be defined.

• define how the stimuli (inputs) in a group are
matched with responses (outputs) in a group. The
technique does not explicitly define these rules.
Without a clear definition of the behaviour of the
notation, each author and reviewer is left to create
their own set of rules. This can lead to inconsistent
interpretation of the requirements and an incorrect
implementation.

• develop tool support to automatically generate the
system level test specifications. To support this, the
syntax and semantics of the notation must be
defined. Without these definitions, the generation of
test specifications is a manual process, which is time
consuming and prone to errors.

• develop training material for new users. A
description of the technique is available, however,
there is no tutorial style training material available.

3.2 Updating the Existing Notation

After the evaluation of the Threads-Capability
notation is complete, the notation is updated to correct a
significant problem. The notation is updated to
explicitly define the matching rules for stimuli and
responses. For example, if the following groups of
stimuli and responses are defined:

Stimuli:
1) The library system shall satisfy the requirements
described below upon receipt of a [search request] from:

a) Operator <search request>;
b) VPL <search request>;
c) SFU <search request>;
d) UVIC <search request>;
e) EPL <search request>.

Responses:
1) As specified by the requirements described below, the

library system shall send a [search response] to:
a) Operator <search response>;
b) VPL <search response>;
c) SFU <search response>;
d) UVIC <search response>;
e) EPL <search response>.

, then this requirement written by the author:
1. Upon receipt of a [search request], if the {borrower
does not owe fines} then the library system shall return
a [search response].

is actually representing the following five requirements:
1. Upon receipt of a Operator <research request>, if the

{borrower does not owe fines} then the library
system shall return a Operator <search response>.

2. Upon receipt of a VPL <research request>, if the
{borrower does not owe fines} then the library
system shall return a VPL <search response>.

3. Upon receipt of a SFU <research request>, if the
{borrower does not owe fines} then the library
system shall return a SFU <search response>.

4. Upon receipt of a UVIC <research request>, if the
{borrower does not owe fines} then the library
system shall return a UVIC <search response>.

5. Upon receipt of a EPL <research request>, if the
{borrower does not owe fines} then the library
system shall return a EPL <search response>.

At this point, the notation is called a semi-formal

notation and is given the name semi-formal Stimulus
Response Requirements Specification (SRRS) notation.

3.3 Defining the Syntax and Semantics

The next step in developing the new notation is
formally defining the syntax and semantics. The syntax
of the notation is defined in BNF. The semantics of the
notation are operationally defined using a translation
into higher order logic. To demonstrate the feasibility of
the notation and to support running the experimental
evaluation, a tool is also developed. The tool is
implemented in approximately 19 KSLOC of lex, yacc,
and c code. The new notation is called the formal
Stimulus Response Requirements Specification (SRRS)
technique.

3.4 Evaluating the Updated Notation

The formal SRRS technique is objectively evaluated
using a well defined experiment. The costs and benefits
of using a formal version of the SRRS notation along
with its tool support in comparison to a similar, semi-

formal version are quantified in the experiment. The
costs of introducing a formal notation include the cost
of training employees in the tools and in the formal
notation. To measure the costs, the amount of time
spent in classroom and on the job training is recorded.
The benefits include the availability of tools to assist
the authors in automatically parsing, typechecking, and
analyzing the specifications. The tool support is
expected to reduce the time to develop the
specifications and improve their quality. To measure
the benefits, the amount of time used to write, review,
and correct the specifications is recorded in addition to
the number and type of defects recorded in the peer
review process. In summary, the two techniques are
compared in terms of the quality of the specifications
written (number and category of defects detected) and
the effort required to write the specifications (training,
writing, reviewing, and correcting specification units).
More rigorously, the objectives of the evaluation are
defined as three test hypotheses. The first test
hypothesis is that use of a notation with a completely
defined syntax and automated tool support results in a
requirement specification that has the same average
detected defect rate per allocated requirement object
than a notation that does not use a completely defined
syntax and automated tool support. The second test
hypothesis is that the use of a notation with a
completely defined syntax and automated tool support
results in a requirement specification that has the same
average effort per allocated requirement object to
describe than a notation that does not use a completely
defined syntax and automated tool support. The third
test hypothesis is that the use of a notation with a
completely defined syntax and automated tool support
results in the same average training time per subject
than a notation that does not use a completely defined
syntax and automated tool support.

3.4.1. Results. The experimental results including
defect rates, training time, and the time to write, review,
and correct the specification units are summarized in
this section. Group 1 in the results refers to the control
group using the semi-formal version of the
requirements specification notation. Group 2 refers to
the experimental group using the formal notation.

The experimental results for the defect rates are
summarized in Table 1. The results show a reduction in
the syntax, type, and the analysis defects detected for
Group 2. The % difference between the Group 1 and
Group 2 for the total number of defects detected per
allocated requirement object identifier (ROID) shows
an 81% reduction in detected defects.

The training time is a metric of interest for
individuals considering the use of the formal notation in
comparison to its semi-formal notation. In this

Table 1. Summary of Defects Recorded
 Group 1 Group 2 % Difference
Number of syntax
defects per ROID

0.99 0.09 -90.91

Number of type defects
per ROID

0.74 0.01 -98.65

Number of analysis
defects per ROID

0.88 0.39 -55.68

Number of total
defects per ROID

2.61 0.49 -81.23

experiment, the formal training time includes the time
the subjects are in the lecture style format plus the
amount of time they spend on the hands-on practice
exercise. In addition, the amount of time it takes the in
the experimental group to work through the tutorial for
the SRRS tool is considered as formal training [21]. The
formal training time is recorded as the number of
minutes of formal training per author. The informal
training includes the time the subjects use to review
their training material or ask questions about the
notation as they write the specification units. The
informal training is recorded with respect to the number
of allocated ROIDs, because the informal training
continues as the subjects write their specifications. The
total training time recorded is the sum of the formal
training time and the informal training time per author.
The experimental results for training time are
summarized in Table 2. They show an increase in both
the formal and informal training time for Group 2. The
% difference between Group 1 and Group 2 is a 186%
increase in total training time.

Table 2. Summary of Training Time

 Group 1 Group 2 % Difference
Formal Training Time
Minutes/author

420.00 835.00 98.81

Informal Training
Time
Minutes/ROID

0.32 5.02 1468.75

Total Training Time
Minutes/author

448.33 1285 186.62

The effort is a metric of interest for individuals

considering the use of the formal notation in comparison
to its semi-formal notation. The effort to write and put
the specification units through a peer review is
summarized in Table 3. The experimental results show a
decrease in the amount of time to write and review
requirements for Group 2. The % difference between
Group 1 and Group 2 for the total amount of time to
write and review requirements is a reduction of 39%.

3.4.2. Discussion of the Results. The formal and
informal training time both increased as expected for the
Group using the formal notation in comparison to the

group using the semi-formal notation. The additional
burden of working through a tutorial, learning how the
tool support works, and understanding the organization
of the user manual all contribute to this increase.

Table 3. Summary of Writing and Reviewing Time

 Group 1 Group 2 % Difference
Average time to write
per ROID in minutes

17.58 10.58 -39.82

Average time to review
and correct per ROID in
minutes

15.28 9.42 -38.35

Average total time per
ROID in minutes

32.86 20.00 -39.44

The large increase in the informal training time is an

interesting result. An explanation for this large increase
is the additional complexity of having a concrete syntax
and the tool support for the notation. Since the syntax
must be conformed to and the validation checks all
passed, the authors of the requirements may need to
check the user manual, training material, and the tutorial
documents more frequently as they work on the
specifications.

With these experimental results an estimate of the
training time for a project can be made. Given the
notation proposed, number of authors, and number of
allocated ROIDs to be written the following calculation
can be used to estimate the training time: training time =
A * T + R * D, where A is the number of authors, T is
the training time per author for a given notation, R is the
number of ROIDs and D is the development time per
ROID for a given notation. For example, if the formal
notation is used, the T is 835 minutes/author and D is
5.02 minutes/ROID.

The experimental results show a reduction in the
number of defects detected in the peer review process.
The concrete syntax in addition to the tool support that
enforces the syntax and provides validation checks on
the specification units allow the author to check their
specifications before submitting them for review. Since
only specifications that have a clean validation run (no
errors are reported) with the tool support are allowed to
go through the peer review process in the experiment,
the reviewers receive a version that has had defects
removed. As a result the specification units have a lower
detected defect rate and have a higher quality. This
reduces the overall project costs, since correcting
defects in the software increases an order of magnitude
for every phase the error is propagated. The sooner
defects are discovered and corrected the better [20]. The
goal is to correct the defects in the same phase they are
introduced in. The most expensive errors to correct are
those that are detected by the customer after delivery,
and are traced back to being introduced in the software
requirements phase. Multiple levels of code, design, and

requirement products must be updated.
The experimental results also indicate there is a

reduction in effort to write, review, and correct the
specification units when using the formal notation in
comparison to the semi-formal notation. The reduction
can be attributed to the readability of the formal notation
and the tool support. The reduced writing, review, and
correction time indicates that the formal notation is at
least as readable as the semi-formal notation. If the
formal notation is not as readable, the time to write,
review, and correct is expected to exceed the time when
the semi-formal notation is used. The tool support
allows the author to obtain feedback on syntax, type,
and a small number of analysis defects as the specifica-
tion is being written. These defects can be removed
before the specification is submitted for peer review.
This reduces the number of defects in the specification
making the remaining defects simpler and faster to
identify in the peer review. A reduction in time is a
benefit to the project, as it reduces the cost of
developing the requirements specification.

With these experimental results an estimate of the
development time for a project can be made. Given the
notation proposed and number of allocated ROIDs to be
written the following calculation can be used to estimate
the development time with the simple calculation
development time = R * D, where R is the number of
ROIDs and D is the development time per ROID for a
given notation. For example, if the formal notation is
used, then D is 5.02 minutes/ROID.

The point at which it becomes feasible to use the
formal notation can be estimated using the experimental
results. For example, if a project has 2000 ROIDs and
proposes to use 20 authors, the time to train, write, and
review the specifications can be estimated for both the
formal and semi-formal notations. The total time
estimate is calculated as the sum of the training time and
the development time (refer to Table 4).

Table 4. Example of Total Time Estimates

 Semi formal
notation

Formal notation

Training
Time

20 * 420 +
2000*0.32

= 9042 minutes

20 * 835 +
2000 * 5.02

= 26740 minutes
Development
Time

2000*32.86
= 65720 minutes

2000 * 20.00
= 40000 minutes

Total Time 9042 + 65720
= 74760 minutes

26740 + 40000
= 66740 minutes

With these two calculations the formal notation

shows a savings in time of approximately three weeks.
If the project is scaled up, then a more dramatic time
savings is calculated. For example, if the number of
authors and the number of requirements are scaled up by
an order of magnitude and the calculations shown above

are repeated, the formal notation has a calculated time
savings of approximately seven months. The selection
of the formal notation in this case offers significant cost
savings to the project. If the project is scaled down by
an order of magnitude, then the formal notation has a
calculated time savings of approximately 13 hours.
Given a small project involving a couple of authors and
200 requirements, there is a slight advantage in selecting
the formal notation. The caveat in the estimates made
here is that the data used in the calculations is derived
from one project with 432 allocated ROIDs. The data
has not been confirmed in different projects of different
sizes.

The results of this experiment have quantified the
costs and benefits of using a formal notation with tool
support in comparison with a similar, semi-formal
version of the notation. The costs are increased
classroom and on the job training time. The benefits
include a reduced effort to write and review the
specification units and a reduced defect rate. The
experimental results support the use of the formal
notation in that the additional costs of training (in terms
of time) are overcome by the gains achieved in the
reduction of the amount of time to write and review the
specification units.

In industrial settings, these savings are significant.
Engineers spend less time in peer review sessions
recording minor defects, such as formatting or grammar
errors. Instead, they can focus on detecting the more
significant problems, such as detecting logical errors of
omission or commission in the requirements.

The new lightweight technique has limitations,
however. For example, the defects that are currently
detected are limited in the scope to a single specification
unit. In the future, analyzing a set of specification units
making up a requirements specification document is
going to be necessary. A second limitation is the limited
amount of analysis that is performed at the moment.
Simulation, Model checking and theorem proving
techniques have not been investigated with this notation,
yet. The idea of developing an integrated suite of tools,
like the one that supports the SCR notation, is very
appealing. It would provide RE practitioners with
options. The RE could select the level of checking that
is suitable for their system.

4. Conclusions and Future Work

We have presented a general process for developing

a formal, domain specific notation with tool support
using off the shelf technology. The notation being
developed using this process rates high on applicability
because the new, formal notation retains the strengths of
the original notation (looks like natural language,
external partitioning, integrated data model), and

overcomes the identified weaknesses (lack of definition
of the matching mechanism for stimuli and responses,
tool support, and training material).

A critical step in our process is the assessment of the
technique. If a technique can be demonstrated to be
cost-effective to use, then we can use this to convince
RE practitioners that the technique is practical (at least
in an academic setting) and that a pilot study would be
extremely beneficial.

The benefits of using this notation with its tool
support have been quantified in an experiment. The
results of the experiment indicate there is an 81%
reduction in the defects detected in peer reviews and a
39% reduction in the amount of time needed to write,
review, and correct specifications. The costs of using the
technique, however, are an increase in training time. In
comparison with the updated Threads-Capabilities
notation, the training time increased from one day to
two days. However, this is still less than an introductory
course in Z, which takes five days. From these results,
we can estimate the break-even point (i.e., when the
technique becomes cost effective to use). If we have as
few as two authors writing up 200 requirements, the
formal SRRS notation with its tool support is cost
effective to use.

The next step in developing this new notation is to
evaluate it in a pilot study in industry. In this step, the
notation can be evaluated in terms of what is used in the
notation (and should be kept), what is not used in the
notation (and should be removed), and what is missing
from the notation (and should be added).

An interesting branch for this research is to
determine how to tailor this notation for use in other
domains. Since the notation has been developed for
stimulus response systems, it is not well suited for
describing declarative requirements of the form �The
system shall have 6 nines availability�. Currently, this
requirement would have to be awkwardly stated as
follows: �if {TRUE}, then the system shall commit the
6 nines availability� in SRRS.

5. References

[1] C. Heitmeyer and R. Bharadwaj "Applying the SCR

Requirements Method to the Light Control Case Study",
Journal of Universal Computer Science (JUCS), August
2000.

[2] A. van Lamsweerde and L. Willemet, "Inferring
Declarative Requirements Specifications from
Operational Scenarios", IEEE Transactions on Software
Engineering, Special Issue on Scenario Management,
Novermber, 1998.

[3] F. Schneider, S.M. Easterbrook and J.R. Callahanand ,
G.J. Holzmann , W.K. Reinholtz and A. Ko and M.
Shahabuddin, "Validating Requirements for Fault
Tolerant Systems using Model Checking", 3rd IEEE
International Conference On Requirements Engineering,
1998.

[4] G. Holzmann, �The model checker SPIN�, IEEE
Transactions on Software Engineering, 23(5), pp. 279-
295, May 1997.

[5] T. Menzies and J. Powell and M. Houle, Fast Formal
Analysis of Requirements via 'Topoi Diagrams' ICSE
2001, Available from
http://tim.menzies.com/pdf/00fastre.pdf, 2001.

[6] J. Britt, �Case study: Applying formal methods to the
traffic alert and collision avoidance system (TCAS) II�,
Computer Assurance: COMPASS �94, pp 39-51.

[7] D. Craigen, S. Gerhart, T. Ralston, �Case study:
Darlington nuclear generating station�, IEEE Software,
January 1994, Volume 11, pp 30-32.

[8] P. Larsen, J. Fitzgerald, and T. Brooks, �Applying
formal specification in industry�, IEEE Software, May
1996, pp 48-56.

[9] Porter, L. Votta, and V. Basili, Comparing detection
methods for software-requirement inspections: A
replicated experiment. IEEE Transactions on Software
Engineering, 21 (6), June 1995, pp. 563-575.

[10] A. Porter and L. Votta, �Comparing detection methods
for software-requirement inspections: A replication using
professional subjects�, Journal of Software Engineering,
Volume 3, Number 4, December 1998, pp. 355-379.

[11] S. Bear, �Managing the introduction of formal methods�,
IEE Colloquium, 1991, No. 131: Managing critical
software projects.

[12] J. M. Spivey, The FUZZ Manual, Computer Science
Consultancy, UK, 1992.

[13] C. Heitmeyer, J. Kirby, B. Labaw and R. Bharadwaj,
"SCR*: A Toolset for Specifying and Analyzing Software
Requirements," Proc. Computer-Aided Verification, 10th
Ann. Conf. (CAV'98), Vancouver, Canada, 1998.

[14] Gordon, M and Melham, T., Introduction to HOL A
theorem proving environment for higher order logic,
Cambridge University Press, 1993.

[15] S. Owre, N. Shankar, J.M. Rushby, D.W.J. Stringer-
Calvert, PVS System Guide version 2.3, SRI International
Computer Science Laboratory, USA, 1999.

[16] A. Davis, �Identifying and Measuring Quality in a
Software Requirements Specification�, Software Metrics
1993 Symposium, pp 141 - 152.

[17] Report of the Auditor General of Canada 1996, Chapter
24.

[18] Raytheon Systems Canada Limited, Richmond Facility,
web site www.ray.ca/ rsclrf.html

[19] T. Paine, P. Krutchen, and K. Toth, �Modernizing ATC
Through Modern Software Methods�, 38th Annual Air
Traffic Control Association Convention, Nashville,
Tennessee, October, 1993.

[20] W. Humphrey, A Disciplined Approach to Software
Engineering, Addison-Wesley Publishing Company, Inc.,
Canada, 1995.

[21] K. Cooper and M. Ito, Training Material and User
Documentation for the Stimulus Response Requirements
Specification Notation, CICSR Technical Report TR99-
001, The University of British Columbia, 1999.

[22] M. Donat, K. Cooper, K., and M. Ito, "Capturing the
logical structure of requirements for the automatic
generation of test specifications", EKA '99, May 26-28,
1999, Braunschweig, Germany, pp 567-582.

	Abstract
	Introduction
	Related Work
	Evaluating The Existing Notation
	3.2 Updating the Existing Notation
	3.3 Defining the Syntax and Semantics
	3.4 Evaluating the Updated Notation
	Group 1
	Number of syntax defects per ROID
	Number of type defects per ROID
	Number of analysis defects per ROID
	Number of total defects per ROID
	Group 1
	420.00
	0.32
	448.33
	Group 1
	17.58
	15.28
	20.00
	The new lightweight technique has limitations, however. For example, the defects that are currently detected are limited in the scope to a single specification unit. In the future, analyzing a set of specification units making up a requirements specifica
	5. References

