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Abstract 
Tools in requirements engineering are recognized as 

a key component in achieving the goal of building 
systems better, faster, and cheaper. Tools don't get 
distracted, don't need a lunch break, don't have another 
meeting to attend, don't make (as many) mistakes, and 
they don't get bored. Despite this, few of the research 
tools in RE are being adopted in the broader SE 
community. Why?  

Our thesis is that many of the research tools excel at 
tasks that are not interesting to commercial 
practitioners. For example, users are more likely to use 
a tool if it can be quickly applied to their current 
practice and many research tools are not widely 
applicable.  

The article describes a general approach for the 
construction and evaluation of domain-specific RE tools 
of high applicability. By using this methodology, it can 
be shown that developing a notation and its tool support 
is cost-effective. The evaluation is so precise that a 
"break-even" point can be defined after which this 
approach is clearly useful. 

 
1. Introduction 

 
Tools in requirements engineering are recognized as 

a key component in achieving the goal of building 
systems better, faster, and cheaper. Tools don�t get 
distracted, don�t need a lunch break, don�t have another 
meeting to attend, don�t make (as many) mistakes, and 
they don�t get bored. One of the puzzles in modern RE 
research is the increasing number of tools being 
developed without any hard evidence that these tools are 
widely accepted in the community of RE practitioners. 
This is not to say that, in isolated case studies, these 
tools have not proved useful for RE. Many such case 
studies exist based on using the SCR tool, the SPIN tool, 
and the KAOS tool [1,2,3]. However, looking beyond 

the particulars of these studies, what can we say to 
commercial RE practitioners in order to convince them 
to use these tools? 

Our thesis is that we lack a convincing demonstration 
of the power of these tools for several reasons. The first 
reason is that these tools excel on tasks that are not 
interesting to commercial practitioners. For example, the 
SPIN tool optimizes for completeness and expressive 
power of the temporal logic queries [4]. The SP2 tool 
optimizes for the tractability of the inference procedure 
[5]. However, in our experience, commercial 
practitioners care less for these issues and more about 
how understandable the tools are. 

A second issue, also related to understandability, is 
that users are more likely to use a tool if it is 
immediately applicable, i.e., it is compatible with how 
things are already being done. A tool that optimizes for 
applicability would not require a time consuming and 
confusing translation of the local domain documents 
into a format suitable for the RE tool. 

Thirdly, we lack convincing experiments regarding 
the merits of a particular tool or the relative merits of 
different tools.  In order to assess the results of such 
experiments, we need to clearly identify the goals of the 
tool. Hence, the above two points are vital for the design 
of convincing experiments. 

In this article we report an experiment that evaluates 
two techniques for requirements capture and analysis.  
Two key parts of this evaluation are 1) The definition of 
a "break-even" point, below which the experimental tool 
is not useful and above which it is considered desirable. 
Secondly, our tools optimize for applicability; i.e., how 
well they do they support the already occurring 
documents in the domain. Note that, in our view, such 
an assessment experiment must be defined alongside the 
development of any new tools.  An objection to the use 
of some new tool, particularly if that tool has domain 
specific elements, is that new tools can be ad hoc, time 
consuming to build, and hard to assess.   
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The article is structured as follows. Section 2 
discusses related work. Section 3 presents the process 
we use to develop our formal notation and the results of 
our assessment of the notation. The conclusions and 
future work are presented in Section 4. 

 
2. Related Work 
 

Requirements engineering techniques have been 
assessed, or evaluated, using case studies, pilot projects, 
and experiments [7,8,9,10]. Evaluations are used to 
discover strengths and weaknesses in a technique, 
determine the costs of applying a technique, or 
determine the benefits of using a technique. The 
evaluations provide qualitative and/ or quantitative 
results that can be used by project managers to decide if 
the technique is going to be used on a particular project 
[11]. For new techniques developed in the academic 
world, such evaluations are important because the 
results may be used to encourage the transfer of the new 
technique to industry. The costs of introducing a formal 
notation include the cost of training employees in the 
tools and in the formal notation. The benefits include the 
availability of tools to assist the authors in automatically 
parsing, typechecking, and analyzing the specifications. 
With this tool support the author can detect and correct 
defects earlier in the develop lifecycle and reduce the 
cost of developing the software. These costs and 
benefits are subjective unless data is rigorously gathered 
and analyzed through empirical studies. These studies 
are expensive and time consuming to perform. 

Much recent research explores the merits of various 
tools for assessing requirement models. In this related 
work section, we comment on three examples of that 
research: KAOS [2], applications of the SPIN tool to 
[3], and SCR [1]. In addition, we discuss natural 
language based techniques in terms of their strengths 
and weaknesses. 

In the KAOS system, analysts generate a properties 
model by incrementally augmenting object-oriented 
scenario diagrams with temporal logic statements.  The 
KAOS methodology is tightly linked to standard object 
oriented (OO) methods and extends them with temporal 
logic constraints.  For domains that use OO, KAOS 
would score high on our applicability scale, i.e., KAOS 
would be a useful way to explore OO requirements 
documents.  In domains where the locals use some 
specific, possibly idiosyncratic, extension to established 
methodologies, general tools like KAOS would have to 
be adapted in order to satisfy the applicability criteria.   
For example, in the domain studied here, the existing 
documents adopted the functional style of the Threads-
Capabilities system. The tool discussed above was 
required in order to support the particulars of that tool.  
One argument against developing a local tool for a local 

dialect is that such a tool can be complex to develop and 
hard to assess. In the work done here, a novice to 
compiler theory could use off-the-shelf technology 
(LEX and YACC) to develop such a local tool. Further, 
that same developer could conduct a well-designed 
experiment to assess the utility of that tool versus some 
existing method.  

In other work, Schneider [3] used SPIN, a full-
featured temporal logic model checker, to assess NASA 
documents.  Such full-featured model checkers can 
incur an extremely high start-up cost as analysts struggle 
to fit their knowledge into the syntax of that model 
checker. To reduce this cost to a manageable level, 
Schneider used lightweight formal modelling, i.e., only 
partial descriptions of the systems and properties models 
were constructed.  Despite their incomplete nature, 
Schneider found that such partial models could still 
detect significant systems errors.  While exciting 
research, this approach still scores low on our 
applicability scale since the naturally occurring models 
had to be contorted to be processed by SPIN. 

The SCR notation and parts of the SCR toolset have 
recently been used in many applications including a 
recent case study for a light control system [1]. In this 
work, a requirements specification was developed for a 
system that controls the lighting in an office building. 
Three tools in the SCR toolset were used: the automated 
consistency checker; the simulator; and a tool (Salsa) 
that analyzes a specification for desired properties. 
These tools were been selected for use because applying 
these tools is relatively easy. Other   tools in the toolset 
have been recognized as requiring more effort: the SPIN 
model checker and the TAME tool (an interface to the 
PVS theorem prover). The requirement specification 
contains many numbers and large ranges of numbers 
(e.g., a light level can range from 0 to 10,000), which 
lead to a large state space. The state space explosion 
makes this requirement specification less suitable for 
using a model checker. Using the PVS system requires 
more effort because additional properties must be 
defined for the light control system. Although using 
these additional tools would have provided more 
confidence in the requirements specification, the 
researchers chose not to use them because of their 
additional cost. 

Use case and scenario based requirements 
specification techniques are popular choices in industry 
today. Both families of specification techniques use 
natural language, which make the requirements readable 
and understandable, and encourage a user-centric 
partitioning of the requirements, which make the 
requirements straightforward to review for 
completeness. However, if natural language techniques 
are compared to formal methods, then some significant 
drawbacks with the natural language based approaches 



become apparent. One significant difference is the level 
of tool support that is available for use.  

Formal methods offer a wide range of tools that have 
automated two major tasks in software development: the 
analysis of requirements for defects and the generation 
of test specifications. The tools available for detecting 
defects include parsers, typecheckers, consistency 
checkers, simulators, model checkers, and theorem 
proving systems [1,4, 12,13,14,15]. These tools can be 
used to find and correct defects as early as possible in 
the software development lifecycle. An error introduced 
in the requirements specification phase that is not 
detected until the system has been deployed is estimated 
to cost 200 times what the correction costs if it is found 
and corrected in the specification phase [16]. Processes, 
notations, and tool support for detecting and correcting 
as many defects as possible when writing the 
requirements are an essential part of reducing the cost of 
development. The better the requirements specification, 
the less rework that must be done and, as a result, the 
lower the development costs. The result is an 
improvement in the quality of the requirements and a 
reduction in the time and cost to develop them.  

Although numerous formal methods are available, 
they have not been applied routinely in industry. The 
lack of readability for methods such as Z, VDM, or the 
HOL meta-language by customers who are not trained 
in formal methods is a significant deterrent. In addition 
to the customer struggling with the notation, the 
requirements authors and the design team must learn to 
use the notation and the tool support effectively. The 
classroom and on the job training time to accomplish 
this is high. For example, an introductory classroom 
course in the Z notation is five days long. 

The natural language approaches and the formal 
methods appear to be at extreme ends of a scale for 
requirements specification approaches. If the priority is 
on having readable requirements, then a natural 
language approach is the appropriate choice and 
automated tool support is sacrificed. If the priority is on 
having automated tool support, then a formal method is 
the appropriate choice, and readability is sacrificed. 
Ideally, a notation that is readable and provides tool 
support could be developed. The solution presented in 
this work is a lightweight formal method. The notation 
is designed to support the automated detection of 
grammar and typechecking defects. The notation also 
supports the automated generation of system level test 
specifications [22]. 
 
3. Developing a Formal Notation 

 
Our process for developing the new notation has 

been organized in five basic steps (refer to Figure 1). It 
is important to note that one of the goals of formalizing 

the notation is to keep it as similar as possible to the one 
already used in industry. Accomplishing this goal is 
important in retaining the high applicability rating of the 
notation. The first step is to evaluate the strengths and 
weaknesses of the existing, semi-formal notation that 
has already been used in industry. The second step is to 
correct deficiencies found in the notation. For example, 
a problem discovered in the semi-formal notation is the 
lack of a definition of how to match the stimuli and the 
responses. The third step is to define the syntax and the 
semantics for the new notation. The fourth step is to 
evaluate the new notation in terms of its costs and 
benefits. The fifth step is to move the notation out of the 
lab and into a small, pilot study in industry. This step 
allows the notation and tool support to be exercised and 
evaluated in a real world setting. At this point, the 
notation is likely to need updates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

3.1 Evaluating The Existing Notation
 

The requirements specification techni
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path through the system that connects an external event 
or stimulus to an output event or response. The threads, 
or tasks, are straightforward to identify with domain 
expert's assistance because they describe what tasks the 
user needs to do. The threads are similar in their purpose 
as a concrete use case. A capability is like an abstract 
use case, in that it is a re-use mechanism and is triggered 
internally.  

There are a number of strengths for the Thread-
Capabilities technique. The technique:  
• is based on natural language. Using English as the 

notation, the requirements are considered readable 
and understandable. The training time is also low 
because the notation is already familiar to the 
trainees. 

• prescribes a user-centric (i.e., external) partitioning 
of the requirements.  Each thread or capability 
describes a task the user needs to perform. This 
organization of the requirements eases the 
development and validation of the requirements 
specification document because a reviewer can work 
through a listing of the titles of the threads and 
capabilities and look for missing, duplicated, or 
extraneous threads or capabilities. This organization 
of requirements specification documents is scaleable 
and maintainable. When a new task is identified, it 
can be added in with little impact on the document. 

• provides template phrasing for the authors to re-use. 
The template phrasing accomplishes three important 
things. First, the template phrasing promotes 
consistency among a group of authors.  Without 
recommended or standardized phrasing, each author 
is left to devise their own writing style. On projects 
with a large team of requirements authors, this could 
lead to an inconsistent document. The template 
phrasing contributes to the ease of writing, 
reviewing, and validating the requirements. The 
template phrasing is also designed to promote a 
black-box style. The verbs used in the template 
phrasing are restricted to a set of externally visible 
action verbs including, for example, �send� and 
�update�. The black-box style reduces the inclusion 
of details that may need to be updated as the 
software development lifecycle progresses. 

• has a mechanism in the notation that allows the 
author to generalize a set of stimuli or responses into 
a group. This is convenient for large systems because 
stimuli from different sources may all trigger the 
same requirement and responses for different 
destinations may all be the result of a single 
requirement. It is convenient to describe the 
requirement once, rather than repeating the 
requirement for each possible source and destination. 

• has an integrated data dictionary. The data dictionary 
is a repository for the names and definitions of the 

data used in the system as well as documenting the 
relationships among the data elements. For large, 
complex systems, having a clear and consistent set of 
terms is critical in developing correct and consistent 
requirements.  
Even with all of the strengths of the Threads-

Capabilities technique, there are areas in which the 
technique could be improved. For example, 
improvements include: 
• develop tool support to check for conformance to the 

recommended template phrasing. The Threads-
Capabilities technique only has a manual, peer 
review process for detecting and subsequently 
correcting defects in the requirements. The manual 
process is time consuming and, as a result, 
expensive. To support this, the syntax of the notation 
must be defined. 

• define how the stimuli (inputs) in a group are 
matched with  responses (outputs) in a group. The 
technique does not explicitly define these rules. 
Without a clear definition of the behaviour of the 
notation, each author and reviewer is left to create 
their own set of rules. This can lead to inconsistent 
interpretation of the requirements and an incorrect 
implementation. 

• develop tool support to automatically generate the 
system level test specifications. To support this, the 
syntax and semantics of the notation must be 
defined. Without these definitions, the generation of 
test specifications is a manual process, which is time 
consuming and prone to errors. 

• develop training material for new users. A 
description of the technique is available, however, 
there is no tutorial style training material available.  

 
3.2 Updating the Existing Notation 
 

After the evaluation of the Threads-Capability 
notation is complete, the notation is updated to correct a 
significant problem. The notation is updated to 
explicitly define the matching rules for stimuli and 
responses. For example, if the following groups of 
stimuli and responses are defined: 
 
Stimuli: 
1) The library system shall satisfy the requirements 
described below upon receipt of a [search request] from: 

a) Operator <search request>; 
b) VPL <search request>; 
c) SFU <search request>; 
d) UVIC <search request>; 
e) EPL <search request>. 

 
 



Responses: 
1) As specified by the requirements described below, the 

library system shall send a [search response] to: 
a) Operator <search response>; 
b) VPL <search response>; 
c) SFU <search response>; 
d) UVIC <search response>; 
e) EPL <search response>. 

 
, then this requirement written by the author: 
1. Upon receipt of a [search request], if the {borrower 
does not owe fines} then the library system shall return 
a [search response].  
 
is actually representing the following five requirements: 
1. Upon receipt of a Operator <research request>, if the 

{borrower does not owe fines} then the library 
system shall return a Operator <search response>. 

2. Upon receipt of a VPL <research request>, if the 
{borrower does not owe fines} then the library 
system shall return a VPL <search response>. 

3. Upon receipt of a SFU <research request>, if the 
{borrower does not owe fines} then the library 
system shall return a SFU <search response>. 

4. Upon receipt of a UVIC <research request>, if the 
{borrower does not owe fines} then the library 
system shall return a UVIC <search response>. 

5. Upon receipt of a EPL <research request>, if the 
{borrower does not owe fines} then the library 
system shall return a EPL <search response>. 

 
At this point, the notation is called a semi-formal 

notation and is given the name semi-formal Stimulus 
Response Requirements Specification (SRRS) notation. 
 
3.3 Defining the Syntax and Semantics 
 

The next step in developing the new notation is 
formally defining the syntax and semantics. The syntax 
of the notation is defined in BNF. The semantics of the 
notation are operationally defined using a translation 
into higher order logic. To demonstrate the feasibility of 
the notation and to support running the experimental 
evaluation, a tool is also developed. The tool is 
implemented in approximately 19 KSLOC of lex, yacc, 
and c code. The new notation is called the formal 
Stimulus Response Requirements Specification (SRRS) 
technique.  

 
3.4 Evaluating the Updated Notation 
 
The formal SRRS technique is objectively evaluated 
using a well defined experiment. The costs and benefits 
of using a formal version of the SRRS notation along 
with its tool support in comparison to a similar, semi-

formal version are quantified in the experiment. The 
costs of introducing a formal notation include the cost 
of training employees in the tools and in the formal 
notation. To measure the costs, the amount of time 
spent in classroom and on the job training is recorded. 
The benefits include the availability of tools to assist 
the authors in automatically parsing, typechecking, and 
analyzing the specifications. The tool support is 
expected to reduce the time to develop the 
specifications and improve their quality. To measure 
the benefits, the amount of time used to write, review, 
and correct the specifications is recorded in addition to 
the number and type of defects recorded in the peer 
review process. In summary, the two techniques are 
compared in terms of the quality of the specifications 
written (number and category of defects detected) and 
the effort required to write the specifications (training, 
writing, reviewing, and correcting specification units). 
More rigorously, the objectives of the evaluation are 
defined as three test hypotheses. The first test 
hypothesis is that use of a notation with a completely 
defined syntax and automated tool support results in a 
requirement specification that has the same average 
detected defect rate per allocated requirement object 
than a notation that does not use a completely defined 
syntax and automated tool support. The second test 
hypothesis is that the use of a notation with a 
completely defined syntax and automated tool support 
results in a requirement specification that has the same 
average effort per allocated requirement object to 
describe than a notation that does not use a completely 
defined syntax and automated tool support. The third 
test hypothesis is that the use of a notation with a 
completely defined syntax and automated tool support 
results in the same average training time per subject 
than a notation that does not use a completely defined 
syntax and automated tool support. 
 
3.4.1. Results. The experimental results including 
defect rates, training time, and the time to write, review, 
and correct the specification units are summarized in 
this section. Group 1 in the results refers to the control 
group using the semi-formal version of the 
requirements specification notation. Group 2 refers to 
the experimental group using the formal notation. 

The experimental results for the defect rates are 
summarized in Table 1. The results show a reduction in 
the syntax, type, and the analysis defects detected for 
Group 2. The % difference between the Group 1 and 
Group 2 for the total number of defects detected per 
allocated requirement object identifier (ROID) shows 
an 81% reduction in detected defects.  

The training time is a metric of interest for 
individuals considering the use of the formal notation in 
comparison to its semi-formal notation. In this  



Table 1. Summary of Defects Recorded 
 Group 1 Group 2 % Difference 
Number of syntax 
defects per ROID 

0.99 0.09 -90.91 

Number of type defects 
per ROID 

0.74 0.01 -98.65 

Number of analysis 
defects per ROID 

0.88 0.39 -55.68 

Number of total 
defects per ROID 

2.61 0.49 -81.23 

 
experiment, the formal training time includes the time 
the subjects are in the lecture style format plus the 
amount of time they spend on the hands-on practice 
exercise. In addition, the amount of time it takes the in 
the experimental group to work through the tutorial for 
the SRRS tool is considered as formal training [21]. The 
formal training time is recorded as the number of 
minutes of formal training per author. The informal 
training includes the time the subjects use to review 
their training material or ask questions about the 
notation as they write the specification units. The 
informal training is recorded with respect to the number 
of allocated ROIDs, because the informal training 
continues as the subjects write their specifications. The 
total training time recorded is the sum of the formal 
training time and the informal training time per author. 
The experimental results for training time are 
summarized in Table 2. They show an increase in both 
the formal and informal training time for Group 2. The 
% difference between Group 1 and Group 2 is a 186% 
increase in total training time. 

 
Table 2. Summary of Training Time 

 Group 1 Group 2 % Difference 
Formal Training Time 
Minutes/author 

420.00 835.00 98.81 

Informal Training 
Time 
Minutes/ROID 

0.32 5.02 1468.75 

Total Training Time 
Minutes/author 

448.33 1285 186.62 
 

 
The effort is a metric of interest for individuals 

considering the use of the formal notation in comparison 
to its semi-formal notation. The effort to write and put 
the specification units through a peer review is 
summarized in Table 3. The experimental results show a 
decrease in the amount of time to write and review 
requirements for Group 2. The % difference between 
Group 1 and Group 2 for the total amount of time to 
write and review requirements is a reduction of 39%. 

 
3.4.2. Discussion of the Results. The formal and 
informal training time both increased as expected for the 
Group using the formal notation in comparison to the 

group using the semi-formal notation. The additional 
burden of working through a tutorial, learning how the 
tool support works, and understanding the organization 
of the user manual all contribute to this increase. 

 
Table 3. Summary of Writing and Reviewing Time 

 Group 1 Group 2 % Difference 
Average time to write 
per ROID in minutes 

17.58 10.58 -39.82 

Average time to review 
and correct per ROID in 
minutes 

15.28 9.42 -38.35 

Average total time per 
ROID in minutes 

32.86 20.00 -39.44 

 
The large increase in the informal training time is an 

interesting result. An explanation for this large increase 
is the additional complexity of having a concrete syntax 
and the tool support for the notation. Since the syntax 
must be conformed to and the validation checks all 
passed, the authors of the requirements may need to 
check the user manual, training material, and the tutorial 
documents more frequently as they work on the 
specifications. 

With these experimental results an estimate of the 
training time for a project can be made. Given the 
notation proposed, number of authors, and number of 
allocated ROIDs to be written the following calculation 
can be used to estimate the training time: training time = 
A * T + R * D, where A is the number of authors, T is 
the training time per author for a given notation, R is the 
number of ROIDs and D is the development time per 
ROID for a given notation. For example, if the formal 
notation is used, the T is 835 minutes/author and D is 
5.02 minutes/ROID. 

The experimental results show a reduction in the 
number of defects detected in the peer review process. 
The concrete syntax in addition to the tool support that 
enforces the syntax and provides validation checks on 
the specification units allow the author to check their 
specifications before submitting them for review. Since 
only specifications that have a clean validation run (no 
errors are reported) with the tool support are allowed to 
go through the peer review process in the experiment, 
the reviewers receive a version that has had defects 
removed. As a result the specification units have a lower 
detected defect rate and have a higher quality. This 
reduces the overall project costs, since correcting 
defects in the software increases an order of magnitude 
for every phase the error is propagated. The sooner 
defects are discovered and corrected the better [20]. The 
goal is to correct the defects in the same phase they are 
introduced in. The most expensive errors to correct are 
those that are detected by the customer after delivery, 
and are traced back to being introduced in the software 
requirements phase. Multiple levels of code, design, and 



requirement products must be updated. 
The experimental results also indicate there is a 

reduction in effort to write, review, and correct the 
specification units when using the formal notation in 
comparison to the semi-formal notation. The reduction 
can be attributed to the readability of the formal notation 
and the tool support. The reduced writing, review, and 
correction time indicates that the formal notation is at 
least as readable as the semi-formal notation. If the 
formal notation is not as readable, the time to write, 
review, and correct is expected to exceed the time when 
the semi-formal notation is used. The tool support 
allows the author to obtain feedback on syntax, type, 
and a small number of analysis defects as the specifica-
tion is being written. These defects can be removed 
before the specification is submitted for peer review. 
This reduces the number of defects in the specification 
making the remaining defects simpler and faster to 
identify in the peer review. A reduction in time is a 
benefit to the project, as it reduces the cost of 
developing the requirements specification. 

With these experimental results an estimate of the 
development time for a project can be made. Given the 
notation proposed and number of allocated ROIDs to be 
written the following calculation can be used to estimate 
the development time with the simple calculation 
development time = R * D, where R is the number of 
ROIDs and D is the development time per ROID for a 
given notation. For example, if the formal notation is 
used, then D is 5.02 minutes/ROID. 

The point at which it becomes feasible to use the 
formal notation can be estimated using the experimental 
results. For example, if a project has 2000 ROIDs and 
proposes to use 20 authors, the time to train, write, and 
review the specifications can be estimated for both the 
formal and semi-formal notations. The total time 
estimate is calculated as the sum of the training time and 
the development time (refer to Table 4). 

 
Table 4. Example of Total Time Estimates 

 Semi formal 
notation 

Formal notation 

Training 
Time 

20 * 420 + 
2000*0.32  

= 9042 minutes  

20 * 835 +  
2000 * 5.02  

= 26740 minutes 
Development 
Time 

2000*32.86  
= 65720 minutes 

2000 * 20.00  
= 40000 minutes  

Total Time 9042 + 65720 
= 74760 minutes 

26740 + 40000  
= 66740 minutes 

 
With these two calculations the formal notation 

shows a savings in time of approximately three weeks. 
If the project is scaled up, then a more dramatic time 
savings is calculated. For example, if the number of 
authors and the number of requirements are scaled up by 
an order of magnitude and the calculations shown above 

are repeated, the formal notation has a calculated time 
savings of approximately seven months. The selection 
of the formal notation in this case offers significant cost 
savings to the project. If the project is scaled down by 
an order of magnitude, then the formal notation has a 
calculated time savings of approximately 13 hours. 
Given a small project involving a couple of authors and 
200 requirements, there is a slight advantage in selecting 
the formal notation. The caveat in the estimates made 
here is that the data used in the calculations is derived 
from one project with 432 allocated ROIDs. The data 
has not been confirmed in different projects of different 
sizes. 

The results of this experiment have quantified the 
costs and benefits of using a formal notation with tool 
support in comparison with a similar, semi-formal 
version of the notation. The costs are increased 
classroom and on the job training time. The benefits 
include a reduced effort to write and review the 
specification units and a reduced defect rate. The 
experimental results support the use of the formal 
notation in that the additional costs of training (in terms 
of time) are overcome by the gains achieved in the 
reduction of the amount of time to write and review the 
specification units.  

In industrial settings, these savings are significant. 
Engineers spend less time in peer review sessions 
recording minor defects, such as formatting or grammar 
errors. Instead, they can focus on detecting the more 
significant problems, such as detecting logical errors of 
omission or commission in the requirements.  

The new lightweight technique has limitations, 
however. For example, the defects that are currently 
detected are limited in the scope to a single specification 
unit. In the future, analyzing a set of specification units 
making up a requirements specification document is 
going to be necessary. A second limitation is the limited 
amount of analysis that is performed at the moment. 
Simulation, Model checking and theorem proving 
techniques have not been investigated with this notation, 
yet. The idea of developing an integrated suite of tools, 
like the one that supports the SCR notation, is very 
appealing. It would provide RE practitioners with 
options. The RE could select the level of checking that 
is suitable for their system.  
 
4. Conclusions and Future Work 

 
We have presented a general process for developing 

a formal, domain specific notation with tool support 
using off the shelf technology. The notation being 
developed using this process rates high on applicability 
because the new, formal notation retains the strengths of 
the original notation (looks like natural language, 
external partitioning, integrated data model), and 



overcomes the identified weaknesses (lack of definition 
of the matching mechanism for stimuli and responses, 
tool support, and training material).  

A critical step in our process is the assessment of the 
technique. If a technique can be demonstrated to be 
cost-effective to use, then we can use this to convince 
RE practitioners that the technique is practical (at least 
in an academic setting) and that a pilot study would be 
extremely beneficial.  

The benefits of using this notation with its tool 
support have been quantified in an experiment. The 
results of the experiment indicate there is an 81% 
reduction in the defects detected in peer reviews and a 
39% reduction in the amount of time needed to write, 
review, and correct specifications. The costs of using the 
technique, however, are an increase in training time. In 
comparison with the updated Threads-Capabilities 
notation, the training time increased from one day to 
two days. However, this is still less than an introductory 
course in Z, which takes five days. From these results, 
we can estimate the break-even point (i.e., when the 
technique becomes cost effective to use). If we have as 
few as two authors writing up 200 requirements, the 
formal SRRS notation with its tool support is cost 
effective to use.   

The next step in developing this new notation is to 
evaluate it in a pilot study in industry. In this step, the 
notation can be evaluated in terms of what is used in the 
notation (and should be kept), what is not used in the 
notation (and should be removed), and what is missing 
from the notation (and should be added).  

An interesting branch for this research is to 
determine how to tailor this notation for use in other 
domains. Since the notation has been developed for 
stimulus response systems, it is not well suited for 
describing declarative requirements of the form �The 
system shall have 6 nines availability�. Currently, this 
requirement would have to be awkwardly stated as 
follows: �if {TRUE}, then the system shall commit the 
6 nines availability� in SRRS. 

                                                    
5. References 
 
[1] C. Heitmeyer and R. Bharadwaj "Applying the SCR 

Requirements Method to the Light Control Case Study", 
Journal of Universal Computer Science (JUCS), August 
2000. 

[2] A. van Lamsweerde and L. Willemet, "Inferring 
Declarative Requirements Specifications from 
Operational Scenarios", IEEE Transactions on Software 
Engineering, Special Issue on Scenario Management, 
Novermber, 1998. 

[3] F. Schneider, S.M. Easterbrook and J.R. Callahanand , 
G.J. Holzmann , W.K. Reinholtz and A. Ko and M. 
Shahabuddin, "Validating Requirements for Fault 
Tolerant Systems using Model Checking", 3rd IEEE 
International Conference On Requirements Engineering, 
1998. 

[4] G. Holzmann, �The model checker SPIN�, IEEE 
Transactions on Software Engineering, 23(5), pp. 279-
295, May 1997. 

[5] T. Menzies and J. Powell and M. Houle, Fast Formal 
Analysis of Requirements via 'Topoi Diagrams' ICSE 
2001, Available from 
http://tim.menzies.com/pdf/00fastre.pdf, 2001. 

[6] J. Britt, �Case study: Applying formal methods to the 
traffic alert and collision avoidance system (TCAS) II�, 
Computer Assurance: COMPASS �94, pp 39-51.  

[7] D. Craigen, S. Gerhart, T. Ralston, �Case study: 
Darlington nuclear generating station�, IEEE Software, 
January 1994, Volume 11, pp 30-32. 

[8] P. Larsen, J. Fitzgerald, and T. Brooks,  �Applying 
formal specification in industry�, IEEE Software, May 
1996, pp 48-56. 

[9] Porter, L. Votta, and V. Basili, Comparing detection 
methods for software-requirement inspections: A 
replicated experiment. IEEE Transactions on Software 
Engineering, 21 (6), June 1995, pp. 563-575. 

[10] A. Porter and L. Votta, �Comparing detection methods 
for software-requirement inspections: A replication using 
professional subjects�, Journal of Software Engineering, 
Volume 3, Number 4, December 1998, pp. 355-379. 

[11] S. Bear, �Managing the introduction of formal methods�, 
IEE Colloquium, 1991, No. 131: Managing critical 
software projects. 

[12] J. M. Spivey, The FUZZ Manual, Computer Science 
Consultancy, UK, 1992. 

[13] C. Heitmeyer, J. Kirby, B. Labaw and R. Bharadwaj, 
"SCR*: A Toolset for Specifying and Analyzing Software 
Requirements," Proc. Computer-Aided Verification, 10th 
Ann. Conf. (CAV'98), Vancouver, Canada, 1998. 

[14] Gordon, M and Melham, T., Introduction to HOL A 
theorem proving environment for higher order logic, 
Cambridge University Press, 1993. 

[15] S. Owre, N. Shankar, J.M. Rushby, D.W.J. Stringer-
Calvert, PVS System Guide version 2.3, SRI International 
Computer Science Laboratory, USA, 1999. 

[16] A. Davis, �Identifying and Measuring Quality in a 
Software Requirements Specification�, Software Metrics 
1993 Symposium, pp 141 - 152. 

[17] Report of the Auditor General of Canada 1996, Chapter 
24. 

[18] Raytheon Systems Canada Limited, Richmond Facility, 
web site www.ray.ca/ rsclrf.html 

[19] T. Paine, P. Krutchen, and K. Toth, �Modernizing ATC 
Through Modern Software Methods�, 38th Annual Air 
Traffic Control Association Convention, Nashville, 
Tennessee, October, 1993. 

[20] W. Humphrey, A Disciplined Approach to Software 
Engineering, Addison-Wesley Publishing Company, Inc., 
Canada, 1995. 

[21] K. Cooper and M. Ito, Training Material and User 
Documentation for the Stimulus Response Requirements 
Specification Notation, CICSR Technical Report TR99-
001, The University of British Columbia, 1999. 

[22] M. Donat, K. Cooper, K., and M. Ito, "Capturing the 
logical structure of requirements for the automatic 
generation of test specifications", EKA '99, May 26-28, 
1999, Braunschweig, Germany, pp 567-582. 


	Abstract
	Introduction
	Related Work
	Evaluating The Existing Notation
	3.2 Updating the Existing Notation
	3.3 Defining the Syntax and Semantics
	3.4 Evaluating the Updated Notation
	Group 1
	Number of syntax defects per ROID
	Number of type defects per ROID
	Number of analysis defects per ROID
	Number of total defects per ROID
	Group 1
	420.00
	0.32
	448.33
	Group 1
	17.58
	15.28
	20.00
	The new lightweight technique has limitations, however. For example, the defects that are currently detected are limited in the scope to a single specification unit. In the future, analyzing a set of specification units making up a requirements specifica
	5. References

