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Introduction
Test engineersare reluctantto certify AI systemsthat use
nondeterministicsearch. The standardview in the testing
field is that nondeterminismshouldbe avoidedat all costs.
For example, the SE safety guru Nancy Levesonclearly
states“Nondeterminismis the enemyof reliability” (Leve-
son1995).

This article rejectsthe pessimismof the test engineers.
Contrary to the conventionalview, it will be argued that
nondeterministicsearchis a satisfactory methodof prov-
ing properties.Specifically, the nondeterministicconstruc-
tion of proof treesexhibits certainemergentstableproper-
ties.Theseemergentpropertieswill allow usto rely that,on
average,nondeterministicsearchwill adequatelyprobethe
reachablepartsof asearchspace.

Our argumentassumesthat propertiesare proved using
randomizedsearchfrom randomlyselectedinputsseeking
a randomlyselectedgoal (Menzies& Cukic 1999; 2000;
Menzies et al. 2000; Menzies, Cukic, & Singh 2000;
Menzies& Singh2001;Menzies& Cukic2001).Ouranaly-
sisappliesto any theorythatcanbereducedto thenegation-
freehornclausesof Figure1, plussomenogood predicates
thatmodelincompatibilities.

Beforebeginning,wepausefor animportantcaveat.This
paperpresentsanaverage-caseanalysisof therecommended
effort associatedwith testing.By definition,suchanaverage
caseanalysissayslittle aboutextremecasesof high criti-
cally. Hence,our analysismustbeusedwith careif applied
to safety-criticalsoftware.

Problems with Nondeterministic Search
Whensearchinga nondeterministicspace,anAI searchen-
gine has to make choicesbetweenincompatibleoptions.
Therearetwo broadclassesof strategiesfor makingthese
choices:

1. Method one is to fork the reasoningfor every possible
resolution.We will call methodonea full worldssearch.

2. Methodtwo is to pick on resolutionat random,thencon-
tinue on. Method two is often combinedwith a “rest-
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% rules
happy if tranquillity(hi)

or rich and healthy.
healthy if diet(light).
satiated if diet(fatty).
tranquillity(hi) if satiated

or conscience(clear)

% facts
diet(fatty).
diet(light).

% contradiction knowledge
% e.g. diet(fatty) and diet(light)
% are nogood.
nogood(X,Y) :-

X =.. [F|A1], Y =.. [F|A2], A1 \= A2.

Figure1: A theory.

retry” mechanism. That is, methodtwo is applied �
times,with thesystemresetbetweeneachapplication.In
thesequel,we will often refer to methodtwo asrandom
worldssearch.

Both methodsare problematic. Full worlds searchcan
producean intractably large numberof possibleworlds.
Randomworlds searchcan miss important conclusions.
Considerthethreeprogrampathwaysto happy in Figure2
(Figure2 is generatedfrom the hornclausesshown in Fig-
ure1):�������
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Someof thesenodesusedin thesepathwaysarenot cat-
egoricalconclusions.For example,our belief in healthy
is contingenton accepting?A@�BDC
E andnot ?A@+BDCGF ( ?A@+BDCGE is
incompatiblewith ?A@+BDCGF sincethesetwo pathsrequiredif-
ferentdiets). A partial randomsearchwill find only some
subsetof the possiblepaths,particularly if it is run for a
heuristicallyselectedtime interval. That is, randomworlds
searchingmay not reliably infer that (e.g.) healthy is



happy
H

tranquility(hi)
I

diet(light)
Jand1K richL

healthy
H

diet(fatty)
J no

yesM
yesM yesMyesM yesM

satiatedN yesM
yesM

conscience(clear)O
yesM

Figure2: Therulesof Figure1 convertedto anand-orgraph.
All nodeshereare or-nodesexcept and1. All parentsof
anand-nodemustbebelievedif we areto believe andand-
node.In this graphno-edgesrepresentillegal pairsof infer-
ences;i.e. thingswe can’t believe at thesametime suchas
diet(light) anddiet(fatty) . All otheredgesare
yes-edgeswhich representlegal inferences.

an uncertainconclusion. Dependingon how the conflict
betweendiet(light) and diet(happy) is resolved
at runtime,this systemwill sometimesnondeterministically
concludehealthy andsometimesit won’t.

This toy example is a simple demonstratorfor a prob-
lem that can get much more complicated. A linear-time
pre-processorcould detectthe presenceof the incompati-
ble factsdiet(light) anddiet(happy) . However,
in larger systems,the sourcesof contradictionsmay not
detectablewithout actually executing the system. Sadly,
suchexecutionsmay not reveal all the featuresof the the-
ory. Gabow et.al.(Gabow, Maheshwari, & Osterweil1976)
showedthatbuilding pathwaysacrossgraphswith impossi-
blepairs(e.g.theno-edgesin Figure2) is NP-hardfor all but
thesimplestgraphs(agraphis verysimpleif it is verysmall,
or it is a simpletree,or it hasa dependency networkswith
out-degree PRQ ). Hencesearchinggraphslike Figure2 can
take exponentialtime andany practicalproof procedurefor
propertiesacrossFigure2 mustuseanincompletesearch.

Empirical Studies of Nondeterminism
Onemeasureof the effectivenessof a searchprocedureis
its cover: the percentageof the provablegoalsfound by a
searchengine.Supposethat randomizedworld searchcov-
ers as many goalsas a full worlds search. Sucha result
would be consistentwith the claim that nondeterministic
searchis anadequatemethodfor proving properties.

Thereis someempiricalevidencethatrandomizedsearch
doesindeedcoveraswell asfull search.S For CNF representations,it is well establishedthat ran-

dom searchwith retriescandemonstratesatisfiability in
theoriestoo largefor full search(Kautz& Selman1996).S Williams andNayakfound that a randomworlds search
algorithm performed as well as the best available
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Figure3: HT4: full worldssearchsearch-fork oneworld for
eachconsistentpossibility reachedfrom inputs. HT0: ran-
domworldssearch-whencontradictionsarefound,pick one
resolutionat random,thencontinue.In thezonewhereboth
algorithmsterminated,HT0’s randomworld searchfound
98%of thegoalsfoundby HT4’s full worldssearch.

ATMS system,a well-known full worlds searchalgo-
rithm (Williams & Nayak1996).S Menzies,Easterbrooket.al. reportexperimentscompar-
ing randomworld searchwith full world searchfor re-
quirementsengineering.After millions of runs,they con-
cluded that randomizedworld searchfound almost as
many goalsin lesstime as full worlds search(Menzies
etal. 1999).S In other work, Menzies and Michael compareda full
worlds searchsearchwith a randomworlds search. As
expected,the full worldssearchranslow ( TVU,W�X1Y ) while
the randomworlds searchran muchfaster( TVU,Z F Y ); see
Figure 3. What is more interestingis that, for prob-
lemswherebothsearchmethodsterminated,the random
worlds searchfound 98% of the goalsfound by the full
worldssearch(Menzies& Michael1999).

Theoretical Studies of Nondeterminism
Theabovecasestudiesencourageabelief thatnondetermin-
ism canadequatelysamplea space.However, the external
validity of isolatedcasestudiesmustbequestioned.Before
we cantrustnondeterministicsearch,we needto generalize
theabovecasestudiesto show that,on average,thecover is
notgreatlyeffectedby nondeterminancy.

Onemethodof generalizingthe above casestudiesis to
considertheassumptionswithin theworldsof beliefgener-
atedby searchtheoriessuchasFigure1.S Given a model such as Figure 2 and a goal such as

happy , heuristicsearchbuilds pathwaysto thosegoals;
e.g. ?A@+BDC\[�]�]�] ?A@+BDC
E .S Anythingthathasnotbeenassertedasafactis anassump-
tion. No pathcancontainmutuallyexclusiveassumptions
or contradictthegoal; i.e. assuminĝ happy is illegal.



S Thegeneratedpathwaysshouldbegroupedtogetherinto
maximal_ consistentsubsetscalledworlds. Our example
generatestwo worlds: `ba�c�d,e [ = f ?A@+BDC [�g ?A@+BDC E�h and`ba�c�d,e F = f�?A@+BDC [�g ?A@+BDC F�h .S A world containswhat we can concludefrom and-or
graphs.A goalis provedif it canbefoundin aworld.S Assumingrandomizedsearch,only someof thepossible
pathswill befoundat runtime.At differentruntimes,dif-
ferentpathsandhencedifferentworldswill begenerated.

The nondeterministictestingproblemcan formalizedas
follows. Theresultsof testinganondeterministicsystemare
untrustworthywheneither:

1. Not enoughworlds are generated to cover the range of
possibleconclusions. This first casecould arise from
heuristicsthatprunepossibleinferencesat runtime.Such
heuristicsareoftenusedwhengeneratingpathwaysfrom
aspacecontainingconflicts.Recallthatsearchspaceslike
Figure2 containpairsof conflicts: onesuchpair exists
for eachno-edge.Recallingthe above mentionedresult
of (Gabow, Maheshwari, & Osterweil1976) (i.e. build-
ing pathways acrossprogramswith impossiblepairs of
nodesis NP-completefor all but thesimplestprograms),
we can formally declarethat any practicalsystemmust
conductanincompletepartialsearchof searchspaceslike
Figure2.

2. Toomanyworldsaregeneratedandweareswampedwith
possibilities. This secondcasehasoften observed in re-
searchinto qualitative reasoning.Whenall possiblecon-
sequencesof inputsaregeneratedfrom anondeterministic
space,a vastsuiteof possibilitiescanbegenerated.Tam-
ing this intractablebranchingof behaviors is a major fo-
cusof researchinto qualitative reasoning(Menzieset al.
2001).

Bothproblemsareremovedif thetotalnumberof possible
worldsis small. If so,then:S All thepossibleconclusionscanbereachedby sampling

just a few worlds;i.e. problem#1 goesaway.S A largenumberof worldswill not bepossible;i.e. prob-
lem#2 goesaway.

To prove that, on average,the total numberof possi-
ble worlds is small, we need to categorize assumptions
into threeimportantgroups.Only oneof theseassumption
groupingswill determineshow many worldsaregenerated.

Someassumptionsaredependenton otherassumptions.
For example,in ?A@+BDC
E , thehealthy assumptionsdepends
fully on diet(light) . In termsof exploring all the ef-
fectsof differentassumptions,we canignorethedependent
assumptions.

Another important category of assumptionsare the as-
sumptionsthatcontradictno otherassumptions.Thesenon-
controversial assumptionsarenever at oddswith otheras-
sumptionsandsodo not effect thenumberof worldsgener-
ated.In our example,thenon-controversialassumptionsare
everythingexceptdiet(light) anddiet(healthy) .
Hence,likethedependentassumptions,wewill ignorethese
non-controversialassumptions.

The remainingassumptionsare the controversial, non-
dependentassumptionsor funnelassumptions.Thesefun-
nel assumptionscontrol how all the otherassumptionsare
groupedinto worlds of belief. DeKleer’s key insight in
the ATMS researchwas that a multi-world reasoningde-
vice needonly focuson thefunnel(DeKleer1986)1. When
switchingbetweenworlds, all we needto resolve is which
funnel assumptionswe endorse.Continuingour example,
if we endorsediet(light) then all the conclusionsin`ba�c�d,e�F follow andif we endorsediet(healthy) then
all theconclusionsin `ba�c�d,e [ follow.

Pathsmeetandclashin thefunnel. If thesizeof thefunnel
is very small, then the numberof possibleclashesis very
smallandthenumberof possibleresolutionsto thoseclashes
is alsoverysmall.Whenthenumberof possibleresolutions
is very small, the numberof possibleworlds is very small
andrandomsearchcanquickly probethedifferentworldsof
beliefs(sincethereareso few of them). Hence,if we can
show that the averagesizeof the funnel is small, thenwe
canquickly poll therangeof possibleconclusionsfrom our
and-orgraphs.

Average Funnel Size
Supposesomegoalcanbereachedby anarrow funnel i or
awide funnel Z asfollows:j�kl
m i [jonl
m ipF]�]�]joql\m ipr

s ttuttv wl
myx a�@"d6z|{} l
~tttttttt� tttttttt�

Z�[�� k} lZ�F�� n} lZ�E�� n} lZ�� � n} l]�]�]Z�� ���} l
We saythat theprobabilityof reachingthegoal is thevaluec���@"��C
��e .

Underwhat circumstanceswill the narrow funnel be fa-
voredover the wide funnel? More precisely, whenarethe
oddsof reachingx a�@"d6z via the narrow funnel muchgreater
that the oddsof reachingx a�@"d z via the wide funnel? The
following analysisanswersthosequestionsusingtheframe-
work of (Menzies& Singh2001)(with lessneedlessmath-
ematicalcomplexity andwith a wider rangeof distributions
for thesimulationstudies).

To find theaveragefunnelsize,webegin with thefollow-
ing definitions. Let the i funnel use � variablesandtheZ funneluse� variables.For comparisonpurposes,we ex-
pressthesizeof thewiderfunnelasaratio � of thenarrower
funnel;i.e. ������� (1)

Eachmemberof i is reachedvia apathwith probability @ z
while eachmemberof Z is reachedvia a pathwith proba-
bility �oz . Two pathsexist from thefunnelsto this goal: one

1DeKleercalled the funnel assumptionsthe minimal environ-
ments. We do not adoptthatterminologyheresinceDeKleerused
consistency-basedabductionwhile we areexploring set-covering
abductionhere.For anexcellentdiscussionthatdefinesanddistin-
guishesset-covering from consistency-basedmethods,see(Con-
sole& Torasso1991).



from the narrow neckwith probability � andonefrom the
wide� neckwith probability e . The probability of reaching
thegoalvia thenarrow pathway is��@+c c�a������ r�z���[ @ z (2)

while theprobabilityof reachingthegoalvia thewidepath-
way is ��� e+����e ��z���[ �oz (3)

Let ?¡U¢��@+c�c�a���£ c���@"��C
��e+Y and ?¡U=��� e��.£ c�� @"��C
��e+Y denote
the conditional probabilitiesof using one of the funnels,
given that the goal is reached. The ratio ¤ of thesecon-
ditional probabilitiesinforms uswhenthe narrow funnel is
favoredover thewider funnel.

¤b� ?¡U=��@�c�c�a���£ c�� @"��C
��e+Y?¡U¢��� e+�"£ c���@+��CG��e"Y �¦¥ � jo§¨§ª©D«§ª¬­j w ® ¬ {.¯¥ « z { ¬§ª¬­j w ® ¬ { ¯ � ��@+c c�a����� e+� (4)

Narrow funnelsaremorelikely thanwider funnelswhen¤±°²Q .
To computethe frequency of ¤³°yQ , we have to make

some assumptionsabout the probability distributions of��@+c�c�a�� and c���@+��CG��e . (Menzies& Singh2001)showedthat
if @ z and � z comefrom uniform probability distributions,
thennarrow funnelsaremorelikely thanwide funnels. In
thecaseof suchuniformdistributions,r´ z���[ @+z��±Q�µ¶@+z·� Q� µ¶��@+c�c�a��b���A¸ Q�º¹ r

(5)

Similarly, underthesameassumptions,��� e+�1�»e ¸ Q�¼¹ �
(6)

Underthis assumptionof uniformity, ¤±°½Q when��@+c�c�a����� e�� � � ¥ [r ¯ re ¥ [� ¯ �
Recallingthat ���»��� , thisexpressionbecomesU=���¾YÀ¿ r �ÂÁ r ° e � (7)

Considerthecaseof two funnels,onetwice asbig asthe
other;i.e. �¶�½W . This expressioncanthenberearrangedto
show that � jo§¨§¨©À«« z { ¬ °²Q is truewhenU=Ã���Y r ° e � (8)

At �Ä�ÅW , Equation8 becomese�Æ�Ç�Ã�� . That is, to ac-
cess x a�@+d6z from the wider funnel, the pathway e must be
64 timesmorelikely thanthepathway � . This is not highly
likely and this becomeslesslikely as the narrower funnel
grows. By the samereasoning,at �È�'É , to accessx a�@"d z
from the wider funnel, the pathway e mustbe 1728times
morelikely thanthenarrowerpathway � . That is, underthe

assumptionsof this uniform case,as the wide funnel gets
wider, it becomeslessandlesslikely thatit will beused.

To explorethecasewhere Ê rzË��[ @ z¼Ì�bQ and Ê rzË�·[ � z0Ì��Q
(i.e. thenon-uniformprobabilitydistribution case),we cre-
atedandexecutedasmallsimulatormany times.In thissim-
ulator, we foundthefrequency at which ¤Í°�B where B was
somethresholdvalue.

To executethesimulator, werequiredsomeknowledgeof
the distributionsof ��@�c�c�a�� and ��� e+� whenthey arecom-
putedby nondeterministicsearch.Thosedistributionswere
taken from an averagecaseanalysisof reachabilityacross
graphssuchasFigure2. This reachabilityanalysisis dis-
cussedbelow.

A Reachability Model
Menzies,Cukic, Singh andPowell (Menzieset al. 2000)
computedtheoddsof reachingsomerandompartof aspace
of nondeterminantchoicesfrom randominputs. Theanaly-
sisassumedthatsoftwarehadbeentransformedinto a pos-
sibly cyclic directedgraph containingand-nodesand or-
nodes;e.g. Figure 1 hasbeenconvertedto Figure 2. A
simplifieddescriptionof theiranalysisis presentedhere.For
full details,includingdetailssuchasusingrandomvariables
andtestingfor loopsandcontradictions,see(Menzieset al.
2000).

Assumethat “ ��� ” numberof inputshave beenpresented
to a graphcontainingÎ nodes.Fromtheseinputs,we grow
a treeof pathwaysdown to somerandomnodewithin the
graph.Theoddsof reachinga nodestraightaway from the
inputsis ÏGÐ � ���Î (9)

Theprobabilityof reachinganand-nodewith @���e�Ñ parents
is theprobabilityof reachingall its parents;i.e.Ï j � { � Ï j � {DÒz (10)

where

Ï z is theprobabilitywe computedin theprior stepof
thesimulation(and

Ï Ð
beingthebasecase).Theprobability

of reachinganor-nodewith a�cªÑ parentsis theprobabilityof
notmissingany of its parents;i.e.:Ï ©À§ �bQ l U­Q l Ï z Y ©À§ Ò (11)

If theratioof and-nodesin a network is @+��e Ó , thentheratio
of or-nodesin the samenetwork is Q l @+��e Ó . The oddsof
reachingsomerandomnode

Ï�Ô
is the weightedsumof the

probabilitiesof reachingand-nodesor or-nodes;i.e.Ï.Ô ��@+��e Ó¡Õ Ï j � {×Ö a�c�Ó¡Õ Ï ©D§ (12)

We can convert

Ï Ô
to the numberof tests Z requiredto

be 99% sureof find a fault with probability

Ï�Ô
asfollows.

Equation11 is really the sampling-with-replacementequa-
tion where a�cªÑ is the numberof trials Z . We can use
sampling-with-replacementto find the certaintyof finding
someevent after Z trials. If we demanda 99% certainty
of reachinga nodeat step Ø (i.e. Ù��|ÚG] Û�Û ), thenwe can
re-arrangeEquation11 toZ � d,a x UDQ l ÚG] Û�Û�Yd=a x U­Q l Ï Ô Y (13)



After 150,000simulationsof this model,somebestand
worstÜ caseswere identified. Theseareshown in Figure 4
labeledpessimisticandoptimistic respectively. In the pes-
simisticcase,we restrictedthedepthof our searchto some
trivial size: ØÝÆÈQ�Ú . In this pessimisticcase,more than
10,000randominputsarerequiredto reachhalf thenodesin
thegraphswesimulated.In theoptimisticcase,wegavethe
searchenginegreaterfreedomto explore: ØÞÆ<Q�Ú�Ú . In this
optimistic case,lessthan 100 randominputs would reach
overhalf thenodesin thegraphswe simulated.

Simulating Funnels
Having someknowledgeof the distributions, we can now
computethe frequency of ¤|°RB for non-uniformdistribu-
tions.For onerunof theEquation4 simulator, � and � were
pickedat randomfrom theranges:�àßÂf�Q g W g ]�]�]oQ�Ú h ; �áßÂf�Q g Q�] W�â g Q�] â g ]�]�]¨Q�Ú h@+z g �;z g � g e weretakenfrom oneof threedistributions: the
pessimisticandoptimisticcurvesshown in Figure4, plusa
log normal curve (just for comparisonpurposes).For the
log-normalcurve, meanã andstandarddeviation ä F of the
logarithmof the variableswerepicked at randomfrom the
following ranges:ã¶ßÞf+Q g W g ]�]�]oQ�Ú h ; åDÑ
c�� @"e¡ßÂf ÚG] Ú+â g Ú�]�Q g ÚG] W g ÚG] Ã g Ú�] æ hã and åÀÑ
c���@"e wherethen convertedinto probability as
follows:ä F �»åDÑ
c�� @"e�Õ×ã ; Ñ
c�a��;@"�o��d=��B Ù��bQ�Ú Á [¨ç � ©D§ r�èéz#ê�ë�ìËí+î ï n¨ð¤ wasthencalculatedandthenumberof times ¤ exceeded
differentvaluesfor B is shown in Figure5. As might beex-
pected,at Bé�bQ g �Â�±Q thefunnelsarethesamesizeandthe
oddsof usingoneof themis 50%. As � increases,thenin-
creasingly¤±°ñB is satisfiedandthenarrower funnelis pre-
ferredto the wider funnel. The effect is quite pronounced.
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Figure4: 150,000runsof thesimulatorgenerated

Ï Ô
figures

whichwereconvertedinto numberof testsZ requiredusing
Equation13. X-axis shows thepercentiledistribution of the
outputof theruns.
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Figure5: 10000runsof thefunnelsimulator. Y-axisshows
whatpercentageof therunssatisfies¤±°ºB .
For example,for all the studieddistributions, if the wider
funnel is 2.25timesbiggerthanthenarrow funnel, random
searchwill be 1,000,000timesas likely as to usethe nar-
row funnel (seethe lower graphof Figure5). Interestingly,
as reachabilitydrops,the oddsof using the narrow funnel
increase(seethe pessimisticcurvesin Figure 5). That is,
the harderthe search,the lesslikely the searchwill suffer
from the problemof indeterminatesearchunder-sampling
thespace.

Discussion
Why have theseoptimistic averagecaseresultsfor nonde-
terministic searchbeenreportedbefore? Several research
communitiesmight have seenthe sameresults. However,
thepremisesof thosecommunitiesmayhave blockedthem
from finding theseconclusions:

1. The formal verificationcommunityseeksnear-complete
inferenceproceduresOur resultsassumerandomsearch
andrandomsearchis notattractiveto proponentsof com-
pletesearch.

2. CNF-basedtheoremprovers do not have a strongcon-
ceptof a proof tree. Hence,the satisfiabilitycommunity
would not have seenthe above resultssinceour analysis
requiresknowledgeof thetraversalpathtakenfrom inputs
to goals.

3. The software engineering(SE) testingcommunityuses
proceduralsystemsthattakefixedpathwaysthroughtheir
systems. Our resultsassumethat a test procedurecan
take randomdetoursduring the test procedure. This is
not anacceptableprocedurefor mostof theSEtestcom-
munity. However, amongstthesmallgroupof SEtestre-
searchersthat conductrandomizationstudiesof SE sys-



tem, somerecentempirical resultsendorseour proposal
that_ randomsearchis anadequateteststrategy (Horgan&
Mathur1996).

Conclusion
It hasbeenarguedthatfor awiderangeof distributions(uni-
form, pessimistic,optimistic, log-normal), randomsearch
engineswill favor worlds with narrow funnels. As fun-
nel sizegrows, the numberof differentworlds alsogrows.
Hence,sizetheaveragefunnelsizeis small, thenumberof
differentworldswill alsobesmall.Consequently:S Onaverage,theimpactongoalcoveragedueto nondeter-

minismis small.S Nondeterministicsearchis anadequatemethodfor prov-
ing propertiesin a system.
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