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I ntroduction

Testengineersare reluctantto certify Al systemsthat use
nondeterministicsearch. The standardview in the testing
field is that nondeterminisnshouldbe avoidedat all costs.
For example, the SE safety guru Nang/ Levesonclearly
states'Nondeterminismis the enemyof reliability” (Leve-
son1995).

This article rejectsthe pessimismof the testengineers.
Contraryto the conventionalview, it will be argued that
nondeterministicsearchis a satishctory method of prov-
ing properties. Specifically the nondeterministicconstruc-
tion of proof treesexhibits certainemegentstableproper
ties. Theseemengentpropertieswill allow usto rely that,on
average,nondeterministicsearchwill adequatelyprobethe
reachablgartsof asearctspace.

Our agumentassumeghat propertiesare proved using
randomizedsearchfrom randomly selectednputs seeking
a randomly selectedgoal (Menzies& Cukic 1999; 2000;
Menzieset al. 2000; Menzies, Cukic, & Singh 2000;
Menzies& Singh2001;Menzies& Cukic2001).Ouranaly-
sisappliesto ary theorythatcanbereducedo the negation-
freehornclause®f Figurel, plussomenogood predicates
thatmodelincompatibilities.

Beforebeginning,we pausdor animportantcaveat. This
papelpresentanaverage-casanalysisof therecommended
effort associateavith testing.By definition,suchanaverage
caseanalysissayslittle aboutextreme casesof high criti-
cally. Hence our analysismustbe usedwith careif applied
to safety-criticalsoftware.

Problems with Nondeter ministic Search

Whensearchinga nondeterministicpacean Al searchen-
gine hasto make choicesbetweenincompatibleoptions.
Therearetwo broadclassesof stratgiesfor makingthese
choices:

1. Method oneis to fork the reasoningfor every possible
resolution.We will call methodonea full worldssearh.

2. Methodtwo is to pick onresolutionatrandom thencon-
tinue on. Method two is often combinedwith a “rest-
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% rules
happy if  tranquillity(hi)

or rich and healthy.
healthy if diet(light).
satiated if diet(fatty).
tranquillity(hi) if satiated

or conscience(clear)

% facts
diet(fatty).
diet(light).

% contradiction knowledge
% e.g. diet(fatty) and diet(light)
% are nogood.
nogood(X,Y) -
X =.. [F|A1], Y =.. [FIA2], Al \= A2

Figurel: A theory

retry” mechanism. That is, methodtwo is applied X
times,with the systenresetbetweereachapplication.In
the sequelwe will oftenreferto methodtwo asrandom
worldsseach.

Both methodsare problematic. Full worlds searchcan
producean intractably large number of possibleworlds.
Randomworlds searchcan miss important conclusions.
Considetthe threeprogrampathwaysto happy in Figure2
(Figure2 is generatedrom the horn clausesshaown in Fig-
urel):

Path, happy < tranquility(hi) < conscience(clear)

Pathy : happy ¢ tranquility(hi) + satiated < diet(fatty)

< rich

Paths : happy <= andl | o 1¢ny « diet(light)

Someof thesenodesusedin thesepathwaysarenot cat-
egorical conclusions.For example,our beliefin healthy
is contingenton acceptingPaths andnot Paths (Paths is
incompatiblewith Paths sincethesetwo pathsrequiredif-
ferentdiets). A partialrandomsearchwill find only some
subsetof the possiblepaths, particularly if it is run for a
heuristicallyselectedime interval. Thatis, randomworlds
searchingmay not reliably infer that (e.g.) healthy is



conscience(clear)

'/yes

happy<=> tranquility(hi)

e es
y and1y<- rich

ye‘s\ healthy<y—es diet(light)

no
satiatede—Y=5_ iet(fatty)

Figure2: Therulesof Figurel corvertedto anand-orgraph.
All nodeshere are or-nodesexceptandl All parentsof
anand-nodemustbe believedif we areto believe andand-
node.In this graphno-edgsrepresentlegal pairsof infer-
encesij.e. thingswe can' believe at the sametime suchas
diet(light) anddiet(fatty) . All otheredgesare
yes-edgswhichrepresentegalinferences.

an uncertainconclusion. Dependingon how the conflict
betweendiet(light) and diet(happy) is resohed
atruntime, this systemwill sometimesiondeterministically
concludehealthy andsometimest won't.

This toy exampleis a simple demonstratoifor a prob-
lem that can get much more complicated. A lineartime
pre-processocould detectthe presenceof the incompati-
ble factsdiet(light) anddiet(happy) . However,
in larger systems,the sourcesof contradictionsmay not
detectablewithout actually executing the system. Sadly
suchexecutionsmay not reveal all the featuresof the the-
ory. Gabaw et.al.(Gabav, Maheshvari, & Osterweil1976)
shavedthatbuilding pathwaysacrossgraphswith impossi-
ble pairs(e.g.theno-edgesin Figure2) is NP-hardfor all but
thesimplestgraphgagraphis very simpleif it is verysmall,
or it is asimpletree,or it hasa dependeng networks with
out-dgree< 1). Hencesearchinggraphslike Figure2 can
take exponentialtime andary practicalproof procedureor
propertiesacrossrigure2 mustuseanincompletesearch.

Empirical Studies of Nondeter minism

One measureof the effectivenessof a searchprocedureis
its cover. the percentagef the provablegoalsfound by a
searchengine. Supposédhat randomizedvorld searchcov-
ers as mary goalsas a full worlds search. Sucha result
would be consistentwith the claim that nondeterministic
searchs anadequatenethodfor proving properties.
Thereis someempiricalevidencethatrandomizedsearch
doesindeedcoveraswell asfull search.

e For CNF representationst is well establishedhat ran-
dom searchwith retriescan demonstratesatisfiability in
theoriestoo largefor full search(Kautz& Selmanl1996).

¢ Williams and Nayak found that a randomworlds search
algorithm performed as well as the best available
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Figure3: HT4: full worldssearchsearchfork oneworld for
eachconsistenpossibility reachedrom inputs. HTO: ran-
domworldssearchwhencontradictionsarefound,pick one
resolutionat random thencontinue.ln the zonewhereboth
algorithmsterminated,HTO’s randomworld searchfound
98%of the goalsfoundby HT4's full worldssearch.

ATMS system,a well-known full worlds searchalgo-
rithm (Williams & Nayak1996).

e Menzies,Easterbroolet.al. reportexperimentscompar
ing randomworld searchwith full world searchfor re-
qguirementsngineering After millions of runs,they con-
cluded that randomizedworld searchfound almost as
mary goalsin lesstime asfull worlds search(Menzies
etal. 1999).

e In other work, Menziesand Michael compareda full
worlds searchsearchwith a randomworlds search. As
expected the full worlds searchranslow (O(2%)) while
the randomworlds searchran muchfaster(O(N?)); see
Figure 3. What is more interestingis that, for prob-
lemswhereboth searchmethodserminatedthe random
worlds searchfound 98% of the goalsfound by the full
worldssearch(Menzies& Michael1999).

Theoretical Studies of Nondeter minism

Theabove casestudiesencouragea beliefthatnondetermin-
ism canadequatelysamplea space.However, the external
validity of isolatedcasestudiesmustbe questionedBefore
we cantrustnondeterministicearchwe needto generalize
theabove casestudiesto shaw that,on averagethecoveris
notgreatlyeffectedby nondeterminang

Onemethodof generalizingthe above casestudiesis to
considerthe assumptionsvithin the worlds of beliefgener
atedby searchtheoriessuchasFigurel.

e Given a model such as Figure 2 and a goal such as
happy , heuristicsearchbuilds pathwaysto thosegoals;
e.g.Path; .. .Paths.

e Anythingthathasnotbeenassertedsafactis anassump-
tion. No pathcancontainmutuallyexclusive assumptions
or contradictthegoal;i.e. assuming-happy isillegal.



e Thegenerateghathwaysshouldbe groupedtogetherinto
maximal consistensubsetsalledworlds Our example
generateswo worlds: World;= {Path,, Paths} and
Worldy= { Pathy, Paths}.

e A world containswhat we can concludefrom and-or
graphs.A goalis provedif it canbefoundin aworld.

e Assumingrandomizedsearchonly someof the possible
pathswill befoundatruntime.At differentruntimes dif-
ferentpathsandhencedifferentworldswill begenerated.

The nondeterministidestingproblemcanformalizedas
follows. Theresultsof testinga nondeterministicystemare
untrustworthy wheneither:

1. Not enoughworlds are geneiatedto cover the range of
possibleconclusions. This first casecould arise from
heuristicsthatprunepossibleinferencestruntime. Such
heuristicsare oftenusedwhengeneratingpathwaysfrom
aspacecontainingconflicts. Recallthatsearctspacesik e
Figure 2 containpairs of conflicts: one suchpair exists
for eachno-edge. Recallingthe above mentionedresult
of (Gabav, Maheshvari, & Osterweil1976) (i.e. build-
ing pathways acrossprogramswith impossiblepairs of
nodesis NP-completefor all but the simplestprograms),
we canformally declarethat ary practicalsystemmust
conductanincompletepartialsearctof searctspacedik e
Figure2.

2. Too manyworldsare genertedandwe are swampedvith
possibilities. This secondcasehasoften obsenedin re-
searchinto qualitatve reasoning Whenall possiblecon-
sequencesf inputsaregeneratedrom anondeterministic
spacea vastsuiteof possibilitiescanbe generatedTam-
ing this intractablebranchingof behaviors is a major fo-
cusof researchinto qualitatve reasoningMenzieset al.
2001).

Bothproblemsareremovedif thetotalnumberof possible
worldsis small. If so,then:

e All the possibleconclusionscanbe reachedy sampling
justafew worlds;i.e. problem#1 goesaway.

¢ A large numberof worldswill notbe possible;i.e. prob-
lem #2 goesaway.

To prove that, on average,the total numberof possi-
ble worlds is small, we needto categorize assumptions
into threeimportantgroups. Only oneof theseassumption
groupingswill determineow mary worldsaregenerated.

Someassumptionsare dependenbn otherassumptions.
Forexample,in Paths, thehealthy assumptionslepends
fully on diet(light) . In termsof exploring all the ef-
fectsof differentassumptionsye canignorethe dependent
assumptions.

Another important category of assumptionsare the as-
sumptionghatcontradictno otherassumptionsThesenon-
contoversial assumptionsre never at oddswith otheras-
sumptionsandsodo not effect the numberof worlds gener
ated.In our example the non-contraversialassumptionsire
everythingexceptdiet(light) anddiet(healthy)

Hence Jikethedependenassumptionsye will ignorethese
non-contr@ersialassumptions.

The remainingassumptionsare the controversial, non-
dependenassumption®r funnelassumptions.Thesefun-
nel assumptiongontrol how all the otherassumptionsire
groupedinto worlds of belief. DeKleers key insight in
the ATMS researchwas that a multi-world reasoningde-
vice needonly focuson the funnel (DeKleer1986). When
switching betweenworlds, all we needto resolhe is which
funnel assumptionsve endorse. Continuingour example,
if we endorsediet(light) thenall the conclusionsin
World, follow andif we endorsediet(healthy) then
all the conclusionsn World, follow.

Pathsmeetandclashin thefunnel. If thesizeof thefunnel
is very small, thenthe numberof possibleclashess very
smallandthenumberof possibleresolutiondo thoseclashes
is alsovery small. Whenthe numberof possibleresolutions
is very small, the numberof possibleworlds is very small
andrandomsearctcanquickly probethedifferentworlds of
beliefs (sincethereare so few of them). Hence,if we can
shawv that the averagesize of the funnelis small, thenwe
canquickly poll therangeof possibleconclusiongrom our
and-orgraphs.

Average Funnel Size

Supposesomegoalcanbereachedy anarrov funnel M or
awide funnel N asfollows:
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We saythatthe probability of reachingthe goalis thevalue
reached.

Underwhat circumstancesvill the narrav funnel be fa-
voredover the wide funnel? More precisely whenarethe
oddsof reachinggoal; via the narrov funnel muchgreater
that the oddsof reachinggoal; via the wide funnel? The
following analysisanswershosequestionsisingthe frame-
work of (Menzies& Singh2001)(with lessneedlessnath-
ematicalcompleity andwith awider rangeof distributions
for thesimulationstudies).

To find the averagefunnelsize,we begin with the follow-
ing definitions. Let the M funnelusem variablesandthe
N funnelusen variables.For comparisorpurposesye ex-
presshesizeof thewiderfunnelasaratio « of thenarrover
funnel;i.e.

n =am (1)
Eachmemberof M is reachediia a pathwith probabilitya;
while eachmemberof N is reachedvia a pathwith proba-
bility b;. Two pathsexist from the funnelsto this goal: one

!DekKleer called the funnel assumptionghe minimal environ-
ments We do not adoptthatterminologyheresinceDeKleerused
consisteng-basedabductionwhile we are exploring set-coering
abductiorhere.For anexcellentdiscussiorthatdefinesanddistin-
guishesset-caering from consisteng-basedmethods,see(Con-
sole& Torassal991).



from the narrov neckwith probability ¢ and one from the
wide neckwith probability d. The probability of reaching
thegoalvia thenarron pathwayis

narrow = c H a; (2)
i=1
while the probability of reachingthe goalvia thewide path-
way is

wide = d ] ] b; (3)
i=1
Let P(narrow|reached) and P(wide|reached) denote
the conditional probabilities of using one of the funnels,
given that the goal is reached. The ratio R of thesecon-
ditional probabilitiesinforms us whenthe narrav funnelis
favoredoverthewiderfunnel.

R= P(narrow|reached)  (252%)  narrow @
~ P(wide|reached) — (-ide ) wide

reached

Narrow funnelsaremorelik ely thanwider funnelswhen
R>1.

To computethe frequengy of R > 1, we have to make
some assumptionsabout the probability distributions of
narrow andreached. (Menzies& Singh2001)shovedthat
if a; and b; comefrom uniform probability distributions,
thennarrov funnelsare morelikely thanwide funnels. In
the caseof suchuniform distributions,

Zai =1..a;=— . .narrow=c (—) (5)
=1 m m
Similarly, underthe sameassumptions,
. 1\"
wide = d (—) (6)
n

Underthis assumptiorof uniformity, R > 1 when

1

narrow _ c(L)™

wide — d (%)"

Recallingthatn = am, this expressiorbecomes

d
(am)®™m™™ > — ("
C
Considerthe caseof two funnels,onetwice asbig asthe
other;i.e. a = 2. This expressiorcanthenberearrangedo
shawv that #2522 > 1 is truewhen

m o a
(4m)™ > p 8)

At m = 2, Equation8 becomes] < 64c¢. Thatis, to ac-
cessgoal; from the wider funnel, the pathway d mustbe
64 timesmorelikely thanthe pathway ¢. Thisis not highly
likely andthis becomedesslikely asthe narraver funnel
grows. By the samereasoningatm = 3, to accesgjoal;
from the wider funnel, the pathway d mustbe 1728times
morelikely thanthe narrover pathway c. Thatis, underthe

assumptionf this uniform case,asthe wide funnel gets
wider, it becomedessandlesslikely thatit will beused.

To explorethecasewhere} " | a; # 1and) ;- b; # 1
(i.e. the non-uniformprobability distribution case) we cre-
atedandexecuteda smallsimulatormary times. In this sim-
ulator, we foundthefrequeng atwhich R > ¢t wheret was
somethresholdvalue.

To executethe simulator we requiredsomeknowledgeof
the distributions of narrow andwide whenthey arecom-
putedby nondeterministicsearch.Thosdistributions were
taken from an averagecaseanalysisof reachabilityacross
graphssuchasFigure 2. This reachabilityanalysisis dis-
cussedelow.

A Reachability Model

Menzies,Cukic, Singh and Powell (Menzieset al. 2000)
computedheoddsof reachingsomerandompartof aspace
of nondeterminanthoicesfrom randominputs. The analy-
sisassumedhat software hadbeentransformednto a pos-
sibly cyclic directed graph containing and-nodesand or-
nodes;e.g. Figure 1 hasbeencorvertedto Figure2. A
simplifieddescriptiorof theiranalysidgs presentedhere.For
full details,includingdetailssuchasusingrandomvariables
andtestingfor loopsandcontradictionssee(Menzieset al.
2000).

Assumethat“in” numberof inputshave beenpresented
to agraphcontainingV’ nodes.Fromtheseinputs,we grow
a tree of pathwaysdown to somerandomnodewithin the
graph. The oddsof reachinga nodestraightaway from the
inputsis

m
Tg = Vv (9)
The probability of reachinganand-nodewith andp parents
is the probability of reachingall its parentsj.e.

Land = 'Z_?ndp (10)

wherez; is the probabilitywe computedn the prior stepof
thesimulation(andzq beingthebasecase).The probability
of reachinganor-nodewith orp parentds the probability of
notmissingary of its parentsj.e.:

Tor =1—(1—2;)° (11)

If theratio of and-nodesn anetwork is andf, thentheratio
of or-nodesin the samenetwork is 1 — andf. The oddsof
reachingsomerandomnodez; is the weightedsum of the
probabilitiesof reachingand-node®r or-nodesj.e.

x; = andf * Tang + orf * Top (12)

We can corvert z; to the numberof tests N requiredto
be 99% sureof find a fault with probability z; asfollows.
Equationl11 is really the sampling-with-replacemerqua-
tion where orp is the numberof trials N. We can use
sampling-with-replacemenb find the certaintyof finding
someevent after N trials. If we demanda 99% certainty
of reachinga nodeat stepj (i.e. y = 0.99), thenwe can
re-arrangéequationllto

log(1 —0.99)

N _J - 7
log(1 — z;)

(13)



After 150,000simulationsof this model, somebestand
worst caseswere identified. Theseare shavn in Figure 4
labeledpessimisticand optimistic respectiely. In the pes-
simistic case we restrictedthe depthof our searchto some
trivial size: j < 10. In this pessimisticcase,more than
10,000randominputsarerequiredto reachhalf thenodesn
thegraphswe simulated.In the optimisticcasewe gave the
searchenginegreaterfreedomto explore: 5 < 100. In this
optimistic case,lessthan 100 randominputs would reach
over half thenodesin thegraphswe simulated.

Simulating Funnels

Having someknowledgeof the distributions, we can now
computethe frequeng of R > t for non-uniformdistribu-
tions. For onerun of theEquatiord simulator m anda were
pickedat randomfrom theranges:

me{1,2,...10}; o€ {1,1.25,1.5,...10}

a;, b;, ¢, d weretakenfrom oneof threedistributions: the
pessimisticand optimistic curvesshowvn in Figure4, plusa
log normal curve (just for comparisonpurposes). For the
log-normalcurve, meany andstandarddeviation o2 of the
logarithmof the variableswere picked at randomfrom the
following ranges:

uwe{1,2,...10}; spread € {0.05,0.1,0.2,0.4,0.8}

u and spread wherethen corvertedinto probability as
follows:

0% = spread * p;  probability = 10— 1*normDist(u,0%)
R wasthencalculatedandthe numberof times R exceeded
differentvaluesfor ¢ is shovn in Figure5. As might be ex-
pectedatt = 1, a = 1 thefunnelsarethe samesizeandthe
oddsof usingoneof themis 50%. As « increasesthenin-
creasinglyR > t is satisfiedandthe narroverfunnelis pre-

ferredto the wider funnel. The effect is quite pronounced.
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Figure4: 150,000runsof thesimulatorgenerated; figures
whichwerecorvertedinto numberof testsV requiredusing
Equationl13. X-axis showvs the percentiledistribution of the
outputof theruns.
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Figure5: 10000runsof thefunnelsimulator Y-axis shovs
whatpercentagef therunssatisfiesR > t¢.

For example,for all the studieddistributions, if the wider
funnelis 2.25timesbiggerthanthe narrav funnel,random
searchwill be 1,000,000timesaslikely asto usethe nar
row funnel (seethe lower graphof Figure5). Interestingly
asreachabilitydrops, the oddsof usingthe narrav funnel
increase(seethe pessimisticcurvesin Figure5). Thatis,
the harderthe search the lesslikely the searchwill suffer
from the problemof indeterminatesearchundersampling
thespace.

Discussion
Why have theseoptimistic averagecaseresultsfor nonde-
terministic searchbeenreportedbefore? Several research
communitiesmight have seenthe sameresults. However,
the premisesof thosecommunitiesnay have blockedthem
from finding theseconclusions:

1. The formal verification community seeksnearcomplete
inferenceprocedureur resultsassumaandomsearch
andrandomsearchs not attractve to proponent®f com-
pletesearch.

2. CNF-basedheoremprovers do not have a strongcon-
ceptof a proof tree. Hence the satisfiability community
would not have seenthe above resultssinceour analysis
requireknowledgeof thetraversalpathtakenfrominputs
to goals.

3. The software engineering(SE) testing community uses
procedurabystemghattake fixed pathwaysthroughtheir
systems. Our resultsassumethat a test procedurecan
take randomdetoursduring the test procedure. This is
notanacceptablg@rocedurdor mostof the SEtestcom-
munity. However, amongsthe smallgroupof SEtestre-
searchershat conductrandomizationstudiesof SE sys-



tem, somerecentempirical resultsendorseour proposal
thatrandomsearchs anadequateeststratey (Horgan&
Mathur1996).

Conclusion

It hasbeenarguedthatfor awide rangeof distributions(uni-
form, pessimistic,optimistic, log-normal), randomsearch
engineswill favor worlds with narrov funnels. As fun-
nel size grows, the numberof differentworlds alsogrows.
Hence sizethe averagefunnelsizeis small, the numberof
differentworldswill alsobe small. Consequently:

¢ Onaveragetheimpacton goalcoveragedueto nondeter
minismis small.

¢ Nondeterministicsearchis anadequatenethodfor prov-
ing propertiesn asystem.
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