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Abstract

Adaptive systems are systems whose function evolves
while adapting to current environmental conditions. Due
to the real-time adaptation, newly learned data have a sig-
nificant impact on system behavior. When online adaptation
is included in system control, anomalies could cause abrupt
loss of system functionality and possibly result in a failure.

In this paper we present a framework for reasoning
about the online adaptation problem. We describe a ma-
chine learning tool that sniffs data and detects anoma-
lies before they are passed to the adaptive components for
learning. Anomaly detection is based on distance compu-
tation. An algorithm for framework evaluation as well as
sample implementation and empirical results are discussed.
The method we propose is simple and reasonably effective,
thus it can be easily adopted for testing.

1 Introduction

Adaptive systems can be applied to domains where au-
tonomy is significant or environmental conditions tend to be
unpredictable. Usually, the aim of an adaptive system is to
perform appropriately under both foreseen and unforeseen
circumstances through adaptation. If the adaptation occurs
after deployment of the system, the system is called online
adaptive system. In recent years, online adaptive systems
have been proposed and implemented in flight control with
the expectation to react promptly to unforeseen flight con-
ditions and subsystem failures.

As an example of online adaptive systems, Figure1 illus-
trates a simple development paradigm. Before Wednesday,
the system is built and validated on the training data sets.
After fielding, there is unseen data as well as seen data en-
tering the system and making it learn and change. Thus, the
system will react distinctively with respect to the specific
data.

Train Test Field Use

Monday Tuesday Wednesday Thursday Friday

Figure 1. An Online Adaptive System Cycle

With the growing usage of such systems, validation tech-
niques have been developed to assure system stability and
reliability. Most of them are static techniques focusing on
the system performance before fielding. Effective meth-
ods for validating the running system dynamically are rare.
As one promising dynamic strategy, novelty detection es-
timates the reliability of the outputs by using the proba-
bility density estimates with respect to the data items al-
ready seen by the system [1]. Researchers like J.A Leonard
have conducted experiments on radial basis functions neu-
ral networks by extending the network structure with ad-
ditional output nodes to calculate confidence intervals for
the outputs. However, this technique usually takes a rela-
tively large amount of computing effort and brings burden
onto the system performance, which makes it inapplicable
for validating online adaptive systems in a real time man-
ner without impelling excessive computational effort on the
running system.

In this paper, we propose a dynamic method based on
distance measurement to validate the system adaptation. By
sniffing the incoming data in real time not only before but
also after it enters the system, we are allowed to prevent
the anomalies from system adaptation and discard surpris-
ing results that may cause unreliable system performance.
The paper is organized as follows.

• In section 2, we describe a framework comprising of
two agents that assures the system performance.

• Section 3 presents the data sniffing strategy for assess-
ing an online adaptive system. We describe the dis-
tance measuring techniques and propose an algorithm
for testing our approach.
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• Section 4 presents empirical results we obtained from
implementing our algorithm in two different domains.

• In the last section, conclusions are made and future
work is described.

2 Related Work

Most proposed techniques for validating online adaptive
systems are based on empirical evaluation through simula-
tion and/or experimental testings. In recent years several
experiments evaluated adaptive computational paradigms
(neural networks, AI planners) for providing fault tolerance
capabilities in control systems [3, 4]. In an on-going effort,
a group of researchers at NASA Ames Research Center are
defining life cycle validation and verification methods ap-
plicable to systems which are integrated with adaptive soft-
ware components [5]. In some cases, adaptive components
are modified to provide support for test based validation of
results. An example is the architecture of validity net pro-
posed by Leonard et. al. [1]. Researchers like J.A Leonard
have conducted experiments on radial basis functions neu-
ral networks by extending the network structure with addi-
tional output nodes to calculate confidence intervals for the
outputs. Experimental success in research suggests its sig-
nificant potential for future use.

Analytical methods can provide assurance for some sys-
tem models with respect to the defined properties. In re-
cent research, Mili et. al. [6] proposed an abstract com-
putational model for online adaptive systems. This model
captures the functional properties of an online adaptive sys-
tem by abstracting away random factors in the function of
the system and focus exclusively on details that are rele-
vant to the learning algorithm and the learning data. While
this is a generic model that establishes functional properties
of adaptive systems using refinement-based reasoning, it is
impractical for real time validation.

3 Framework

There are two major phases an online adaptive system
assumes while in use. An incoming example is unclassified
before it enters the adaptive component, which we define as
the pre-adaptation phase. After possible system adaptation,
the example is classified and is going to be used as input
for the next component, for example, a controller. We call
this phase post-adaptation. In order to validate the inputs
before they enter the adaptive system as well as the outputs
generated by the system, our approach employs the same
mechanism to detect anomalies in both phases. Primarily,
when peculiar data is presented in the pre-adaptation phase,
the system is allowed to either accept the data with some
caution for adaptation, or block the classified data from fur-
ther use.

Unclassified example 

Pre-Alert Agent

Post-Block Agent

Adaptive
Component

Classified example 

Figure 2. An Adaptive System Integrating Pre-
alert Agent and Post-block Agent

According to the pre-adaptation and post-adaptation
phases, we define two agents, referred to aspre-alert agent
andpost-block agentrespectively. Figure 2 illustrates how
an adaptive system comprising of a pre-alert agent and a
post-block agent works. The pre-alert agent determines
whether a new instance without an assigned class is causing
unexpected adaptations for the system and provides quanti-
tative caution if necessary. After the system generates class
values for such input data, the class values are examined by
the post-block agent to decide their reliability. When the
classified example is falling far outside the training domain,
the post-block agent will prevent it from entering the next
stage, i.e. it will disallow its further use.

In Figure 3, we list the policies for enabling (or dis-
abling) pre-alert and post-blockfor different system con-
ditions. More specifically, the policy of enablingpre-alert
can be explained as allowing the data into the system with
particular caution. Thepost-blockis enabled when the sys-
tem conditions necessitate stopping actions based on a poor
classification. These actions take two forms:

• the actions taken by the agent using the learner. For
example, changing aircraft control surfaces based on
the learner’s recommendations.

• the updates of the learner’s internal theory.

Usually when there is no adaptation, no disaster is instant
and we are not worried about out-of-scope inputs, there is
no need to apply either policy. When we are not confident in
the suitability of the inputs we can enable pre-alert for par-
ticular caution. If instant disaster is possible, one still has
the option to ignore classified data. For example, the learner
is an optional assistant while the human operator may or
may not be active. One particular condition is when we are
confident in the input since it is in scope while abnormal
adaptation is caused by some other factors and instant dis-
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Conditions Policies
Adaptationout-of-scopeInstant disasterPost-blockPre-alert

no no no disabled disabled
yes yes no disabled enabled
yes no possible enabled disabled
yes yes yes enabled enabled

Figure 3. Policy Choices on Data Sniffing

aster seems possible (see Figure 3). Under this condition,
we may want to enable the post-block policy to discard the
unusual output.

4 Data Sniffing Tool

Considering the framework described above, effective
tools need to be developed to allow pre-alert agent and post-
block agent to determine appropriate actions. Before we
present our data sniffing tool, we first introduce our distance
hypothesis as the basis of our approach.

Basically, the distance hypothesis is defined as fol-
lows.

• Examples seen during use (see Figure 1) that are
“close” to examples seen during training and testing
do not cause concerns.

• Examples that are “far away” from examples seen dur-
ing training and testing are causes for concern.

This intuitively simple definition is ambiguous on sev-
eral important details. Our definitions, shown later, opera-
tionalize the following points.

• “close”, “far away” - We explore distance metrics from
the new example to old examples. The same distance
metrics is used for distance between two old exam-
ples. We define different distance metrics for unclas-
sified examples and classified examples. For example,
by using a vector of bits, when mapping off the bits
representing the class attributes, we set the distance
metrics from “with class value(s)” to “without class
value(s)”. Note that an example with class value(s)
can only be examined by the post-block agent after the
learner runs.

• “causes concern” - Our data sniffer is useless unless it
is used. When our sniffer raises a concern, we need
to take some kind of appropriate action. As shown
in Figure 3, we defined four “sniffer policies” corre-
spondingly to four classes of conditions .

4.1 Distance Measure

Now the problem is - “how shall we operationalize the
distance hypothesis?” While investigating in related areas,

we found that several clustering algorithms can be used to
discover intentional structures in data sets [2]. The clas-
sic k-means algorithm forms clusters in numeric domains,
thus partitioning instances into disjoint clusters. As a well-
understood and relatively successful technique it uses a
straightforward Euclidean distance to compute the distance
between points. However, one drawback ofk-means clus-
tering technique is that we have to determine the numberk
before we run the algorithm. As a local leaner, an online
adaptive system can adapt itself rapidly to current feature
domain. It is virtually unnecessary to divide the domain
into arbitraryk clusters.

This paper explores an alternative algorithm that adopts
the distance measurement technique ofk-means clustering
algorithm. We construct a distance matrixD. D is an× n
square matrix represents the Euclidean distances between
any two examples in the training set wheren equals the
number of examples in the training sets. Also, we define
that Dij = Dji, 1 ≤ i, j ≤ n and Dii = 0, 1 ≤ i ≤
n.Considering the new data point to be determined outside
or inside the covered space, we mingle it with the origi-
nal data set and recalculate the distance matrix. Thus we
can compare these two distance distributions by statistical
means. Note that the online adaptation usually deals with
small domains consisting of a few dimensions, we choose
thet-test as our comparison tool.

4.2 A Testing Algorithm

Having provided the underlying philosophy as detecting
”surprising data”, we developed an algorithm for testing our
approach. Due to characteristics specific to this approach,
our algorithm is designed for low dimensional spaces. and
thus does not adopt the definition of ad-hoc distance or sim-
ilar metrics. Before we describe our algorithm, it is nec-
essary to explain the definitions and notations that will be
used in this section.

• An example (or datum)x is a single data item used by
the algorithm. It typically consists of a vector of values
of N attributes: (A1, A2, . . . AN ).

• N is the dimensionality of an example in a certain data
set. The number of data attributes is noted asNd, and
the number of the class attributes is noted asNc. Here,
N = Nd + Nc.

• Cd refers to the number of examples contained in the
data set.Cm is the number of new examples. Note that
in real applicationsCm = 1, we here set1 ≤ Cm ≤
Cd for experimental purpose.

We compute the distance by the following rule based on
standard Euclidean distance.

xi and xj are two examples with attribute values
(A(i,1), A(i,2),...,A(i,N)) for xi and attribute values (A(j,1),
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A(j,2),..., A(j,N)) for xj . The distance betweenxi andxj ,
noted asD(i,j) is computed as:

D(i,j) = D(j,i) = ‖xi − xj‖ =

√√√√
N∑

k=1

(A(i,k) −A(j,k))2.

We first take a training setS from a given application
domain with moderate values ofN andCd. By randomly
choosing one example fromS, we mutate some attribute
values of this example to obtain a likely faulty instance.
Specifically, as for the pre-alert agent, we mutate the values
of these data attributes for a predefined class to obtain a
testing mutant. Since the post-block agent only works after
the class values have been generated, possible mutations
can be executed not only on data attributes but also on class
attributes. We compare these mutants with all old examples
instead of a certain class. We can use the same algorithm
shown in Figure4 to implement both tests. The inputs and
outputs of the algorithm are follows:

Input :

Data setS = x1, x2, ..., xCd
.

Cm, the number of mutated examples.

vstep, the standard deviation step utilized for the mu-
tation. For instance, whenvstep = 2, A1 = 3 and the
standard deviation of this attribute is0.5, we modify
A1 to either4 or 2 with the assumption that the distri-
bution of its values is Gaussian.

Output:

The rejection percentage overCm new examples based
on statisticalt-tests.

The algorithm starts with initializing the distance matri-
cesD1, D2 andDm to zeros. In the following loop, the
procedureComputeDistance(D1(i, j) ) computes the dis-
tance from examplei to examplej. Then the algorithm
enters the major loop. It iteratesCm times to do the test-
ing. First, it draws an example randomly from data setS
through procedureRandomSample(S, x) and then modifies
it by MutateExample(x, vstep, j). After that, procedure
ComputeNewDistance(Dm, x, S) simply computes the ma-
trix Dm which consists of distance values from this mu-
tated examplex to all other examples inS. In procedure
CombineDistance(D2, D1, Dm) we put these two matrix
D1 and Dm together into one matrixD2 for comparing
them in the next procedurettest2(D1,D2,α) to perform a
t-test.

The t-test examines these two distance matrices to test
the null hypothesis, i.e. the average distance for all values
in D1 equals to the average distance of all values inD2. If

1. D1 ← D2 ← Dm ← 0;

count ← 0.

2. for i← 1 to Cd

for j ← i to Cd

ComputeDistance(D1(i, j));

end

end

3. for j ← 1 to N

for k ← 1 to Cm

RandomSample(S, x);

MutateExample(x, vstep, j);

ComputeNewDistance(Dm, x, S);

CombineDistance(D2, D1, Dm);

count← count+ ttest2(D1,D2,α);

end

end

4. return count
Cm

.

Figure 4. Algorithm

the null hypothesis is passed, then it implies that the new
examplex does not change the topological property of the
original domain. Recalling that there is no value of class
attributes available for the pre-alert agent, we modify the
algorithm slightly by changing the mutation number from
N to Nd which excludes the class attributes. When com-
puting the distance we set theN to Nd as well. In this case,
we filter the data by the specific values of class attributes
into a subset for running the algorithm.

5 Empirical Results

For comparison purposes, we offer two sets of results -
one where data sniffing works very well and the other where
it fails. Our discussion section offers some speculation on
why the failure occurred.

5.1 Experiments

The first data set is the circuit data provided by Hu and
Menzies [7]. The data set has 192 examples in the data
file. Each example consists of eighteen data attributes and
one class attribute. The nineteen attributes all have dis-
crete values. The values of class attribute are enumerated
as 4, 5, 6, 7. In particular, the data attributes cause some
constraints on our experiments that the only deviation step
we can set for the algorithm is one, i.e.vstep = 1.

In Figure 5 and Figure 6,x axis represents the number of
mutated attributes, referred to ask in the algorithm.y axis
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Figure 5. Pre-alert Testing for Circuit Data,
i.e. assessing distance without class when
vstep = 1 at confidence level 0.05 ( α = 0.05).
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Figure 6. Post-block Testing for Circuit Data,
i.e. assessing distance with class when
vstep = 1 at confidence level 0.05 ( α = 0.05).

represents the rejection percentage obtained from running
the algorithm for each class. Each point shows the rejec-
tion percentage for that specific class when certain attribute
values were mutated. One trend seen in Figure 5 is that for
all class values, the rejection percentage increases with the
increase of the mutated attribute number. After the number
reaches 6, all these four runs returned100% rejection. The
same trend also shows in Figure 6. Although it is weaker
than we have seen in Figure 5, at mutation number 10, the
algorithm fully rejects all mutated examples. The possible
explanation for this phenomenon is that the class value is
actually the essential representative for the complete exam-
ple.Without comparing to a particular class value, the mu-
tations cannot bring significant difference into the example.

We conducted another experiment for the scale balance
data provided by Hume [8] from the machine learning

database built by University of California, Irvine. Each ex-
ample of this data set is classified as having the balance
scale tip to the right (class ’R’), tip to the left (class ’L’),
or be balanced (class ’B’). There are four data attributes,
which are the left weight, the left distance, the right weight,
and the right distance. The class value is determined by the
greater of (left-distance× left-weight) and (right-distance
× right-weight). If they are equal, it is balanced. The data
file consists of 625 examples covering all possible weight
and distance values. We run the algorithm on class ’L’ ex-
amples for pre-alert testings and then the whole data set for
post-block testings.

With experiments for pre-alert testings, Figure 7 evi-
dently shows growth of rejection percentage with the in-
crease of deviation step from 1 to 4. The increasing trend
of rejection percentage according to the number of mutated
attributes also shows in this run. However, there is no re-
jection percentage greater than50% and all the results are
weaker than those in the first experiment.

The weakest results are illustrated by Figure 8 from the
experiments of post-block testings. The algorithm was not
able to identify the anomalies effectively until the deviation
step was set to 5. The possible reason for this occurrence
is that the characteristics of the data is too strong. Mutat-
ing a simple or further multiple attributes might still keep
the whole example being correct, which implies the exam-
ple cannot be driven very far from the original example by
simple mutations.

5.2 Discussion

We presented examples where data sniffing worked and
where it failed. While a good demonstration was obtained
from the experiment with the circuit data, the other set of
experiments with scale balance data actually showed us the
drawbacks of our testing algorithm as well as the existence
of other factors that might affect the performance of our
approach. By comparing these two domains we try to char-
acterize domains where data sniffing may fail.

The intrinsic classification rule of scale balance data
makes single mutation not sufficient for generating faulty
example. For instance, the first example shown in Figure
9 has a class value ’L’. As we see in next examples, mod-
ifying single value ofLeft weightfrom 2 to 1 or to 3 with
vstep = 1 does not change the class value. Furthermore,
the probability of obtaining a faulty example is fairly low
evenvstep andCm increase. On the contrary, examples in
the circuit data file cannot be related to each other by single
mutation. Instead, modifications of single attribute in circuit
data may easily cause a faulty example. Since our testing
algorithm was not able to detect the relational examples be-
fore examining it, it actually took them as safe examples
seen in the training data set. Based on the above experience
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Figure 7. Pre-alert Testing for Scale Balance
Data, i.e. assessing distance without class
with different deviation steps when α = 0.05.
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Figure 8. Post-block Testing for Scale Balance
Data i.e. assessing distance with class with
different deviation steps when α = 0.05.

we hypothesize that Euclidean-based data sniffing will fail
for highly relational data.

6 Conclusion

This paper has proposed a novel tool that using simple
data sniffingstrategy for validating online adaptive systems.
We have offered a verification framework comprising of two
agents that check the validity of inputs and classifications.
From the empirical results we attained from running our
testing algorithm for different data sets, we can conclude
that the the method works reasonably well for data that is
not highly relational. Since our approach is very straight-
forward, it can be easily applied for testing certain domains
by simply running the mutator.

In the future, we expect to refine our algorithm to distin-

Left weight Left distance Right weight Right distanceClass

2 3 1 2 L
1 3 1 2 L
3 3 1 2 L
4 3 3 3 L

Figure 9. Examples in Scale Balance Data

guish faulty and correct examples before executing the re-
jection, causing a more accurate rejection percentage com-
putation. Therefore, available machine learning tools de-
tecting anomalies in certain data domains can be poten-
tially employed. Future work will focus on developing a
refined distance computation method which does not make
any (implicit or explicit) hypothesis concerning the topol-
ogy of the domain. Furthermore, sophisticated measure-
ment techniques which can capture the distance in terms of
feature space will be investigated.

References

[1] J.A. Leonard, M.A. Kramer, and L.H. Ungar. Using radial
bais functions to approximate a function and its error bounds.
IEEE Transactions on Neural Networks,3(4):624-627, July
1992.

[2] I. H. Witten, E. Frank.Data Mining :Practical Machine
Learning Tools and Techniques with Java Implementations,
Morgan Kaufmann Publishers, 2000.

[3] M. Napolitano, G. Molinaro, M. Innocenti, and D. Martinelli.
A complete hardware package for a fault tolerant flight con-
trol system using online learning neural networks.IEEE Con-
trol Systems Technology, January, 1998.

[4] M. Napolitano, C.D. Neppach and V. Casdorph. A neural
network-based scheme for sensor failure detection, identifi-
cation and accomodation.AIAA Journal of Control and Dy-
namics, 18(6):1280-1286, 1995.

[5] M.A. Boyd, J, Schumann, G. Brat, D. Giannakopoulou, B.
Cukic and A. Mili. Validation and verification process guide
for software and neural nets. Technical report, NASA Ames
Research Center, September 2001.

[6] A. Mili, B. Cukic, Y. Liu and R.B. Ayed. Towards the ver-
ification and validation of online learning adaptive systems.
Submitted to ASE. April 2002.

[7] T. Menzies and Y. Hu, Constraining discussions in require-
ments engineering,First International Workshop on Model-
based Requirements Engineering, 2001, http://tim.
menzies.com/pdf/01lesstalk.pdf .

[8] T. Hume, Three aspects of cognitive development,Cognitive
Psychology, 8, 481-520. 1994.

6


