
An Alter native to Model Checking: Verification by RandomSearch of AND-OR
Graphs RepresentingFinite-StateModels

David Owen,BojanCukic,Tim Menzies
LaneDepartmentof ComputerScienceandElectricalEngineering

WestVirginiaUniversity
POBox 6109Morgantown, WV 26506-6109,USA

{dowen|cukic}@csee.wvu.edu , tim@menzies.com

Abstract

ABSTRACT
In the developmentof high-assurancesystems,formal

modeling, analysisand verification techniquesare play-
ing an increasingly important role. In spite of signifi-
cantadvances,formalmodelingandverificationstill suffers
fromlimited applicabilitydueto exponentialruntimespace
growthexibitedbymodelcheckers.

In thispaper, wedescribeanalternativeto modelcheck-
ing. We describean algorithm that automaticallytrans-
latesFinite StateMachinemodelsusedby modelcheckers
into AND-ORgraphs.Statespaceverificationof AND-OR
graphsdoesnot suffer from statespaceexplosion,but its
exhaustivesearch is an NP completeproblem. Hence, we
demonstrate that randomsearchesof AND-ORgraphsare
a vaible alternativeto modelchecking, suitablefor system
debuggingandfastanalysisduringsystemdevelopment.We
supportour conclusionsthroughthestudiesof two models,
Dekker’s two processmutualexclusionalgorithm and the
SpaceShuttle’s liquid hydrogensubsystem.

1 Intr oduction

Formalmodelling,analysisandverificationarevery ac-
tive researchareasin software assurance.There is little
doubt that the applicationof formal methodsthroughout
thesoftwaredevelopmentlife cycle improvessoftwarereli-
ability (e.g.,the long list of applicationsin [6]). However,
doubtsexist concerningthe practicalityandcostof formal
methods:

� The cost of writing the formal model or queries,re-
ferredto below asthewriting cost—often,Ph.D.-level
mathematicalexpertise is required for writing such
models.

� The costof executingqueriesover the formal model,
therunningcost—aformalquerymaybeprohibitively
slow or requiretoo muchmemoryto executeover the
exponentiallylargeformalmodelrepresentingall pos-
sibleinteractionsof componentsin theoriginalsystem.� The cost of modifying the formal model, the rewrit-
ing cost—analystsoften rewrite formal modelsusing
variousstrategiesto minimizetherunningcost.

Many researchershave workedto reducethesecostsus-
ing a varietyof methodsincludingthedesignof specialre-
strictedmodellinglanguages,automaticgenerationof mod-
elsfrom code,andoptimizationsthatexploit models’sym-
metry. Much progresshasbeenmadeto reducethewriting
cost,but thegeneralproblemof high runningcostpersists
despitedecadesof effort.

In an attemptto minimize the runningcost,and there-
fore eliminate the rewriting cost, which is generallydue
to unacceptablylong verification run times, we compile
formal modelsinto compactNAYO (a type of AND-OR)
graphs[10–12]. With a NAYO graphit is possibleto repre-
sentall possibleinteractionsof the individual components
of aformalmodelin amuchsmallerspacethanthatrequired
by afinite-statemachinerepresentingthesameinformation.
Unfortunately, completesearchof NAYO graphsis in gen-
eral intractable(it is NP-complete,aswe will show later),
sotherunningcostis still aproblem.

Thealternative to completesearchis incompletesearch.
A recentbut repeatedresultin theartificial intelligencelit-
eratureis thatincompletesearchmaybesurprisinglyeffec-
tive. The logical form of completeNAYO searchis simi-
lar to the satisfiability (SAT) problem[9]. Partial random
searchis anincompletestrategy oftenusedto solveSAT:
� Whencompetingconstraintsblock progress,a single

constraint,selectedat random,is favored.� Futureconflictsarealso,in effect, resolvedrandomly,
i.e., thesearchfindsa randomlyselectedsubsetof the
formalmodel;henceit is incomplete.

� Randomsearchis run,reset,andrepeated� times.The
bestsolutionseenin any run is returned.

Randomsearchis capableof finding optimal or nearly
optimalresultsfor largesatisfiabilityproblems[7,8,15]. In
addition,randomsearchfindsaresultevenwhenexhaustive
searchis not feasible.Thesuccessof partialrandomsearch
in artificial intelligencemotivatesour useof thesametype
of searchin softwareengineering.Ourresearchhasbrought
usto thefollowing conclusion:

Randomsearchoverformalmodelsexhibitsasat-
urationeffect.

Time ���

U
ni

qu
e

R
es

ul
ts Saturation

No Saturation

Figure 1. The saturation effect.

Figure 1 illustrates the statementabove. The curve
marked saturation representsrandomsearchresultsfor a
model in which everything possible to find was found
quickly and then a saturation point was reached. After
saturation,a level plateauindicatesthatextra effort by the
searchcannot discoverany new uniqueresults.

Assessmentmethodslacking the saturationeffect have
the following property: themoretime spenton theassess-
ment,themoreuniqueresultsfound(e.g.,thecurvemarked
no saturation in Figure1). On the otherhand,assessment
methodsthat do exhibit a saturationeffect supportearly-
stoppingrules,which canbeusedto reducethecostof for-
mal analysis(the runningcost). We canstopsearchinga
formalmodelwhenit is veryunlikely continuedsearchwill
uncover new results,i.e., after thesaturationplateauis en-
countered.

When we useearly-stoppingrules, we risk false posi-
tives—we may concludethat no faults are present,when
further assessmentwould have eventually found them.
Henceweendorseearlystoppingonly for assessmentmeth-
odsthatexhibit thefollowing properties:
� Adequacy—an adequateassessmentmethoddoesnot

fail to recognizefaultsin theportionof themodelex-
ploredprior to earlystopping.

� Flat Plateaus—if the plotted searchresult is a flat
plateau(e.g.,thecurvemarkedsaturation in Figure1)
thenadditionalerrors,if presentin theunexploredpor-
tion of the model, are not detected;however, if the
model has beenwritten correctly, any errors in this
portionof themodelareaslikely to remainunnoticed
uponsystemdeploymentasthey areby our search.

Weclaimthatrandomsearchof NAYO graphsgenerated
from formal modelswritten asfinite-statemachinesis ade-
quateanddemonstratesflat plateaus.This justifiesthe use
of early stoppingrules,which make randomsearchan ef-
fective strategy for decreasingtherunningandrewrite cost
of formal verification and an exciting alternative to other
techniquesincludingmodelchecking.

The rest of the paperis organizedas follows. Section
2 introducestraditional formal modeling techniquesand
describesthe algorithmsfor automatedmodel translation
into NAYO graphs. The samesectionprovides the proof
that the exhausive searchof NAYO graphsis an NP com-
pleteproblem,necessitatingtheuseof randomsearchtech-
niques. Section3 demonstratesthe applicationof NAYO
graphmodelingandanalysisto two problemstaken from
the literatureand evaluatestheir success.Section4 con-
cludesthe paperandoutlinesthe directionsfor the further
development.

2 Formal ModelsWritten asFinite-StateMa-
chines

This sectionbegins with our formal definition of com-
municatingfinite-statemachines(2.1), or FSMs. This ma-
terial is condensedfrom [13]. Model checkingtools use
the sameform, with someminor variations,to represent
programswith concurrentprocesses[5]. To verify that a
model matchesa propertyspecification,a model checker
mustbuild anexponentiallylargecompositefinite-statema-
chinerepresentingall possibleinterleavingsof the individ-
ual FSMs in the original model. We show how a NAYO
graphmaybeusedto representthesameinformation,with
sizejust polynomialin thesizeof the input; thenwe show
thatexhaustivesearchof a NAYO graphis anNP-complete
problem(2.2). We thendescribethepartial randomsearch
procedureusedto searchourAND-OR graphs(2.3).

2.1 Communicating FSMs

We definea system
�

of communicatingFSMs in the
following way:

� EachFSM ��� �
is a 	 -tuple
���
���
������� � is a finite setof states.� � is afinite setof input/outputsymbols.

2

� ����������� �!���"�#
 where � is a setof zeroor
moresymbolsfrom ��
 is thetransitionfunction.

A1

A2

-/m

B1

B2

m/-B2/- A1/-

$&%('*)�+-,/.0+214365
$&+ , '87:9 , .�; , .�< ,�= 5
$&9�,>'*)@?BA6.C? D6365
$&; , 'E)�FG.IHJD636. etc.

Figure 2. A system of comm unicating FSMs
(m is a messa ge passed between the ma-
chines).

Figure 2 shows a very simple communicatingFSM
model. Statesare indicatedby labelledovals, and edges
representtransitionsthataretriggeredby input andthatre-
sult in output. Edgesarelabelled: input / output. We have
observedthat in thevarietyof existing FSM schemesthere
are two differentways individual machinescommunicate.
Becauseof this, we definetwo differentkinds input/output
symbols(includedin �):

1. A transitionin onemachinemay be triggeredby the
factthatanothermachineis in a particularstate,or the
effect of a transitionmaybeto changethestateof an-
othermachine.

2. A transitionmay be triggeredby a message received
from anothermachine,or theeffectof a transitionmay
beto senda message.

The key differencebetweenstatesand messagesis in
their useas transitioninputs. A transitiontriggeredby a
messageconsumesthemessage,sothat it is no longerable
to trigger another. But statesareunaffectedby transitions
they trigger; they aregoodfor anarbitrarynumberof tran-
sitions.

2.2 NAYO Graph Translation

Figure 3 shows an AND-OR graph equivalent to the
communicatingFSM model shown in Figure 2. We call
this type of AND-OR grapha NAYO sinceit containsthe
following features:

� A set K of undirectedNO-edgesconnectingincompat-
ible nodes.� A set L of AND-nodes—anAND-nodeis TRUE if all
of its YES-edgeparentsareTRUE.� A set M of directedYES-edges.

A2

A1 and

and

and

m and

B2 B1

Figure 3. NAYO graph equiv alent to FSM
sho wn in Figure 2 (NO-edg es dotted, AND-
nodes shaded).

� A set N of OR-nodes—anOR-nodeis TRUE if any of
its YES-edgeparentsareTRUE.

A closelook atFigure3 revealssomethingstrange:there
is anedgefrom nodeA1 to theupperright AND-node,and
anotheredgegoing from the AND-nodeback to nodeA1
(the samething occurswith nodeB2 and the lower right
AND-node).To understandthis,wereiteratethepointmade
above, that thereare two differentways FSMscommuni-
cate:statesandmessages.And thekey differencebetween
themis thatmessagesareconsumed.We usea simpletrick
to representthis in a NAYO graph. First, we definethe
searchso that any time an AND-node is reachedits par-
entsareconsumed—they areno longeravailableto beused
again.Then,for nodesrepresentingthestate-from-another-
machine type of input that shouldnot be consumed(e.g.,
A1), we addanextra edgefrom theAND-nodebackto the
statenode—weconsumebut then immediatelyregenerate
thestatenode,sothatit is availableto beusedagain.

1: for (each finite-state machine) do
2: for (each state) do
3: Make an OR-node; connect it with a NO-edge to each

OR-node representing another of this machine’s states.
4: end for
5: for (each transition in this finite-state machine) do
6: Make an AND-node;
7: Make current state a YES-edge parent of the AND-node;
8: Make input(s) (a) YES-edge parent(s) of the AND-node;
9: Make next state a YES-edge child of the AND-node;
10: Make output(s) (a) YES-edge child(ren) of the AND-node.
11: if (input is a state from another machine) then
12: Make input a YES-edge child of the AND-node;
13: end if
14: end for
15: end for

Figure 4. Automatic translation procedure
from FSMs to NAYOs.

Figure 4 shows the procedureused to automatically
translatefrom acommunicatingFSMmodel,e.g.,Figure2,
to a NAYO graph,e.g.,Figure3. In general,for a system
of O FSMswith � statesand P single-input,single-output
transitionspermachine,theresultingNAYO has:
� PEO AND-nodes QR�SO OR-nodes TUN�
@
VPWQX�S�@OY�

nodes.

3

States in FSM
Model Composite Nodes in

(upper bound) NAYO Graph

Dekker 2-Process
Mutual Exclusion 2,304 40

Model from [4]
TCP Protocol

Model from [14] 2,467 84

SCR Specification
Model from [1] 1.68x108 126

Large Randomly
Generated Model 2.65x10178 4,007

Table 1. Size comparison of NAYO and FSM
composite for three formal models.

�[Z PEO YES-edges Q\
]�_^�`a�6
V�b�dcI�eO NO-edges T
N�
e
]PfQ[�hgi�eOj� edges.

An FSM composite (which would be exhaustively
searchedby a modelchecker) for the samesystemwill in
the worst caserequire N�
]�Ska� statesand N�
]�SkIl gm� transi-
tions[5]. Table1 comparesthesizeof FSMcompositerep-
resentationsandNAYO graphsfor several formal models,
includingthetwo weuselaterfor randomsearchexamples.

x1

_
x1

no

c1

x2

_
x2

no

x3

_
x3

no

c2

and

Figure 5. NAYO graph representing the 3SAT
quer y
]nBoqprn g p#ntsm�hu"
 nBovp n g p ntsI���

Unfortunately, the problem of determiningwhethera
particularnodein the NAYO graphcanbe reachedis NP-
complete,1 whichwe show herein two steps.

3SAT wyx NAYO search(NAYO searchis at leastashard
asthe3SAT problem,which is known to beNP-complete):
for the3SAT problemwe havea Booleanexpressionthatis
theconjunctionof a seriesof clauses,eachof which is the
disjunctionof 3 literals.A literal is eitheravariable(n ze
 for

1NP is the classof problemsfor which a solutioncan be verified in
polynomial time (the time requiredis a polynomial function of the input
size);anNP-completeproblemis (1) at leastashardasall problemsin the
classNP andis (2) itself in NP.

example)or its negation(n z). Theproblemis to determine
whethertheexpressionis satisfiable; that is, doesthereex-
ist anassignmentof valuesto thevariablesthatsatisfiesthe
totalconjunction?Figure5 showsaNAYOgraphrepresent-
ing a very simple3SAT query. A NAYO graphfor a 3SAT
querywill have a singleAND-node;if this AND-nodecan
bereachedthentheoriginal3SAT queryis satisfiable.

NAYO Search � NP: clearly we can verify a NAYO
searchsolutionin polynomialtime;wewould(1) verify that
the solution is a valid pathof YES-edges,which requires
N�
V�G�{cm� time(where� is thenumberof nodesin theNAYO
graph);(2) verify thatno two nodesin thesolutionpathare
connectedby aNO-edge,whichrequiresN�
]�v
V�|�EcI�@� time.

2.3 NAYO Random Search

Our NAYO randomsearchis designedto solve the fol-
lowing problem:givensome(notnecessarilyconsistent)in-
put setof OR-nodes,find an outputsetconsistentwith at
leastpartof the input, andmake thatoutputsetaslargeas
possible.Ideally the outputsetcontainsan OR-nodefor a
statein eachof the finite-statemachinesfrom the original
model—ifso,theoutputis equivalentto oneof thestatesin
the compositefinite-statemachinethat would be searched
by a modelchecker (andwe have found it without explic-
itly constructingthe composite). But in general,because
therandomsearchis not exhaustive,it maynot tell usquite
asmuchasamoretime-(andspace-)consumingtechnique;
thatis, theoutputsetwill constitutea partial descriptionof
astatein thecomposite.

True at time }�~
� �

�

Frontier� � True at time }�~��������

Entire NAYO Graph

���

Figure 6. Sets involved in successive itera-
tions of the random search procedure sho wn
in Figure 7.

Oncewe have thefirst outputset,we useit asthe input
setfor time �JQ�c . Figure6 showsthesetsof nodesinvolved
in successive iterationsof therandomsearchprocedure.At
time T���
 thesearchbuildsanoutputsetof consistentnodes.
Thesearemarkedtrueat time T�� in Figure6.

Thesetmarkedfrontier is thesetof nodesthatwill serve
asinput for thenext iteration. The frontier includes(1) all
nodestruenow and(2)nodesthatarealmosttrue,i.e.,nodes

4

that are implied by but contradictnodestrue now. In the
next iteration(time T���Qrc) westartwith thefrontier(which
will include contradictions)as the input set and useit to
build a consistentoutputsetof nodestrueat time T��BQ�ca�

1: OR-nodes’ wait field � 1.
2: AND-nodes’ wait field ��� parents � �
3: while (time � MAX) do
4: while (Q ����) do
5: n � pop(Q).
6: if (n not disqualified) then
7: Mark n true at current time.
8: for (� n’ linked to n by a NO-edge) do
9: Mark n’ disqualified at current time.
10: end for
11: for (� YES-edge children n’ of n) do
12: Decrement n’ wait field.
13: if (n’ wait ���) then
14: Mark n’ reached at current time.
15: Q � n’ at random index.
16: end if
17: end for
18: end if
19: end while
20: Q � all nodes reached at current time at random in-

dex (including nodes disqualified at current time).
21: Reset all other nodes’ wait fields (as in lines 1-2).
22: Increment time.
23: end while

Figure 7. Random search procedure for NAYO
graphs.

Figure7 shows therandomsearchprocedureusedto ex-
ploreNAYO graphs.Eachtime thesearchcomesto a node
its wait field is decremented.When wait TW�Y
 the node
is reached. An OR-node’s wait needonly be decremented
once,becausewe only needto reachit via oneof its par-
ents;soOR-nodeswait fieldsareinitializedto 1 (line 1). To
reachan AND-node,we mustfirst reachall of its parents,
so its wait field is initialized to its numberof parents(line
2).

The centralpart of the searchprocedureoccursin lines
4-19. We begin with an input setof nodesin the Q, in no
particularorder. Thefirst nodeis removedfrom theQ (line
5). If it hasnot beendisqualified,i.e., it doesnot contradict
somenodewe alreadybelieve true at the currenttime, we
exploreits children.All childrenvia NO-edgesaredisqual-
ified (line 9). Thewait fieldsof all childrenvia YES-edges
aredecremented(line 12), and if any aredecrementedall
theway to zero,they areput into theQ at somerandomin-
dex (line 15). This processcontinuesuntil the Q is empty
(line 4).

Onceall nodesin theQ havebeenprocessed,lines20-22
setusup for thenext iteration.At thispoint thereis asetof
nodesmarked true at thecurrenttime, which is a subsetof
thenodesmarked reachedat thecurrenttime (somenodes
arereachedbut disqualified,sothey arenevermarkedtrue).
The true setcorrespondsto thesettrue at time T�� in Fig-
ure6, andthe reachedsetcorrespondsto the frontier setin

Figure6. Thereachedsetis putbackinto theQ (line 20) to
serve asinput for the next iteration. All othernodes’wait
fieldsarereset,andthetime is incremented(lines21-22).

FSM Search Output NAYO Search Output
(program model (partial description
execution path) of execution path)

global state 1

global state 2

global state 3

partial description
of global state 1

partial description
of global state 2

partial description
of global state 3

Figure 8. Comparison of output type for ex-
haustive FSM search and our par tial random
NAYO graph search.

Figure8 showsacomparisonof searchresultsfor (1) ex-
haustive searchof a compositefinite-statemachine,which
generatesan executionpathof fully definedglobal states,
and (2) our NAYO search,which generatesan execution
path of partially definedglobal states(without explicitly
constructingtheexponentiallylargecompositeFSM repre-
sentingtheglobalsystem).Thesearchcontinuesfor aspec-
ified numberof iterationsor until it hits a deadend. The
searchis randomin that,whentherearetwo or morecon-
tradictorynodesthat might be addedto the outputset,the
choiceof which nodeto addis random.

3 Random Search of ExampleModels

In (3.1) and (3.2) following we use our NAYO ran-
dom searchto verify propertiesof formal modelswritten
asFSMs. In thefirst case,we show how a particularnode
representingaviolationof asimplesafetypropertyis found
by thesearchin a formal modelto which anerrorhasbeen
added. In the secondexample,we usethe searchto show
thatevery stateexceptthoserepresentingexternalinforma-
tion is reachableduringexecutionof theformal model.

In theseexamples,we usein eachsearchiteration, as
inputs for the randomsearch,a randomset of consistent
nodes(apartialdescriptionof aglobalstate—seeFigure8).
Our output is a set of nodesfrom all iterationsreachable
from but not includinginputs.

5

#define true 1
#define false 0
#define Aturn false
#define Bturn true

bool x, y, t;

proctype A() { x = true; t = Bturn;
(y == false || t == Aturn);
/* critical section */
x = false }

proctype B() { y = true; t = Aturn;
(x == false || t == Bturn);
/* critical section */
y = false }

init { run A(); run B() }

Figure 9. Dekker’ s solution to the two-pr ocess
mutual exclusion problem, as Promela
from [4].

3.1 PromelaFormal Model: Dekker’sSolution to
the 2-ProcessMutual Exclusion Problem

Figure9 showsDekker’ssolutionto thetwo-processmu-
tualexclusionproblemwrittenin Promela(from [4]), which
is theinput languageusedwith themodelcheckerSPIN[6].
Promelahasbeendesignedto look like a high-level pro-
gramminglanguage,but representscommunicatingFSMs.
SPINis capableof automaticallygeneratingthefinite-state
machineversionof a Promelamodel;Figure10 shows the
modelfrom Figure9 in this form.

Figure11showstheresultof aseriesof randomsearches
on a NAYO graph representingthe finite-statemodel of
Dekker’s mutualexclusionsolutionfrom Figure10. In or-
der to show thatour randomsearchis capableof finding a
fault, we have addedto our NAYO grapha Booleanvari-
ablecalledsafe, which is initially trueandbecomesfalseif
proctypeA andproctypeB areeversimultaneouslyin state
4 (the critical section).We have alsoaddedthe equivalent
of thefollowing transitionto proctypeA(), allowing it to go
directly into its critical sectionwithoutcheckingvariablesy
andt:

state 3 -> state 4 => (true)

Thesearchesshown in Figure11aretypicalof hundreds
of experiments. In every fault-freeDekker model search,
we quickly find all but oneof the OR-nodesin the NAYO
graph(23 of 24)—wenever find the nodesafe T false. In
the model with the fault, we quickly find every node(all
24), including the noderepresentingthe fault. To give an
ideaof exactly how quickly therandomsearchexploredthe
model,thesizecompositefinite-statemachine(theform of
themodelthatwould be searchedby a modelchecker) for
this modelis boundedat 2,304states.Figure11 shows that
ourNAYO searchreachedsaturationafterprocessingabout

proctype A
state 1 -> state 2 => x = 1
state 2 -> state 3 => t = 1
state 3 -> state 4 => ((y == 0) || (t == 0))
state 4 -> state 5 => x = 0
state 5 -> state 0 => -end-

proctype B
state 1 -> state 2 => y = 1
state 2 -> state 3 => t = 0
state 3 -> state 4 => ((x == 0) || (t == 1))
state 4 -> state 5 => y = 0
state 5 -> state 0 => -end-

proctype init
state 1 -> state 2 => (run A())
state 2 -> state 3 => (run B())
state 3 -> state 0 => -end-

Transition inputs and outputs are in the column on the
right. Inputs are enclosed in paranthesis, e.g., ((y ==
0) || (t == 0)); outputs are not, e.g., x = 1. For
processes A and B, state 4 represents the area marked
critical section in the Promela model.

Figure 10. Figure 9 model as finite-state ma-
chines output by SPIN.

200OR-nodes.

3.2 SCR SpecificationExample: the SpaceShut-
tle Liquid Hydr ogenSubsystem

TheSoftwareCostReduction(SCR)language,usedfor
writing software requirementsspecifications,is formally
basedon finite-statemachines[3]. It is relatively easyto
rewrite SCRspecificationsasFSMs,as long asthe speci-
ficationdoesnot usevariableswith a largenumberof pos-
siblevalues.In practice,this meansmakingsomeassump-
tionsaboutkey valuesandcreatinga new variablethatcan
takeononly thosekey values(theabstractionstrategy used
oftenin creatingformalmodels,e.g.,Clarkeet.al.[2]).

In a technical report comparing SCR-basedmodel
checking tools (incorporatingSPIN) to the SMV model
checker, Atanacio includesan SCR specificationfor the
SpaceShuttle Liquid Hydrogen Subsystem[1]. A set
of FSMs representingthe specificationwas automatically
translatedto aNAYO graphusingtheprocedureoutlinedin
Figure 4. In creatingFSMs from the specificationit was
not necessaryto reducethenumberof valuestakenby any
of thevariables;this hadalreadybeendonewhentheorigi-
nal SCRspecificationwaswritten, in orderto decreasethe
statespace(andthereforetheamountof memoryandtime)
requiredby the model checker SPIN, which was usedin
conjunctionwith SCRtoolsto verify themodel.

Figure12 shows resultsfor a seriesof randomsearches
ontheNAYO graphversionof theSpaceShutleLiquid Hy-
drogenSubsystem.Thereare10 searchesplotted in Fig-
ure 12. The resultsshow the basicshapewe are looking

6

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400

U
ni

qu
e

O
R

-n
od

es
 R

ea
ch

ed

�

Total OR-nodes Reached

The correct version of the Dekker model.

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400

U
ni

qu
e

O
R

-n
od

es
 R

ea
ch

ed

�

Total OR-nodes Reached

Dekker model with an error added; the dots indicate
at what point in a particular trial the error node was
reached.

Each plot shows ten trials covering a range of MAX time
values; for each trial the search in Figure 7 was repeated
many times, each time with a random set of inputs, keep-
ing track of the total OR-nodes processed (y-axis) and
the unique OR-nodes reached (x-axis) during that trial.

Figure 11. Search results for model of
Dekker’ s solution to the two-pr ocess mutual
exclusion problem.

for—a quick rise to saturationandthena plateauthat then
remainslevel indefinitely. We observe in Figure12 thatthe
numberof uniqueOR-nodesreachedroseto a plateauof
height52 (out of 62 total OR-nodesin the NAYO graph)
andstayedthere,andthis happenedin all of trials.

Why 52? Why were we unableto reachthe other 10
OR-nodes?A closelook at theSCRspecificationfrom [1]
shows threemonitoredvariables(representinginformation
in the environmentexternal to the system),the first tak-
ing on 2 possiblevalues,the second4, andthe third 4 as
well. For eachof these10valuesthereis anOR-nodein the
NAYO graph—anOR-nodewe would not expect to reach
by our searchexceptaspartof theinput,sinceit represents

0

10

20

30

40

50

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

U
ni

qu
e

O
R

-N
od

es
 R

ea
ch

ed

�

Total OR-Nodes Reached

Figure 12. Result of random searches on
NAYO graph version of SCR specification for
the Space Shuttle Liquid Hydr ogen Subsys-
tem [1].

activity outsidethe system. So for this model, which is
small enoughto readandunderstanddirectly, the random
searchfindseverythingwe expectto beableto find.

Figure 12 shows that our randomsearchreachedsatu-
ration after about5,000OR-nodeswereprocessed,which
may seemlike a lot comparedto the previous example.
But the upperboundon the compositeFSM (that would
be searchedby a model checker) in this case is about
ca� �a�2�"ci�a� , which is about34,000 � 5000.

4 Summary and Further Work

In this paper we presenteda practical alternative to
model-checking:the randomsearchof AND-OR graphs,
whichareautomaticallygeneratedfrom finite statemachine
representations.Unlike modelchecking,randomsearchof
AND-OR graphis very quick analysismethodwhich does
notsuffer from statespaceexplosion.Randomsearchesare
utilised insteadof exhaustive graphtraversalsbecausethe
algorithmsachieving the later areNP-complete,asproven
in Section2. the applicationof randomsearchobviously
limits the rigour of verification,bacausefaultscanhide in
portionsof the statespacenot explored in randomtrials.
This weaknessis only partially mitigatedby the fact that
randomsearchesof NAYO graphsexhibit saturation,i.e.,
prolongedsearchesdo not include statesunvisited in the
(systemspecific)small numberof randomtrials. In case
of high assurancesystems,ratherthanrecommendingour
methodologyfor (sub)systemverification, we suggestits
usageduringsystemdevelopmentanddebugging,whenthe
numberof logical faults is higher than in the later stages
of thedevelopmentlifecycle,andwhentheir removal is the
mostcosteffective.

7

Thecasestudiesreportedin this paperprovide very en-
couragingresults.Thetranslationof Finite StateMachines
to NAYO graphsis fully automatedandsupportedby the
tool. We intend to perform additional casestudiesand,
hopefully, reconfirmthe saturationeffects observed in all
theexamplessofar. We alsoplanto analyzethecorrelation
betweenthesearchsaturationandthedesignstructuresthat
leadto it. Thiswill leadustowardsproviding thesetof de-
signrecommendations,with thegoalof makingthemodels
andensuingdesignsmoretestableand/oreasierto verify.

References

[1] BeminaAtanacio. Modeling theSpaceShuttleLiquid Hy-
drogenSubsystem.Technicalreport, The Software Engi-
neeringInstitute,Carnegie Mellon University, 2000.

[2] E. Clarke, O. Grumberg, andD. Peled. Model Checking.
MIT Press,Cambridge,MA, 1999.

[3] ConstanceHeitmeyer, Bruce Labaw, and Daniel Kiskis.
Consistency Checkingof SCR-StyleRequirementsSpecifi-
cations.In InternationalSymposiumonRequirementsEngi-
neeing, York, England,1995.

[4] Gerard J. Holzmann. Basic SPIN Manual. Avail-
ableathttp://cm.bell- labs.com/cm/cs/what/
spin/Man/Manual.htm .

[5] G. Holzmann. Design and Validation of Com-
puter Protocols. Prentice Hall, 1990. Available at
http://cm.bell- labs.com/cm/cs/what/
spin/Doc/Book91.html .

[6] G. Holzmann. The Model Checker SPIN. IEEE Transac-
tionson Software Engineering, 23(5),1997.

[7] J. Horganand A. Mathur. SoftwareTestingandReliabil-
ity. In M. Lyu, editor, TheHandbookof SoftwareReliability
Engineering, pages531–565,McGraw-Hill, 1996.

[8] H. Kautz and B. Selman. Pushingthe Envelope: Plan-
ning, Propositional Logic and StochasticSearch. In
Proceedingsof the 13th National Conference on Arti-
ficial Intelligence and the 8th Innovative Applications
of Artificial Intelligence Conference, pages 1194–1201,
Menlo Park, Aug. 4–8 1996. AAAI Press / MIT
Press. Available at http://www.cc.gatech.edu/
˜jimmyd/summaries/kautz1996.ps .

[9] A. Mackworth and E. Frueder. The Complexity of Some
PolynomialNetwork Consistency Algorithmsfor Constraint
Satisfaction Problems. Artificial Intelligence, 25:65–74,
1985.

[10] T. MenziesandB. Cukic. Whento TestLess. IEEE Soft-
ware, 17(5):107–112,2000. Available at http://tim.
menzies.com/pdf/00iesoft.pdf .

[11] T. Menzies,B. Cukic,H. Singh,andJ.Powell. TestingNon-
determinateSystems. In ISSRE2000, 2000. Available at
http://tim.menzies.com/pdf/00issre.pdf .

[12] T. MenziesandY. Hu. Agentsin aWild World. In C.Rouff,
editor, Formal Approaches to Agent-BasedSystems,book
chapter, 2002. Available at http://tim.menzies.
com/pdf/01agents.pdf .

[13] T. Menzies,D. Owen,andB. Cukic. SaturationEffectsin
Testingof Formal Models. In Submittedto ISSRE2002,
2002. Available from http://tim.menzies.com/
pdf/02sat.pdf .

[14] W. RichardStevens.TCP/IPIllustrated,Volume1: ThePro-
tocols. Addison-Wesley, 1994.

[15] B. Smith and M. Dyer. Locating the PhaseTransitionin
Binary ConstraintSatisfactionProblems. Artificial Intelli-
gence, 81(1-2):155–181,1996.

8

