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ABSTRACT
An over-zealous machine learner can automatically generate large,
intricate, theories which can be hard to understand. However, such
intricate learning is not necessary in domains that lack complex
relationships. A much simpler learner can suffice in domains with
narrow funnels; i.e. where most domain variables are controlled by
a very small subset.

Such a learner is TAR2: a weighted-class minimal contrast-set
association rule learner that utilizes confidence-based pruning, but
not support-based pruning. TAR2 learns treatments; i.e. constraints
that can change an agent’s environment. Treatments take two forms.
Controller treatments hold the smallest number of conjunctions that
most improve the current state of the system. Monitor treatments
hold the smallest number of conjunctions that best detect future
faulty system behavior. Such treatments tell an agent what to do
(apply the controller) and what to watch for (the monitor condi-
tions) within the current environment.

Because TAR2 generates very small theories, our experience has
been that users prefer its tiny treatments. The success of such a
simple learner suggests that many domains lack complex relation-
ships.
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1. INTRODUCTION
When is just enough learning enough? If we replace sophis-

ticated and complex learners by simpler algorithms, what do we
lose? Do such simpler learners have any generality? Or are they
just one-off ad-hoc hacks that must be discarded whenever the do-
main changes?
�
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These kind of questions keep repeating, in many fields. For
example, proponents of lightweight case-based reasoning (CBR-
lite) reject intricate domain modelling, arguing that much can be
achieved using (e.g.) very simple indexing schemes1 . Similarly, in
the testing-lite field, Menzies & Cukic have argued that a surpris-
ingly large percentage of errors can be detected within software via
an inexpensive random sampling of the input space of a program.
Analogous results exist in the machine learning (ML) community.
For example, Holte found that C4.5 performs only moderately bet-
ter than 1R (1R is a learner which only generates decision trees
with a maximum depth of one) [11]

Lightweight approaches may not necessarily replace heavier meth-
ods. For example, the CBR-heavy community rejects CBR-lite, ar-
guing that CBR-lite tends to dodge the most interesting and fun-
damental problems. Menzies & Cukic caution that testing-lite is
inappropriate for mission-critical and safety-critical systems. Sim-
ilarly, Holte does not propose 1R as a replacement for C4.5; rather,
he used it to argue that most of the datasets used to test learners
does not contain very complex relationships. When ML-lite meth-
ods such as 1R miss such complex relationships, heavier weight
methods are required.

On the other hand, if most domains lack such complex relation-
ships, then ML-lite is an attractive option. One advantage of ex-
ploring simpler methods before complex ones is that ML-lite algo-
rithms can generate very simple theories. Such simpler theories are
easier to understand.

We have reasons to believe that many domains lack complex re-
lationship. For some years now, we have repeatedly observed a cu-
rious narrow funnel effect. In many domains, it has been observed
that a small number of critical variables control the remaining vari-
ables within a system, the metaphor being that all processing runs
down the same narrow funnel [25]. The concept of narrow fun-
nels has been reported in many domains under a variety of names
including:

� Master-variables in scheduling [7];

� Prime-implicants in model-based diagnosis [28] or machine
learning [29], or fault-tree analysis [14].

� Backbones in satisfiability [26, 30];

� the dominance filtering used in Pareto optimization of de-
signs [12];

� Minimal environments in the ATMS [8];

� The base controversial assumptions of HT4 [24].�
European Case-Based Reasoning Workshop, Lausanne Switzer-

land, 1996, http://www.ai-cbr.org/ewcbr96.html.
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Whatever the name, the core intuition in all these terms is the same:
what happens in the total space of a system can be controlled by a
small critical region. Where the narrow funnel effect exists, the
space of options within a large space reduces to just the range of
a few variables within the narrow funnel. In such a reduced space,
variables assignments outside the funnel are highly correlated to
assignments within the funnel. Machine learning in such domains
is very simple: an adequate theory need only comment on assign-
ments to the variables that are highly correlated to funnel assign-
ments.

Note that Holte’s results are consistent with ML data sets he ex-
plored contained narrow funnels. 1-level deep decision trees work
since that is enough to check for assignments to the funnels vari-
ables.

We have argued previously that narrow funnels are very com-
mon [16, 17, 21, 23]. Hence, ML-lite tools should suffice in many
domains. This paper tests that hypothesis. Since Holte has al-
ready studied ML-lite for decision tree learning, this paper explores
TAR2: a lightweight association rule learner. Our premise will be
the small treatment assumption; i.e. a very small number of asso-
ciations are adequate for controlling domains with narrow funnels.
Our associations take the form of treatments; i.e. a constraint that
can change an agent’s environment. Treatments take two forms.
Controller treatments hold the smallest number of conjunctions that
most improve the current state of the system. Monitor treatment
hold the smallest number of conjunctions that best detect future
faulty system behavior. Such treatments tell an agent what to do
(apply the controller) and what to watch for (the monitor condi-
tions) within the current environment.

TAR2’s distinguishing feature is that it performs very well, yet it
is seems overly simplistic. The algorithm outputs only two associ-
ations: the best smallest controller and the best smallest monitor. If
domains contain complex relationships, then these two small asso-
ciations will be useless. The algorithm’s runtimes are exponential
on the size of the treatments. Unless the small treatment assump-
tion holds, such exponential runtimes can be impractically slow.
Also, the algorithm relies on a confidence1 measure which prunes
the space of possible associations. The confidence1 measure we
describe below has no special merit: it was merely the first one we
could think of. Further, our initial implementation worked with-
out algorithmic or memory management optimizations. Our only
explanation for the surprising success of this simplistic implemen-
tation is that the small treatment assumption holds for the domains
we studied.

Methodologically, proponents of a lightweight method are duty-
bound to describe an operational assessment criteria. Our criteria
is based on treatments: a good association selects a portion of the
test data that contains something we desire or something we with
to avoid. Without such a criteria, it is hard to assess lightweight
vs heavyweight approaches. In our view, such a criteria must be
algorithmic, semantic and portable. Reports of the effectiveness
of an algorithm such as learner � could find associations within
10,000,000 examples using only 843MB [2] are exciting. However,
the algorithmic nature of this report does not assess any semantic
issues. If the learnt associations weren’t “useful”, however that
is defined, then that learning effort was wasted. “Usefulness” can
be assessed via domain experts who understand the semantics of
a domain. Such a measure is not portable: researchers across the
globe rarely have access to the same domain experts.

The advantage of treatment-based assessment is that they are a
portable semantic assessment criteria. That is, other researchers
could demonstrate the “usefulness” of their learner on the exam-
ples shown in this paper, without having to (e.g.) interview domain

experts. The disadvantage of treatment-based assessment is that
it is not a widely-accepted criteria. Other papers in the fields of
association rule learner do not express the efficacy of their associa-
tions in terms of the treatments found in their associations. Hence,
this paper can only offer baseline measurements, not comparative
measurements, of a new sub-class of learner; i.e. a treatment asso-
ciation rule learner.

The rest of this article discusses TAR2. After an introductory
example and a discussion of related work, the TAR2 algorithm is
presented. This is followed by examples and evaluations and an
analysis of the general applicability of our approach.

2. RELATED WORK
Formally, TAR2 is a weighted-class minimal contrast-set asso-

ciation rule learner that uses confidence measures but not support-
based pruning. This section discusses those terms.

The general form of a treatment is:
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where
� � is the controller rule;

� � is the monitor rule; good and
bad are sets of classes that the agent likes and dislikes respectively;
and more and less are the frequency of these classes, compared
against the current situation, which we call the baseline. The nature
of these output rules distinguishes TAR2 from many other learning
strategies.

Association rule learning: Classifiers like C4.5 and CART learn
rules with a single attribute pair on the right-hand side; e.g. class=
goodHouse. Association rule learners like APRIORI [2] and TAR2
generate rules containing multiple attribute pairs on both the left-
hand-side and the right-hand-side of the rules. That is, classifiers
have a small number of pre-defined targets (the classes) while, for
association rule learners, the target is less constrained.

General association rule learners like APRIORI input a set of?
transactions of items @ and return associations between items

of the form ��ACBED � ACB where ��ACBGFH@ and
� ACBIFJ@

and ��ACBCK � ACB �ML . A common restriction with classifiers is
that they assume the entire example set can fit into RAM. Learn-
ers like APRIORI are designed for data sets that need not reside
in main memory. For example, Agrawal and Srikant report ex-
periments with association rule learning using very large data sets
with 10,000,000 examples and size 843MB [2]. However, just like
Webb [32], TAR2 makes the “memory-is-cheap assumption”; i.e.
TAR2 loads all it’s examples into RAM.

Specialized association rule learners like CBA [13] and TAR2
impose restrictions on the right-hand-side. For example, TAR2’s
right-hand-sides show a prediction of the change in the class distri-
bution if the constraint in the left-hand-side were applied. The CBA
learner finds class association rules; i.e. association rules where the
conclusion is restricted to one classification class attribute. That is,
CBA acts like a classifier, but can process larger datasets that (e.g.)
C4.5. TAR2 restricts the right-hand-side attributes to just those
containing criteria assessment.

Weighted-learning: Standard classifier algorithms such as C4.5 [27]
or CART [4] have no concept of class weighting. That is, these
systems have no notion of a good or bad class. Such learners there-
fore can’t filter their learnt theories to emphasize the location of
the good classes or bad classes. Association rule learners such as
MINWAL [5], TARZAN [22] and TAR2 explore weighted learn-
ing in which some items are given a higher priority weighting that
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others. Such weights can focus the learning onto issues that are of
particular interest to some audience. For example TARZAN [22]
swung through the decision trees generated by C4.5 [27] and 10-
way cross-validation. TARZAN returned the smallest treatments
that occurred in most of the ensemble that increased the percentage
of branches leading to some preferred highly weighted classes and
decreased the percentage of branches leading to lower weighted
class. TAR2 was as experiment with applying TARZAN’s tree
pruning strategies directly to the C4.5 example sets. The result-
ing system is simpler, fast to execute, and does not require calling
a learner such as C4.5 as a sub-routine.

Contrast sets: Instead of finding rules that describe the current
situation, association rule learners like STUCCO [3] finds rules
that differ meaningfully in their distribution across groups. For
example, in STUCCO, an analyst could ask ”what are the differ-
ences between people with Ph.D. and bachelor degrees?”. TAR2’s
variant on the STUCCO strategy is to combine contrast sets with
weighted classes with minimality. That is, TAR2 treatments can be
viewed as the smallest possible contrast sets that distinguish situ-
ations with numerous highly-weighted classes from situations that
contain more lowly-weighted classes.

Support-based pruning: In the terminology of APRIORI, an
association rule has support : if :+N of the

?
contains O �QP ;

i.e. :R�TS U�V�W#SS X S (where Y O �ZP Y denotes the number of examples
containing both O and P ). The confidence [ of an association rule
is the percent of transactions containing O which also contain P ;
i.e. [ � S U�V�W�SS U\S .

Many association rule learners use support-based pruning i.e.
when searching for rules with high confidence, sets of items @+]�^ $&$&$ @`_
are only be examined only if all its subsets are above some mini-
mum support value. Support-based pruning is impossible in weighted
association rule learning since with weighted items, it is not always
true that subsets of interesting items (i.e. where the weights are
high) are also interesting [5]. Another reason to reject support-
based pruning is that it can force the learner to only miss features
that apply to a small, but interesting subset of the examples [31].

Confidence-based pruning: Without support-based pruning, as-
sociation rule learners rely on confidence-based pruning to reject all
rules that fall below a minimal threshold of adequate confidence.
TAR2 uses confidence1 pruning.

3. CONFIDENCE1 PRUNING
TAR2 targets the attribute ranges that “nudge” a system away

from undesired behavior and towards desired behavior. TAR2’s
score for each range is the confidence1 measure. This value is high
if a range occurs frequently in desired situations and infrequently
in undesired situations. That is, if we were to impose this range as
a constraint, then it would tend to ”nudge” the system into better
behavior.

To find confidence1, we assume that we can access a�[ 79�b:+: ; i.e.
some numeric value assigned to [ 7c�*:+: . The class with the highest
value is the 3d��:=� class. The 7<��:�:`�`� classes are the set of all classes,
less the 3=�!:=� class. Let eRf g\^ 
6$ �ih be the number of occurrences of
some attribute range in some class g ; i.e.

eRf g hcjlk m � Y 
6$ � � [ 7c�*:+:�� g � ? Y
To generate confidence1, we compare the relative frequencies of an
attribute range in different classes. This comparison is weighted by
the difference in the scores of the classes, and normalized by the
total frequency count of the attribute range; i.e.

Items Criteria
outlook temp( n F) humidity windy? class

sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

Figure 1: A log of some golf-playing behavior.
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Figure 2: Frequency of confidence1 generated from Figure 1.
Assumes that numeric ranges have been divided into 3 3=����.�: .
Outstandingly high confidence1 values shown are in black. Y-
axis is the number of ranges that have a particular confidence1
value.

o8plq>rts�u�u
s�v2w)w a 3=��:d�yx a!g{z � w eRf 3d��:=� hcj|k m x eRf g hcj|k m z)z
Y 
6$ � � ? Y

For example, from the golf playing example of Figure 1, let us
assume that the classes have been scored as follows: ”lots”=8,
”some”=4, ”none”=2; i.e. ”lots” is the 3=��:d� class. The range out-
look=overcast appears four, zero, and zero times when playing
”lots”, ”some”, and ”none” golf (respectively). The confidence1
of outlook=overcast is therefore:

w)w~} x�� z � w�� xQ� z)z�� w)w~} x � z � w�� x�� z)z� � � � � ���d�
Figure 2 shows the range of confidence1 seen in Figure 1. The con-
fidence1 ranges shown in black are outstandingly high; i.e. these
are the values may generate the best control treatments. TAR2
forms its treatments by exploring subsets of the ranges with out-
standingly high confidence1 values.

4. INSIDE TAR2
TAR2 generates controller and monitor treatments. Monitors are

generated using in same manner as generating controllers. How-
ever, before the monitor is generated, the scoring function for the
criteria is reversed so TAR2 now seeks attribute ranges that nudge a
system into worse behavior. The rest of this section discusses how
to generate controllers.

The TAR2 algorithm is shown in Figure 3. The frequency
function counts the frequency of examples falling into different
criteria. Using this function, a 3=�b:`��7c����� class distribution is col-
lected from

?
(this is used later to contrast different treatments)

and copied to a �)�`0�� variable (this is used to store the best dis-
tribution seen so far). The compare function compares two fre-
quencies to generate reports like (e.g.) 43% less ”lots” and 5%
less ”some” and 167% more ”none”. The discretize function
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input: � The examples.�c���)�{�
Attributes seen in the examples.� �����
The best combination of criteria.�
Desired size of LHS.���=� ���9���c��� Threshold for a useful attribute range.���+���
Threshold for acceptable number of

� �����
entries in

� � ���d����� .� �`���`�
Number of divisions within continuous ranges.

output:  c¡ � A conjunction of attribute ranges� ¡ � a change in the class distributions

01. � ¢�£ discretize( � , � �`���`� )
02.

���)� � £ � �����   �9��� £ frequency( � ¢ )
03. for

�d��� � � �
¤ ��� in
�c���)�{�4¥

04. for ¦ in
�`��� � � �
¤ ��� . � �`���`�§�1¥

05. if confidence1(
�d��� � � �
¤ ��� . ¦ ) ¨ ���d� ���<�)�c���

06. then © �`���d�<�`�d����� £ª© �`���d�<�`�d����� +
�d��� � � �	¤ ��� . ¦#«d«

07. for ¬®­¯© �`�b�d�9�`�d���§� where | ¬ | =
� ¥

08.
� � ���d���§� £T¬±°���¢

09. � ��� ¤   � £ frequency(
� � ���`����� )

10. if � ��� ¤   � > ���)� � and |
� ���)� °²� ¢ |/| � ���)� ° � � ���`����� |> ���+�)�

11. then
¥  c¡ � £³¬

12. � ¡ � £ compare(
� �+���   �9��� , � ��� ¤   � )

13.
���)� � £ � ��� ¤   � «d«

14. if (  c¡ �µ´¶%· and � ¡ �C´¶%· ) then return (  9¡ � , � ¡ � )
15. else return "no treatment"

Figure 3: The TAR2 algorithm.

controllerG
if outlook=overcast
then (230% more "lots" and no "some"

and no "none").

monitorG
if 90 <= humidity < 97
then (43% less "lots" and 5% less "some"

and 167% more "none").

Figure 4: Control and monitor rules found from Figure 1.
To control outlook, unscrupulous owners of golf courses could
(e.g.) bribe radio announces to lie about the weather report.

divides the numeric ranges seen in the examples into 3=����.�: num-
ber of groups. Numerous discretization policies are possible but
the simplest works adequately: TAR2 sorts the known values and
divides into 3=����.�: with (roughly) the same cardinality.

Once a treatment is found, it is applied to the example set to
create a ���!�`���)�`. example set; i.e. all the examples that don’t con-
tradict the proposed treatment (see line 8). A ”good” treatment
includes most of the examples that have the 3d��:=� criteria (e.g. in
the golf example of Figure 1, 3d��:=� = playing ”lots” of golf). The:`¸��`¹ parameter is used at line 10 to reject ”bad” treatments; i.e.
those that don’t contain enough of the 3d��:=� criteria. For example,
at :`¸b�`¹ =5, at least 20% of the 3d��:=� criteria must appear in the
treatment.

TAR2 explores subsets of the �!���"����: found in a set of exam-
ples

?
(see line 7). Subset exploration is constrained to just the�����"���!: with an outstandingly large confidence1 score (see line 5).

Even with this restriction, there are still an exponential number of
such subsets. Hence, to be practical, TAR2 must seek the minimal
possible number of control actions and monitors. Accordingly, the
user of TAR2 constrains its learning to rule conditions of size º ,
where º is small (see line 7). Often, effective treatments can be
found using º¼» � which suggests that narrow funnels existed in
the datasets used for our case studies.

baseline: controllerG: monitorG:
(from Fig-
ure 1)

½=¾�¿~Àc½=½dÁ =½=Â�Ã5Ä`Å�Æ!Ç§¿ È ¾�É6Ê�Ë�ÌÎÍ Ï`Ð>ÑtÑ Ï+Ò`Ó

0
25
50
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100

36 21 43
0

25
50
75

100

0 0 100
0

25
50
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100

60 20 20

Figure 5: Percentage of classes seen in different situations.
The left-hand-side histogram is a report of the class frequen-
cies seen in Figure 1. The middle and right-hand-side his-
tograms were generated by applying the treatments of Figure 4.
KEY: none; some; lots.

baseline controller LegendÔ�Ã5¿~Æ�À'ÀcÃ§Õ*Ö+¿ È ÌÍ ×>Ñ Ò!ÑtÑ Ø�Ñ Ù+Ó

0
25
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100
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0

25
50
75

100

0 0 100

setosa
virginica

v.color

Figure 7: Iris

5. EXAMPLES AND EXPERIMENTS

5.1 Examples
The output of TAR2 describes constraints which, if applied to the

dataset, may reject certain examples. For example, the controllerG
treatment of Figure 4 contains the constraint -�Ú*�)79-�-!¸Û��-!Ü��`� [ �b:=� .
If we reject all items in the golf dataset that contradicts this con-
straint, then our golfers now play ”lots”, ”some”, and ”none” golf
in 100%, 0%, and 0% (respectively) of the constrained dataset (as
shown in the middle histogram of Figure 5).

The monitor rule monitorG of Figure 4 was generated in a
similar manner; but with the scoring system reversed; i.e. ”lots”=2,
”some”=4, ”none”=8. In this case, ”none” is the “ 3=��:d� ” class and
TAR2 will find a treatment that selects for less golf behavior; i.e.Ý � » (*Ú*01�~.�����Þàß Ý�á

. After applying this constraint , the class
distribution changes to the right-hand-side histogram of Figure 5.

Figure 6 contrasts two theories learnt from the same data set us-
ing TAR2 and C4.5. Note that TAR2’s theory is far smaller than
C4.5’s theory. Our experience with business users is that they pre-
fer find TAR2’s simpler theories. As one user put it “decision trees
just tell you where you are, treatments tell you what to do”.

5.2 Experiments
This section discusses experiments with TAR2 where the leaner

was assessed via two methods:

Xvals: Standard N-way cross-validation studies.

Simulations: Simulations showing how well TAR2’s treatments
can control or monitor some model.
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Figure 6.A: A learnt decision tree. Classes (right-hand-side), top-to-bottom, are “high”, “medhigh”, “medlow”, and “low” This indicates
median value of owner-occupied homes in $1000’s.
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Figure 6.B: Treatments learnt in the same domain:

baseline controllerH monitorH
(i.e. best action) (i.e. diaster if..)
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Figure 6: Comparing decision trees learnt by C4.5 and treatments learnt by the TAR2 treatment learner. Theories learnt from the
506 cases in HOUSING example set from the UC Irvine repository. This dataset has the class distribution shown in the bottom
table, left-hand-side. The bottom table shows actions that should most increase/decrease housing values in the middle/right columns
(respectively). LSTAT= lower status of the population; NOX= nitric oxides concentration (parts per 10 million); PTRATIO= pupil-
teacher ratio by town; RM= average number of rooms per dwelling.
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5.2.1 Xval Studies
Figure 7 to Figure 11 shows TAR2 executing over some samples

from the UC Irvine repository (http://www.ics.uci.edu/
˜mlearn/):

� These figures display the effects of the treatment closest to
the average improvement seen in a 10-way cross-validation
study.

� These figures show the class distributions in percentages

� These figures list the domain classes in the a legend. The
heuristic worth assigned to each class is, top-to-bottom, worst-
to-best.

In Figure 7, TAR2 was told that the worth of each type of flower
was (in increasing order) setosa, viginica, then v.color. TAR2 then
learnt that ÿ $ á » �"�d����7<79�+�"����( ß � $ } would select for the flower
with highest worth (i.e. v.color).

Similarly, in Figure 8, TAR2 learnt a selector that favored high
quality cars. By restricting engine size to

� } » .��	:��"79� [ �`01�+�"��ß�d��� and
� � » (*-���:`����-!¹i�`�%ß á }

, the ratio of high quality cars
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Figure 10: Car
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Figure 11: Car: reversing the class scoring.

increased from 26% to 70%. Further, the low and medium low cars
have disappeared.

In Figure 9, TAR2 learnt a specialized feature extractor for find-
ing pictures mixed in with text, horizontal lines, vertical lines, and
graphics. According to TAR2, a height between 34 to 86, and a
mean number of white-black transitions between 3.9 and 9.5 will
locate text blocks, and nothing else.

In the car domain of Figure 10, most of the classes are non-best.
The average best controller seen in the 10-way cross-validation for
the car domain was buying=low and safety=high. While this con-
troller increases the frequency of very good cars from 4% to 38%,
this controller still leaves us with 31% unacceptable cars. While
this controller is weak, the monitor obtained by reversing the class
scoring is very strong. Figure 11 shows that monitor: if we select
two person cars with low safety, then 100% of the cars are unac-
ceptable. That is, when the best class occurs rarely in the dataset,
TAR2 may be better at finding methods to degrade a system, rather
than improve it.

5.2.2 Simulation Studies
Another way to assess TAR2 is to test how well it can control

some model. To perform such an assessment, we (i) generated data
sets from some model; (ii) apply TAR2 to find treatments from
those data set; (iii) imposed those treatments as constraints on the
model; (iv) ran the model a second time; (v) compared the outputs
of the second run to the predictions made by TAR2.

In our first two simulations studies, a baseline class distribution
was used by TAR2 to generate a best controller and a prediction
of how this best controller would change the class distribution. We
call the predicted distribution the treated distribution. The actual
distribution was the class distribution seen after the best controller
was imposed on the model and the model executed again. In Fig-
ure 12 and Figure 13, the treated distribution matches the result
distribution almost exactly; i.e. TAR2 accurately predicted the ef-
fects of the controller treatment.

Figure 12 was generated from a model of software project risk.
This risk model was implemented as part of the COCOMO project.
The goal of the COCOMO project is to build an open-source soft-
ware cost estimation model [1]. Internally, the model contains a
matrix of parameters that should be tuned to a particular software
organization. Using COCOMO-II, the Madachy risk model can as-
sess the risk of a software cost over-run [15]. For machine learning
purposes, the goal of using the Madachy model is to find a change
to a description of a software project that reduces the likelihood of
a poor risk software project [19, 22]. In the experiment shown in
Figure 12, the model was executed 30,000 times using randomly
selected inputs. When the treatments learnt from TAR2 treatments
were imposed on model inputs, and the model was executed again,
all the high risk projects were removed, the percentage of medium
risk projects was significantly reduced, and the percentage of low

6



baseline treated actual

0
25
50
75

100

0 206020
0

25
50
75

100

0 0 40 60
0

25
50
75

100

0 0 40 60

Figure 12: COCOMO key: very high risk; high
risk; medium risk; low risk.

risk projects was tripled.
Figure 13 shows TAR2 controlling a qualitative description of an

electrical circuit. A qualitative description of a circuit of 47 wires
connecting 9 light bulbs and 16 other components was coded in
Prolog. The model was expressed as a set of constraints; e.g. the
sum of the voltages of components in series is the sum of the volt-
age drop across each component. The goal of the circuit was to
illuminate a space using the 9 light bulbs. The circuit is qualitative
and qualitative mathematics is nondeterministic; e.g. sum of a neg-
ative and a positive value is unknown. The problem with the circuit
was out-of-control nondeterminism. On backtracking, this circuit
generated 35,228 different solutions to the constraints. In many of
these solutions, the circuit was unacceptably dark: only two bulbs
glowing, on average (see the top histogram of Figure 13) . The
goal of the machine learning was hence to find a minimal set of
changes to the circuit to increase the illumination [18]. Figure 13
shows the distribution of the frequency with which bulbs glowed
in a qualitative circuit description. The behavior of qualitative cir-
cuits is notoriously hard to predict [6] but TAR2 found two actions
on the circuit that trebled the average number of bulbs that glowed
(see the treated and actual plot of Figure 13).

Figure 14 shows a third simulation study with TAR2. Analysts
at the NASA Jet Propulsion Laboratory debate satellite design by
building a semantic network connecting design decisions to satel-
lite requirements [9]. Each edge is annotated with the numeric cost
and benefits of taking some action. Some of these nodes repre-
sent base decisions within the project (e.g. selection of a particular
type of power supply). Each set of decisions has an associated
cost. The net can be executed by selecting actions and seeing what
benefits results. One such network included 90 possible actions;
i.e. ��
�
�� �`����� combinations of actions. Note the black line,
top-left, of Figure 14. All the dots below this line were generated
via 10,000 random selections of the decisions, and the collection
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Figure 13: Circuit. X-axis denotes number of bulbs glowing in
the circuit.
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Figure 14: Results from the satellite domain. The dots below
the line show the initial output of the model: note the very large
spread in the costs and benefits. The dots above the line show
the final outputs of the model after 5 iterations of TAR2 learn-
ing.

of their associated costs and benefits. All the dots above this line
represent high benefit, low cost projects found by TAR2 [10]. In
this application, TAR2 was used as a knowledge acquisition tool.
After each run of TAR2, the proposed best controller was debated
with the analysts. Each run, and its associated debate, resulted in
a new set of constraints for the semantic net. The new constraints
were then imposed on the model before the next run. After five
runs, TAR2 found 30 decisions (out of 99) that crucially effected
the cost/benefit of the satellite. Note that this means TAR2 also
found 99-30=67 decisions that could be safely ignored.

For comparison purposes, a genetic algorithm (GA) was also ap-
plied to the Figure 14 domain [10]. The GA also found decisions
that generated high benefit, low cost projects. However, each such
GA solution commented on every possible decisions and there was
no apparent way to ascertain which of these are the most critical
decisions. The TAR2 solution was deemed superior to the GA so-
lution by the domain experts, since the TAR2 solution required just
30 actions rather than the 99 demanded by the GA.

Note that the Figure 14 case study is not a counter example to our
thesis that most domains have narrow funnels. That study adopted
the incremental approach for reasons of convenience. JPL’s seman-
tic net simulator was too slow to generate enough examples at one
run. Hence, an incremental generate-and-constrain approach was
taken.

6. GENERALITY
This section is an algorithmic assessment of TAR2. Such an

algorithm assessment comments on TAR2’s ability to scale to larger
domains.

Figure 15 reports TAR2 runtimes on data sets of different sizes.
Figure 16 shows three studies where the size of the treatments ( º ,
from line 7 in Figure 3) was held constant, and the size of the
dataset was increased. Figure 17 shows one study were the size
of the dataset was held constant and the size of the treatments was
increased. Note that:

1. TAR2 can handle small to medium sized datasets. For ex-
ample, the algorithm learnt effective treatments in 23 sec-
onds from a dataset containing size 250,000 examples: see
the reachness domain in Figure 15.
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Attributes treat- run-
# # # # ment times

domain examples continuous discrete classes size (secs)

From UC Irvine:
iris 150 4 0 3 1 è 1
wine 178 13 0 3 2 è 1
car 1,728 0 6 4 2 è 1
autompg 398 6 1 4 2 1
housing 506 13 0 4 2 1
page
blocks

5,473 10 0 5 2 2

From this article:
circuit 35,228 0 18 10 4 4
cocomo 30,000 0 23 4 1 2
satellite 30,000 0 99 9 5 86

From other sources [20]:
reachness 25,000 4 9 4 2 3

250,000 4 9 4 1 23

Figure 15: Runtimes for TAR2 on different domains (on a
333MHz Windows machine with 200MB of ram). The text dis-
cusses experiments with 10,000 examples from the satellite do-
main. This table shows a larger case study of 30,000 examples.
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Figure 16: Increasing size of dataset and size of treatments.
Datasets generated from the COCOMO model.

2. TAR2 has the potential to scale to large datasets. Assum-
ing constant treatment size, TAR2’s runtimes are linear on
dataset size: see Figure 16.

3. However, the algorithm is exponential on treatment size: see
the marked increase in the runtimes between N=2 and N=3
in Figure 16 and the log-linear plot of Figure 17.

The exponential impact of increasing treatment size is not neces-
sarily a reason to reject TAR2. Firstly, if very large treatments are
required, then a incremental treatment learning approach, such as
used in the satellite case study of Figure 14, may suffice.

Secondly, if most domains don’t need large treatments, then this
exponential impact will not be seen in practice. Elsewhere, we have
made an average case mathematical analysis of the ratio of the odds
of a domain narrow funnels to the odds of larger funnels. Under a
wide variety of assumptions, the same effect holds: the odds of
narrower funnels are millions of times more likely that wider fun-
nels [21]. Such a statistical analysis represents an average case
result and may not apply to a particular domain. What would be
useful would be some kind of assessment tool that checks if this
average case statistical result applies to a particular domain.

The confidence1 distribution can be used to test for narrow fun-
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Figure 17: For different treatment sizes º , Increasing size of
treatments, keeping data set size constant (3MB). Dataset gen-
erated from the COCOMO model.
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Figure 18: A hypothetical confidence1 frequency distribution
with a large left tail that is inconsistent with narrow funnels.
Note: yet to be observed in any example set.

nels. Domains that contain such funnels would exhibit the follow-
ing property: a small number of variables within the funnel exert
a disproportionately large influence on the overall behavior of the
system. A test for such variables is to check for small right tails
in the confidence1 distributions. Figure 5 has such a small right
tail; i.e. the bulk of the distribution lies away from the maximum
value. Distributions with a large right tail such as Figure 18 are not
consistent with narrow funnels. Figure 19 shows the confidence1
distributions seen in eight example sets: four from the UC Irvine
repository and some of the other domains described above. Note
that in all cases, the distribution has a small right tail; i.e. a small
number of variables exert a disproportionately large influence on
the overall behavior of the system. In all, we have applied TAR2 to
20 domains: the ones discussed in this paper and others not shown
for space reasons. In none of those domains have we observed a
large right tail.

7. CONCLUSION
ML-lite will not work if domains contain complex relationships.

Domains with narrow funnels are not complex: the key controllers
for the whole space are merely the few variables in the funnel.

The ML-lite TAR2 association rule learner is both a test and an
application of funnel theory. TAR2 offers two tests for narrow fun-
nels. Firstly, a confidence1 distribution with a small right tail is
consistent with a domain containing narrow funnels. Secondly, if a
domain contains narrow funnels, then TAR2 should be able to gen-
erate adequate controllers and monitors for that domain. All the
domains we have seen to date have these two features.

The open issue is how many other domains lack complex rela-
tionships. Based on around 20 case studies with TAR2 (some of
which were reported above), and Holte’s prior work with 1R, we
have some empirical reasons to believe that many domains are not
complex. Also, we have theoretical reasons for believing that nar-
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Figure 19: Confidence1 distributions seen in eight domains. Y-axis is the number of times a particular confidence1 was seen. Top row
comes from datasets taken from the UC Irvine repository. Bottom row were generated from other domains discussed in this article.

row funnels are common [16,17,21,23]; i.e. domains with complex
relationships are rare and ML-lite methods like TAR2 will often
suffice.

The success of such a simple algorithm such as TAR2 suggests
that it can be fruitful to first try lightweight methods before explor-
ing heavyweight methods. We advocate using TAR2 as a prepro-
cessor to other, more elaborate schemes. If TAR2 can learn ade-
quate controllers and monitors, then the domain is simple enough
for ML-lite. Otherwise, ML-heavy methods should be explored.

TAR2 is available for download from http://www.ece.ubc.
ca/twiki/bin/view/Softeng/TreatmentLearner.
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