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Abstract. At the core of soft computing is the intuition that from imprecise
knowledge, we can still make reasonable inferences. This paper offers experi-
mental and mathematical evidence for this intuition. Based on a literature review
and a newly developed mathematics of ”reachability”, it is argued that searches
through a space containing uncertainties, most of the reachable conclusions will
be reached via a small number of ”master variables” in a ”narrow funnel”. Such
narrow funnels can be found using very simple randomized search methods.

1 Introduction

Some intuitions, while compelling, may not be correct. For example, consider Zadeh’s
intuition that:

... as the complexity of a system increase, our ability to make precise and yet
significant statements about its behavior diminishes until a threshold is reached
beyond which precision and significance (or relevance) become almost mutu-
ally exclusive properties.

–Lofti Zadeh[48]

Our own pre-experimental notions was that this intuition was essentially correct. It
seemed clear that the more we say, the less we are certain on what we say. As theory
complexity increases, the certainty of that theory’s assertions decreases as we struggle
to fill details which we may never have explored before. One way in which complex
theories get imprecise is the presence of “many maybes”; i.e. multiple points where
it is unclear which mutually incompatible assertion should be made. This may be as
simple as a dispute between different designers over the size of a numeric constant in
an equation. Alternatively it may be as complex as a qualitative reasoner that generates
innumerable possible conclusions, one for each set of consistent possibilities within a
large space of contradictions. In either case, the problem is the same: assertions about
some point are contradictory.

However, after reviewing the available evidence, these intuitions must be revised.
A repeated observation is that within the current generation of software,many maybes

0 An earlier version of this paper, with the same title, appeared in the 2nd International Workshop
on Soft Computing applied to Software Engineering, Netherlands, February, 2001:http:
//varlet.csc.uvic.ca/˜scase01/
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mostly mean the same thing. That is, if we ask software containing contradictory asser-
tions to report on all the ways we achieve certain goals, then there emerge certain goals
that are always true, or always false, across the wide space of “maybes”. For these stable
inferences, we can make precise and categorical statements in the presence of complex
and possible uncertain assertions. Suppose these experimental observations are a gen-
eral result, and not just a result of a quirky selection of case studies. If so then we
have an explanation for the success of fuzzy logic [48], genetic algorithms [13], neural
nets [44], qualitative reasoning [25], heuristic programming [7], stochastic inference
(e.g. ant intelligence [16], ISAMP[14], HT0 [37] GSAT [43], black-box testing [21])
and many other approximate soft reasoning techniques. These techniques work not be-
cause of their intrinsic power, but because many probes across a space of uncertainties
will achieve the same result.

This chapter tests the generality of the experimental observation that many maybes
mostly mean the same thing. At issue is how much effort we should spend on the con-
struction of elaborate soft computing tools. We will offer experimental and theoretical
evidence that, in the general case, very simple tools such as the random search of HT0
(described in§3) or the limited learning of TAR2 (described in§6) should suffice for
soft computing tasks that reason about a space of uncertainties.

The theoretical case that many maybes mean mostly the same thing is based on the
“funnel theory” of Menzies, Easterbrook, Nuseibeh and Waugh [32]. Funnel theory, as
presented in§2, has an intuitive appeal and explains the counter-intuitive experimental
observations listed in§3. However, until this chapter, funnel theory had no formal basis.
Based on a mathematical argument, it will be shown that we can routinely expect our
software to contain narrow funnels. This maths will be presented in two parts. Firstly, in
§4, an average casereachabilitymodel is presented that computes the odds of reaching
some randomly selected part using a theory that contains contradictions. This model
has an odd behavior: the number of contradictions per literal does not greatly effect
the output of the model. This odd behavior prompted the development a second model.
Based on a simulation of an abstract model of funnels,§5 argues that if some conclusion
can be reached via a narrow funnel and a wide funnel, then a random search will tend
to use the narrower funnel. The argument is recursive: given a narrow funnel and a
narrower funnel, random search will favor the narrower funnel over the narrow funnel.
Hence, the narrowest funnels act like strange attractors in chaos theory, pulling in all
the arguments. Since these arguments will use narrow funnels, there will be few points
of disagreement. Hence, the net result of most of the disagreements will be very similar
that most maybes will mean the same thing.§6 presents TAR2: an application of TAR2
in which a very simple search device is adequate for controlling a diverse range of
devices. TAR2 is such a dumb algorithm that its repeated success is inexplicableunless
narrow funnels are common.

2 Funnel Theory

According to funnel theory, arguments within software are pathways through a space
of possible contradictions. Each pathway leads to some desired goals and contains a
set of assignments to variables. Given a set of goals, if we build proof trees for each
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goal separately, then it is possible that these proofs will demand different assignments
to the same variables. That is, the proofs are contradictory around those variables. The
set of variables with contradictory assignments are called thefunnelof an argument.
The cardinality of this set is a measure of how much the conclusions from this theory
can vary. Given andS arguments about the assignments toN variables in the funnel,
then there areSN combinations of proof trees that we can believe at the same time.
Depending on which assignment we endorse, different proof trees will be endorsed and
different goals will be reachable.

Fig. 1.

As the funnel sizeN shrinks, then there are exponentially less different ways to
resolve the contradictions in a theory and exponentially less methods for reaching dif-
ferent goals. Funnel theory claims that most searches through a space of contradictory
options will lead to the same goals if the pathways crossvery narrow funnels. Narrow
funnels have two properties suggesting that many maybes will lead to the same con-
sequences. Firstly, narrow funnels dictate how arguments must be resolved around the
funnel. If an argumentmustmake it through a funnel in order to reach a goal, then that
argument must adapt itself to the shape of the funnel. Secondly, narrow funnels let us
ignore certain disagreements. Consider two arguments: one around a narrow funnel and
another very peripheral to that funnel. The funnel argument could be resolved quickly
since only certain resolutions will pass through the funnel. Further, we need not spend
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much time on the peripheral argument since it is likely that most pathways will never
use that peripheral part of the model.

To understand the effects of funnels consider some ants at the neck of Figure 1
arguing about how to best crawl down to the feet. Each ant’s argument relates to one
possible pathway across the skeleton. Note that our search space has funnels: all the
pathways must pass through the lumbar spine just above the hips. Our ants might have
different disputes about the best way to handle fingers, ribs, and the lumbar spine. Some
of these arguments are irrelevant. For example, arguing about how to traverse a finger is
irrelevant to the goal of reaching the feet since no pathway through the fingers takes us
to the ground without returning to our current position at the neck. Also, with respect
to some stated goal, the presence of funnels ensures that some of these arguments only
have one possible resolution. For example, suppose one of our ants prefers not to crawl
around the lumbar spine since the bones there are too pointy. Given the goal of vertical
motion to the feet across the skeleton, that ant must surrender to the inevitable and travel
across the pointy lumbar spine. Clearly, if the software contains the same narrow funnels
as Figure 1, then we would expect that the net effect of the contradictory possibilities
within that software would be the same.

3 Experimental Evidence

This section reviews empirical evidence that narrow funnels are common in software
systems. Elsewhere, Menzies and Cukic [31] have cataloged the number of tests used
to certify expert systems. In theory, probing a space to find a bug with probability10−x

takes4.6 ∗ 10x tests to be 99% sure of finding that event. To show this, note thatN
randomly selected inputs has certainty

C = 1− (
(1− x)N

)

of finding some event with probabilityx. Hence, at a 99% certainty,C = 0.99 and this
equation becomes:

N =
ln(1− 0.99)
ln(1− x)

=
−4.6

ln(1− x)
(1)

If the space is being probed by a nondeterminate search engine, as often used in a

reference[22] [6] [5] [15] [47]
# tests 4..5 ≈ 6 5..108..10 10

reference [9] [40] [42] [3]
# tests< 13 40 50 200

Fig. 2. Number of tests used to certify expert systems.

heuristic-based expert system, then4.6 ∗ 10x would be a theoretical lower bound on
the required number of tests. Nevertheless an often repeated observation is that a small
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number of inputs can often reach significant errors in a program (see Figure 2). One
explanation for this surprising observation is that narrow funnels very quickly drive a
small number of test cases towards the reachable failures.

Similarly, in conventional software, surprisingly few random probes will detect sig-
nificant errors in a system. Leveson heuristically applied partial descriptions of software
fault trees to ADA code. She claims that this heuristic search detected as many errors in
her studied system as a much longer, and much more formal, analysis [27]. If conven-
tional software contained narrow funnels, that would explain how Leveson’s heuristic
partial probing was so successful since any argument, generated either by formal or
informal methods, would both be sucked towards the funnels.

Another method of probing a system is mutation testing. In mutation testing, a test
suite is assessed via its ability to distinguish a program from some mutation of that
program. Numerous researchers in mutation testing report that most mutations give
rise to the same nominal and off-nominal behaviors [8, 41, 46, 2]. This result can be
explained assuming narrow funnels. Mutators are applied randomly and if the funnels
are small, it is unlikely that the mutators will stumble across them.

Another reason to believe in narrow funnels is that the overall structure of our pro-
grams may not support wide chains of arguments. Bieman and Schultz [4] report that
a seemingly complex natural language processing system contains, on average, a small
number of narrowdu-pathways. A du-path is a link from where a variable isdefined
to where it isused. Clearly, the upper bound on the number of du-pathways in a pro-
gram is exponential on the number of program statements. The lower bound on the
du-pathways is 1; i.e. the tail of each path touches the head of another path. Figure 3
shows the Bieman and Schultz results: 95.1% of the modules in their system held less
that 50 du-pathways. Analogous results has been seen in procedural code. In one anal-
ysis of 4000 FORTRAN functions and 3147 “C” functions, the control flow graph of
those functions grows linearly with the number of statements [23]. That is, the control-
flow diagram forms a single-parent tree. Arguments extracted from single-parent trees
would be very narrow indeed.

0
20
40
60
80

100

<11 <26 <51 <101<401>401
X=min paths to cover du paths

Y=% modules needing X paths

Fig. 3. Path found in software modules by [4]

There is much evidence that the average size of a funnel in AI-based systems is very
narrow. Researchers in AI and requirements engineering explore inconsistent theories.
A repeated result consistent with narrow funnels is that committing to a randomly se-
lected resolution to a conflict reaches as much of a program as carefully exploring all
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resolutions to all conflicts. For example, Figure 5 shows Crawford and Baker’s [14]
comparison of a standard depth first search backtracking algorithm (TABLEAU) to
ISAMP, a randomized search theorem prover (shown in Figure 4). ISAMP randomly
assigns a value to one variable, then infers some consequences using a fast forward
chainer. After forward chaining, if incomparable conclusions were reached, ISAMP re-
assigns all the variables and tries again (giving up afterMAX-TRIES number of times).
Otherwise, ISAMP continues looping till all variables are assigned. When implemented,
Crawford and Baker found that ISAMP tooklesstime than TABLEAU to reachmore
scheduling solutions using, usually, just a small number ofTRIES. Crawford and Baker
offer a speculation why ISAMP was so successful: their systems contained mostly “de-
pendent” variables which are set by a small number of “control” variables. Note that
this dependent-control theory is consistent with narrow funnels: the small number of
control variables are those found in the narrow funnels. TABLEAU failed since it’s
rigorous search demanded the resolution of unimportant arguments outside the narrow
funnels.

for TRIES := 1 to MAX-TRIES
{set all vars to unassigned;

loop
{if everything assigned

then return(assignments);
else pick any var v at random;

set v’s value at random;
forwardChainFrom(v);
if contradiction
then exit loop;
fi

fi
}
} return failure

Fig. 4. The ISAMP algorithm [14]

Experiments with randomized multiple-worlds inference engines support the thesis
that narrow funnels are common. If multiple worlds of belief are created via very wide
funnels, then we would expect a large number of worlds created with each world con-
doning possibly different inferences. However, if such worlds are created through nar-
row funnels, then we would see that only a small number of worlds are created. Further,
since there are few disagreements between the worlds, it is likely that the created worlds
would condone similar inferences. In results consistent with narrow funnels, Menzies,
Easterbrook, Nuseibeh and Waugh [32] report that exploring a few set-covering worlds
returned nearly as much information as a rigorous exploration of all worlds. That ex-
periment is described below.

The Menzies, Easterbrook, Nuseibeh and Waugh study compared the behavior of
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TABLEAU: ISAMP:
full search partial, random search
% Time % Time Tries

Success(sec)Success(sec)
A 90 255.4 100 10 7
B 100 104.8 100 13 15
C 70 79.2 100 11 13
D 100 90.6 100 21 45
E 80 66.3 100 19 52
F 100 81.7 100 68 252

Fig. 5.Average performance of elaborate search (TABLEAU) vs randomized search (ISAMP) on
6 scheduling problems (A..F) with different levels of constraints and bottlenecks.

two multiple-world reasoners: HT0 and HT4. HT4 generates all pathways from inputs
to goals and sorts them into consistent worlds of belief [39]. HT0 just returns the first
world it finds randomly [37]. HT0 randomizes the order in which it searches for proofs.
During the proof of goali, when processing a set of goals in a disjunction or a con-
junction, the order of the processing is selected randomly (seerand/2, ror/2 in
Figure 6). If a proof of goali fails, the system does not backtrack to retry one of goal
1 . . . (i− 1). Instead, HT0 lowers a weight associated with goali and moves on to try
goal i + 1 (seeprove/2 in Figure 6). When HT0 has finished with all the goals, it
wipes all the assumptions, sorts the goal list according to the adjusted weights, then
tries to prove them all again (seeht0/2 in Figure 6). When HT0 and HT4 were run
on the same examples, HT4’s runtimes were observed to be exponential while HT0 was
less than cubic [37]. Also, and most important for our discussion, the random search
of HT0 reaches nearly as many goals as the rigorous search of HT4. Menzies, East-
erbrook, Nuseibeh and Waugh executed thousands of models using HT0 and HT4. To
generate these models, mutators would corrupt influences in a theory; e.g. proportional
signs were flipped to inversely proportional and visa versa, influences were added at
random, and less and less data was offered to the reasoner. In a result consistent with
most maybes mean the same thing, the average difference in covered goals between the
random partial search of HT0 and the rigorous search of HT4 was less than6% (see
Figure 7).

4 Generalizing HT0 with Reachability Theory

Did HT0 work because of quirks in its case study? Or was it an example of a general
principle? This section argues that HT0’s results are quite general: the average odds of
reaching a goal across a space containing contradictions is quite high. These average-
case odds can be calculated using thereachability analysis[30] described below.

Reachability studies the odds of reaching a random part ofNAYO graphslike Fig-
ure 8. Such NAYO graphs containNo-edges, And-nodes, Yes-edges, and Or-nodes.
Yes-edges denote valid inferences and no-edges denote incompatibilities “maybes”.
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%test ‘ors’ in a random order
X ror Y :- maybe -> (X;Y); (Y;X).

%test ’ands’ in a random order
X rand Y :- maybe -> (X,Y); (Y,X).

maybe :- 0 is random(2).

% Assuming that an object O’s attribute
% A is X is legal if this assumption does
% not conflict with previous assumptions.
% Otherwise, make assume that O.A=X but
% remove it if ever we backtrack to this point.
A of O is X :- a(A,O,Old), !, Old = X.
A of O is X :- assert(a(A,O,X)).
A of O is X :- retract(a(A,O,X)), fail.

% N times, zap assumptions, try the goal list.
ht0(0,_) :- !.
ht0(N0,G0) :- rememberBestCover(G0),

retractall(a(_,_,_)),
% Goals with lower weights
% are tried first
sort(G0, G1),
maplist(prove,G1,G),
N is N0 - 1,
ht0(N,G).

% Lower/raise a goal’s weight by a random amount
% if it fails/works respectively.
prove(In/Goal,Out/Goal):-

X is 1 + random(10ˆ3)/10ˆ6,
(call(Goal) -> Out is In+X; Out is In-X).

% E.g: 5 times, random search for ”sad” or ”rich”.
:- ht0(5,[1/sad,1/rich]).

Fig. 6. HT0, simplified (handles acyclic ground theories only). The full version contains many
more details such as how variables are bound withinrand s and the implementation of
rememberBestCover . For full details, see [37].

The V nodes of a NAYO graph are divided into and-nodes and or-nodes with ra-
tios andf and orf respectively (orf + andf = 1). In the reachability model, and-
nodes and or-nodes have mean parentsandp, orp respectively. Or-node contradict, on
average,no other or-nodes.andp, orp, no are random gamma variables with means
andfµ, andpµ, orpµ, noµ; “skews” andpα, orpα, noα; and range0 ≤ γ ≤ ∞. andf is
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Fig. 7. HT4 (solid line) vs HT0 (dashed line).U% denotes what percentage of the available
domain data was ignored in each run.

a random beta variable with meanandfµ and range0 ≤ β ≤ 1. And-nodes are reached
at heightj via one parent at heighti = j − 1 and all others at height:

i = β(depth) ∗ (j − 1) (2)

so0 ≤ i ≤ (j − 1). Note that asdepth decreases, and-nodes find their pre-conditions
closer and closer to the inputs.

The probabilityP [j]and of reaching an and-node at heightj > 0 is the probability
that one of its parents is reached at heightj − 1 and the rest are reached at height
1..(j − 1); i.e.

P [j]and = P [j − 1] ∗



andp[j]∏
2

P [i]


 (3)

Or-nodes are reached at heightj via one parent at heighti = j − 1. The probability
P [j]or of reaching an or-node at heightj > 0 is the probability of not missing any of
its parents; i.e.

P [j]or = 1− (1− P [j − 1]) ∗



orp[j]∏
2

(1− P [i])


 (4)
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diet(fatty).
diet(light).
happy :-

tranquillity(hi)
; rich,healthy.

healthy :- diet(light).
satiated :- diet(fatty).
tranquillity(hi) :-

satiated
; conscience(clear).

happy tranquility(hi)

diet(light)

and1 rich

healthy

diet(fatty)
no

yesyes

yesyes

yes

satiated yes

yes

conscience(clear)

yes

Fig. 8.A NAYO graph (shown right) connecting terms within some theory (shown left).

FromP [j], we computeP ′[j]or by modifyingP [j] with two factors: one for the odds of
not entering into an inferencing loop, and one for the odds of not causing contradictions:

P [j]no contradiction =
(
1− no

V

)n[j]∗orf

(5)

P [j]no loop =
(

1− 1
V

)n[j]∗orf

(6)

wheren[j] is a guesstimate of the size of the proof tree to depthj. Observe the use of
n[j]∗orf in Equation 5 and Equation 6. And-nodes contradict no other nodes; hence we
only need to consider contradictions fororf of the system. Also, since every and-node
has an or-node as a parent, then we need only check for loops amongst the or-nodes.

The probabilityP [j] of reaching any node is hence the sum ofP ′[j]or andP [j]and

weighted by the frequencies of and-nodes and or-nodes; i.e.

P [j] = andf ∗ P [j]and + orf ∗ P ′[j]or (7)

P ′[j]or = P [j]or ∗ P [j]no loop ∗ P [j]no contradiction (8)

A simulation of the above system of equations is around 200 lines of Prolog. This
model can be executed to generateP [j]. From this figure, we find the number of tests
N required to beC = 99% percent certain of reaching a random node in a dependency
graph using Equation 1.

The above model was run for a wide range of input parameters; e.g. up to108 nodes,
up to 1000 inputs, wildly varying the frequency and skew of and-nodes, or-nodes, and
no-edges, etc. The frequency distribution of the generatedN values is shown in Figure 9
divided according to thej (proof height) value. The simulation results shows that HT0’s
success was not a quirk of the models in its domains. Rather, if we explore a NAYO
graph to more than a shallow depth (j > 50) then in the usual case, we can reach most
parts of that theory with small number of random inputs.

10



5 Formal Funnel Theory

A formal analysis of funnel theory explains why the odds of reaching some randomly
selected part of a theory is barely effected by the number of contradictions in that the-
ory. In this section, a mathematical simulation demonstrates that given the choice of a
narrow or a wide funnels to reach a goal, a random search engine will select the narrow
funnel. That is, even if a theory supports many arguments, randomized search will favor
the less contentious parts of a theory.

Suppose some goal can be reached by a narrow funnelM or a wide funnelN as
follows:

a1−→ M1
a2−→ M2

. . .
am−→ Mm





c−→ goali
d←−





N1
b1←−

N2
b2←−

N3
b2←−

N4
b2←−
. . .

Nn
bn←−

Under what circumstances will the narrow funnel be favored over the wide funnel?
More precisely, when are the odds of reachinggoali via the narrow funnel much greater
that the odds of reachinggoali via the wide funnel? To answer this question, we begin
with the following definitions. Let theM funnel usem variables and theN funnel use
n variables. Each member ofM is reached via a path with probabilityai while each

1
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Fig. 9.Some frequency distributions of the number of tests required to be 99% sure of reaching a
node at heightj generated from the Menzies-Cukic-Singh reachability model.
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member ofN is reached via a path with probabilitybi. Two paths exist from the funnels
to this goal: one from the narrow neck with probabilityc and one from the wide neck
with probabilityd. The probability of reaching the goal via the two pathways is:

narrow = c

m∏

i=1

ai (9)

wide = d

n∏

i=1

bi (10)

For comparison purposes, we express the size of the wider funnel as a ratioα of the
narrower funnel; i.e.

n = αm (11)

Assuming that the goal is reached, then there are three ways to do so. Firstly, we
can reach the goal using both funnels:

narrow ∧ wide = narrow.wide (12)

Secondly, we can reach the goal using the narrow funnel and not the wider funnel:

narrow ∧ ¬wide = narrow(1− wide) (13)

Thirdly, we can reach the goal using the wider funnel and not the narrow funnel.

¬narrow ∧ wide = (1− narrow)wide (14)

Let g be probability of reachinggoali. Clearly,g is the sum of Equation 12, and
Equation 13, Equation 14; i.e.

g = narrow + wide− narrow.wide (15)

Given the goal is reached, then the conditional probabilities of reaching thegoali
via two our funnels is:

P (narrow|g) =
narrow

narrow + wide− narrow.wide
(16)

P (wide|g) =
wide

narrow + wide− narrow.wide
(17)

The odds of an event with probabilityP (X) is the ratio of that event to it’s comple-
ment; i.e. P (X)

1−P (X) . Hence, the odds of Equation 16 is:

Odds (narrow|g) =
narrow

narrow+wide−narrow.wide

1−
(

narrow
narrow+wide−narrow.wide

)

=
narrow

wide (1− narrow)
(18)
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Similarly, the odds of Equation 17 is:

Odds (wide|g) =
wide

narrow (1− wide)
(19)

We divide Equation 18 by Equation 19 to compute the ratioR of the conditional
odds of reachinggoali via the narrow or the wide funnel:

R =
(narrow)2 (1− wide)
(wide)2 (1− narrow)

(20)

Our pre-condition for use of the narrow funnel is:

R > 1 (21)

In general, using the narrow funnel is much more likely ifR is very large, i.e. bigger
than some threshold valuet

R > t (22)

wheret is some number much larger than 1.
We can now define a procedure for finding situations when a random search engine

will favor narrow funnels over wide funnels:

– For a wide range of values ofai, bi, c, d, m, α, . . .
– Look for situations when Equation 22 is satisfied.

We apply this procedure below, twice:

– In the first application, we make some simplifying assumptions such asai andbi

come from uniform probability distributions. These simplifying assumptions let us
derive expressions for the ratios ofc andd that would satisfy Equation 22.

– In the second application, we reject the simplifying assumptions and describe a
simulation that handles a wider range of cases.

In both applications, it is clear that if we grow the wide funnel wider, then Equation 22
is often satisfied.

5.1 The Uniform Case

Consider the simple case thatai andbi come from uniform probability distributions,
i.e.

m∑

i=1

ai = 1

∴ ai =
1
m

∴ narrow = c

(
1
m

)m

(using Equation 9) (23)
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Similarly

wide = d

(
1
n

)n

(using Equation 10) (24)

Thus, by Equation 21, narrow funnel is more likely when:

narrow2(1− wide) > wide2(1− narrow)

which we can rearrange to

(narrow − wide)(narrow + wide− narrow.wide) > 0 (25)

Equation 25 contains two terms, the second of which is Equation 15 which is always
positive. Hence, Equation 25 is positive whennarrow

wide > 1. Substituting in Equation 23
and Equation 24, yields:

narrow

wide
=

c
(

1
m

)m

d
(

1
n

)n (26)

Recall thatn = αm, i.e. Equation 26 will hold when:

(αm)αmm−m >
d

c
(27)

Consider the case of two funnels, one twice as big as the other; i.e.α = 2. Equation 27
can be rearranged to show thatnarrow

wide > 1 is true when

(4m)m >
d

c
(28)

At m = 2, Equation 28 becomesd < 64c. That is, to accessgoali from the wider
funnel, the pathwayd must be 64 times more likely than the pathwayc. This is not
highly likely and this becomes less likely as the narrower funnel grows. By the same
reasoning, atm = 3, to accessgoali from the wider funnel, the pathwayd must be
1728 times more likely than the narrower pathwayc. That is, under the assumptions of
this uniform case, as the wide funnel gets wider, it becomes less and less likely that it
will be used.

5.2 The Non-Uniform Case

We have seen that the two assumptions of

1. low threshold value oft = 1 and
2. uniform probability distributions for the funnel preconditions

means that the narrow funnel is far more likely than the wider funnel. This section
relaxes these two assumptions to use very large values oft and wildly varying values
for ai andbi. A small simulator is used to compute Equation 22 as follows. The mean
µ and standard deviationσ of the logarithm of the variablesai, bi, c, d were picked at
random from the following ranges:
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µ ∈ {1, 2, . . . 10} (29)

spread ∈ {0.05, 0.1, 0.2, 0.4, 0.8} (30)

µ andspread where then converted into probability as follows:

σ = spread ∗ µ

probability = 10−1∗normDist(µ,σ) (31)

Note that this method produces non-uniform probabilities forai andbi. Next, m
andα were picked at random from the ranges:

m ∈ {1, 2, . . . 10} (32)

α ∈ {1, 1.25, 1.5, . . . 10} (33)
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Fig. 10.Outputs from 100000 runs of the funnel simulator. The Y-axis shows what percentage of
the runs satisfies Equation 22 asα increases. On the plot,α is shown as “alpha”.

R was then calculated and the number of timesR exceeded different values for
t is shown in Figure 10. As might be expected, att = 1, α = 1 the funnels are the
same size and the odds of using one of them is 50%. Asα increases, then increasingly
Equation 22 is satisfied and the narrower funnel will be preferred to the wider funnel.
The effect is quite pronounced. For example, in 82% of our simulated runs, random
search will be 10,000,000,000 times as likely as to use funnels1

3 smaller than alternate
wider funnels (see theα = 3 results).

In summary, in both the uniform and non-uniform case, many maybes mostly mean
the same thing. Perhaps the reason for this is as a funnel widens, it becomes exponen-
tially less likely that a random search engine will find all the members of the wider
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funnel. What ever the underlying cause, the effect is clear: the narrow funnel will usu-
ally be favored and the number of arguments that can effect the reachable goals will be
reduced.

6 Applications of Funnel Theory

If the thesis of this chapter is valid, then is should be possible to explore complex spaces
very simply. This section tests that thesis and describes the TAR2treatment learner.
TAR2 is a deliberately broken machine learner. The algorithm includes an exponential
time sub-routine. If many variables are required to control a device, this sub-routine
should make the whole TAR2 system impractical. However, as we shall see, TAR2
works in many domains. TAR2 is therefore both thetestand theapplicationof funnel
theory. ThemoreTAR2 works, themorewe believe that many maybes mean mostly
the same thing. Further, if many maybes means mostly the same thing, then a simple
controller like TAR2 will be applicable in many domains.

To understand TAR2, consider the log of golf playing behavior seen in Figure 11.
In that log, we only playlots of golf in 6

5+3+6 = 43% of cases. To improve our game,
we might search for conditions that increases our golfing frequency. Two such condi-
tions are shown in theWHEREtest of the select statements in Figure 11. In the case of
outlook=overcast , we playlotsof golf all the time. In the case ofhumidity ≤
90 , we only playlots of golf in 20% of cases. So one way to play lots of golf would
be to select a vacation location where it was always overcast. While on holidays, one
thing to watch for is the humidity: if it rises over 90%, then our frequent golf games are
threatened.

The tests in theWHEREclause of the select statements in Figure 11 is atreatment.
Classes in treatment learning get a score and the learner uses this to assess the class
frequencies resulting fromapplying a treatment(i.e. using them in aWHEREclause).
In normal mode, TAR2 doescontroller learningthat finds a treatment which selects
for better classes and reject worse classes By reversing the scoring function, treatment
learning can also select for the worse classes and reject the better classes. This mode
is calledmonitor learningsince it finds the thing we should most watch for. In the golf
example,outlook = ’overcast’was the controller andhumidity ≥ 90 was the monitor.

TAR2 automatically explores a very large space of possible treatments. TAR2’s con-
figuration file lets an analyst specify a search for the best treatment using conjunctions
of size 1,2,3,4, etc. Since TAR2’s search is elaborate, an analyst can automatically find
thebestandworstpossible situation within a data set. For example, in the golf example,
TAR2 explored all the attribute ranges of Figure 11 to learn that thebestsituation was
outlook = ’overcast’and worst possible situation washumidity ≥ 90.

TAR2 has been applied to many domains. The algorithm shouldn’t work but it has
proven successful in many domains (see [24, 34, 35, 36, 29]). Theoretically, TAR2 is
intractable since there are an exponential number of possible attribute ranges to explore.
TAR2 culls the space of possible attribute ranges using a heuristicconfidence1measure
that selects attribute ranges that are more frequent in good classes than in poorer classes.
However, this heuristic is pretty dumb: it was merely the first one we could think of.
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outlook temp(oF) humidity windy? class
sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

input:

SELECT class
FROM golf

SELECT class
FROM golf
WHERE
outlook = ’overcast’

SELECT class
FROM golf
WHERE
humidity >= 90

output:

none none none
none none some
some some lots
lots lots lots
lots lots

lots lots lots
lots

none none none
some lots

distributions: 0
2
4
6

5 3 6
0
2
4
6

0 0 4
0
2
4
6

3 1 1

legend: none some lots

Fig. 11.Class distributions selected by different conditions.

The repeated success of TAR2 in many domains is inexplicableunlessnarrow funnels
are common.

Due to the numerous examples of TAR2’s success, only a sample of its applications
are shown below. One way to assess TAR2 is to test how well it can control some
model. To perform such an assessment, we (i) generated data sets from some model;
(ii) apply TAR2 to find treatments from those data set; (iii) imposed those treatments as
constraints on the model; (iv) ran the model a second time; (v) compared the outputs of
the second run to the predictions made by TAR2.
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In the following simulations studies, abaselineclass distribution was used by TAR2
to generate a best controller and a prediction of how this best controller would change
the class distribution. We call the predicted distribution thetreateddistribution. Theac-
tual distribution was the class distribution seen after the best controller was imposed on
the model and the model executed again. In Figure 12 and Figure 13, the treated dis-
tribution matches the result distribution almost exactly; i.e. TAR2 accurately predicted
the effects of the controller treatment.

Figure 12 was generated from a model of software project risk. This risk model was
implemented as part of the COCOMO project. The goal of the COCOMO project is to
build an open-source software cost estimation model [1]. Internally, the model contains
a matrix of parameters that should be tuned to a particular software organization. Using
COCOMO-II, the Madachy risk model can assess the risk of a software cost over-
run [28]. For machine learning purposes, the goal of using the Madachy model is to
find a change to a description of a software project that reduces the likelihood of a
poor risk software project [38, 34]. In the experiment shown in Figure 12, the model
was executed 30,000 times using randomly selected inputs. When the treatments learnt
from TAR2 treatments were imposed on model inputs, and the model was executed
again, all the high risk projects were removed, the percentage of medium risk projects
was significantly reduced, and the percentage of low risk projects was tripled.

baseline treated actual
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0 0 40 60
0

25
50
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0 0 40 60

Fig. 12. COCOMO key: very high risk; high risk; medium risk;
low risk.

Figure 13 shows TAR2 controlling a qualitative description of an electrical circuit.
A qualitative description of a circuit of 47 wires connecting 9 light bulbs and 16 other
components was coded in Prolog. The model was expressed as a set of constraints; e.g.
thesum of the voltages of components in series is thesum of the voltage drop across
each component. The goal of the circuit was to illuminate a space using the 9 light
bulbs. The circuit is qualitative and qualitative mathematics is nondeterministic; e.g.
sum of a negative and a positive value is unknown. The problem with the circuit was
out-of-control nondeterminism. On backtracking, this circuit generated 35,228 differ-
ent solutions to the constraints. In many of these solutions, the circuit was unacceptably
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dark: only two bulbs glowing, on average (see the top histogram of Figure 13) . The
goal of the machine learning was hence to find a minimal set of changes to the cir-
cuit to increase the illumination [33]. Figure 13 shows the distribution of the frequency
with which bulbs glowed in a qualitative circuit description. The behavior of qualitative
circuits is notoriously hard to predict [10] but TAR2 found two actions on the circuit
that trebled the average number of bulbs that glowed (see thetreatedandactualplot of
Figure 13).

Figure 14 shows a third simulation study with TAR2. Analysts at the NASA Jet
Propulsion Laboratory debate satellite design by building a semantic network connect-
ing design decisions to satellite requirements [18]. Each edge is annotated with the
numeric cost and benefits of taking some action. Some of these nodes represent base
decisions within the project (e.g. selection of a particular type of power supply). Each
set of decisions has an associated cost. The net can be executed by selecting actions
and seeing what benefits results. One such network included 90 possible actions; i.e.
299 ≈ 1030 combinations of actions. Note the black line, top-left, of Figure 14. All the
dots below this line were generated via 10,000 random selections of the decisions, and
the collection of their associated costs and benefits. All the dots above this line rep-
resent high benefit, low cost projects found by TAR2 [19]. In this application, TAR2
was used as a knowledge acquisition tool. After each run of TAR2, the proposed best
controller was debated with the analysts. Each run, and its associated debate, resulted
in a new set of constraints for the semantic net. The new constraints were then imposed
on the model before the next run. After five runs, TAR2 found 30 decisions (out of 99)
that crucially effected the cost/benefit of the satellite. Note that this means TAR2 also
found 99-30=67 decisions that could be safely ignored.

For comparison purposes, a genetic algorithm (GA) was also applied to the Fig-
ure 14 domain [19]. The GA also found decisions that generated high benefit, low cost
projects. However, each such GA solution commented on every possible decisions and
there was no apparent way to ascertain which of these are the most critical decisions.
The TAR2 solution was deemed superior to the GA solution by the domain experts,
since the TAR2 solution required just 30 actions rather than the 99 demanded by the

baseline:0
20
40

0 1 2 3 4 5 6 7 8 9

treated: 0
20
40

0 1 2 3 4 5 6 7 8 9

actual: 0
20
40

0 1 2 3 4 5 6 7 8 9

Fig. 13.Circuit. X-axis denotes number of bulbs glowing in the circuit.
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Fig. 14.Results from the satellite domain. The dots below the line show the initial output of the
model: note the very large spread in the costs and benefits. The dots above the line show the final
outputs of the model after 5 iterations of TAR2 learning.

GA.
Note that the Figure 14 case study is not a counter example to our thesis that most

domains have narrow funnels. That study adopted the incremental approach for reasons
of convenience. JPL’s semantic net simulator was too slow to generate enough examples
at one run. Hence, an incremental generate-and-constrain approach was taken.

7 Some Details

This section clarifies some details of this discussion.
Our case has been thatmostmaybes mean the same thing, not thatall maybes mean

the same thing. As shown above in Figure 9, there exist discrete systems for which
many maybes do not mean the same thing.

Also, the argument described here relates to the properties of discrete systems con-
taining contradictions. Such an argument may not apply to continuous systems with
feedback loops. Continuous systems with feedback loops can generate wildly varying
behavior if that system moves into a chaotic region of its state space. Clearly, in systems
experiencing such chaos, many maybes will not mostly mean the same thing.

Our emphasis on discrete systems does not preclude the application of this analysis
to conventional procedural software. Much research has been devoted to the extrac-
tion of discrete models (in the form of finite state machines) from procedural code. For
example, the BANDERA system [12] automatically extracts (slices) the minimum por-
tions of a JAVA program’s bytecodes which are relevant to proving particular properties
models. These minimal portions are then converted into the finite state machine re-
quired for automatic formal analysis. Also, in domains where tools like BANDERA are
unavailable, finite state machines can be generated from the high-level documentation
describing a procedural system [45].
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This chapter suggests that we can reason about a theory that contains inconsisten-
cies. Such a suggestion might be foreign to students of classical deductive logic in
which a contradiction implies anything at all. Classical deduction was a useful tool
but in the late twentieth century, many researchers found that non-standard logics were
required for inconsistency-tolerant reasoning about (e.g.) model-based diagnosis [11],
conflicting requirements [20], or overrides in inheritance hierarchies [17].

The argument made here was that the average number of reachable goal literals are
not effected greatly by the presence of contradictory inferences in a theory. This is a
statement about where inference pathwaysendand not about the route taken to a goal.
Hence, even when most maybes mean the same thing (i.e. the same number of goals are
being reached), an indeterminate device (i.e. one containing contradictions) can take
many different pathways to those goals. Consequently, the side-effects of reaching a
goal can be very different. If the negation of undesirable side-effects (e.g. not reactor
melt down) are added to the goal set, then the argument of this paper will apply and we
can quickly check if we can/ cannot reach undesirable side effects.

This analysis assumes a set-covering semantics; i.e. we only consider literals that
exist on proof trees between input and goal literals. The opposite to set-covering seman-
tics is consistency-based semantics in which inference spreads out to find all literals
consistent with inputs and goals, regardless of whether or not those literals are required
for accessing some goals. The debate between set-covering and consistency-based se-
mantics has occurred elsewhere (e.g. [26, 11]). This study favor set-covering semantics
since if we are interested in literals outside the goal-finding proof trees, we can add
them to our goal set.

8 Conclusion

As theory size or complexity grows, we will become less and less sure about the as-
sertions in that theory. Contradictory options (the “maybes”) will often be entered into
theories, particularly if that theory is generated from designers with different views
about a domain or the purpose of a program.

An often repeated experimental observation is that a fast random exploration of a
program will reach as many interesting goals as a larger number of considered probes.
The mathematics of reachability shows us that these observations are not some quirk
of particular domains. Rather these observations are examples of a general principle:
on average, the way we resolve contradictions does not effect the overall number of
reachable goalsprovided thatwe are probing into our theories to a non-trivial depth.
The TAR2 experience is that simple Monte Carlo simulations satisfy this probing depth
requirements.

These mathematical and experimental results can be explained using funnel theory.
Given a choice ofM arguments orN arguments (M < N ) to reach a goal, random
search will usually favor the smaller set of arguments. Hence, fewer critical factors will
change the number of goals we can reach, most maybes will mean the same thing, and
we can use very simple methods (like TAR2) to control complex and uncertain spaces.
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