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Abstract

Within NASA, there is an increasing awareness that soft-
ware is of growing importance to the success of missions.
Much data has been collected, and many theories have been
advanced on how to reduce or eliminate errors in code.
However, learning requires experience. This article doc-
uments a new NASA initiative to build a centralized reposi-
tory of software defect data; in particular, it documents one
specific case study on software metrics. Software metrics
are used as a basis for prediction of errors in code modules,
but there are many different metrics available. McCabe is
one of the more popular tools used to produce metrics, but,
as will be shown in this paper, other metrics can be more
significant.

1 Introduction

Software metrics are attributes of software which can de-
scribe numerous things, including, but not limited to, com-
plexity, effort, quality and reliability. In the21st century, we
have more than enough data to check for the relative merits
of different software metrics. We shall show that, for the ap-
plication studied here as well as for other applications, only
a few metrics are superior error predictors. Which metrics
are superior is not a constant, however, but differs for each
project. We will argue that blind faith in any one metric is
not a good practice, and all available metrics should be care-
fully analyzed for as many projects as possible. In this way,
more information will be made available for consideration
when selecting a metric, which will lead to informed and
scientific decisions instead of blind faith and assumptions.

This paper specifically documents a case study per-
formed on a NASA IV&V project. In that project, test-
ing was partially driven by the McCabe complexity met-
rics. However, closer analysis revealed that McCabe was
not the most useful predictor of error-prone modules for
that project. In fact, two entirely different metrics turned
out to be better predictors for error density in modules,

specificallyL(Halstead’s Program Level) andLOC(Lines
of Code).

The rest of this paper is structured as follows:§2 presents
the background and mission of the NASA IV&V facility.§3
is a brief overview of the metrics which were collected for
this study. §4 is a description of the project on which the
research was performed, and§5 is the result of that research.
§6 is a discussion of these results, and§7 is a summary of
our conclusions.

2 Background

The NASA Independent Verification and Validation
(IV&V) Facility in Fairmont, West Virginia is responsible
for verifying that software developed or acquired to sup-
port NASA missions complies with the stated requirements.
Additionally, the Facility validates that the software is suit-
able for its intended use. In short, the Facility ensures that
the software is being developed properly, and that the right
software is being developed or acquired.

Due to cost constraints, IV&V is generally applied to
software modules which are determined to be most critical
to mission success. While the Facility must always fully
address those mission critical modules, there is a need for a
quick and easy way to identify other modules which are not
as critical, but may be more (or equally) error prone. A pri-
mary purpose of the repository is to identify early lifecycle
measures which may predict for error prone software mod-
ules, thus allowing the IV&V Facility to more effectively
apply the limited testing resources available to any project.

As the sole entity with the responsibility for IV&V of all
NASA mission software, the IV&V Facility is in a unique
position to create and maintain a master repository of soft-
ware metrics. Under this charter, the IV&V Facility reviews
requirements, code, and test results from NASA’s most crit-
ical projects; hence, many of the required metrics are col-
lected as a matter of course. No other organization has in-
sight into such a broad range of NASA projects. This af-
fords the IV&V Facility an unequalled opportunity to re-
search not only the early life cycle indicators of software



Metric Type Metric Definiton
McCabe v(G) Cyclomatic Complexity

ev(G) Essential Complexity
iv(G) Design Complexity
LOC Lines of Code

Halstead N Length
V Volume
L Level
D Difficulty
I Intelligent Content
E Effort
B Error Estimate
T Programming Time

Line Count LOCode Lines of Code
LOComment Lines of Comment
LOBlank Lines of Blank
LOCodeAndComment Lines of Code and Comment

Operator/Operand UniqOp Unique Operators
UniqOpnd Unique Operands
TotalOp Total Operators
TotalOpnd Total Operands

Branch BranchCount Total Branch Count

Figure 1. Metric Groups.

quality, but other topics as well. Many large corporations
have similar software metrics repositories; however, it is not
always in their best interest to release data or results to the
public. In the case of the IV&V Facility, the objective is to
improve NASA’s mission software regardless of the source.
Sanitized data would be made available to NASA, indus-
try, and academia to support software development and re-
search by other organizations. This is consistent with the
IV&V Facilities research vision of ”See more, learn more,
tell more.”

3 Metrics

This section gives a brief overview of the software met-
rics which were collected in the course of this study. Inclu-
sion in this section does not imply endorsement in any way
by either NASA IV&V or WVU.

In order to facilitate the search for error-prone modules
or functions, many tools have evolved over the past few
years. One of the most popular ones (and the one being used
extensively at NASA IV&V) is the McCabe IQc© package.
This package can evaluate Ada, C and C++ source code,
and provides many different types of software metrics. In
particular, it can output all of the metrics found in Figure 1.
These were the metrics used during this study.

3.1 McCabe

The McCabe metrics are a collection of four software
metrics: essential complexity, cyclomatic complexity, de-
sign complexity and LOC [4, 5, 6]. Of these four, all but
LOC are metrics which were developed by T. J. McCabe.

Figure 2. Example program flowgraph

McCabe & Associates claim that these complexity measure-
ments provide insight into the reliability and maintainability
of a module. For example, around NASA IV&V, a cyclo-
matic complexity of over 10 or an essential complexity of
over 4 is flagged as a module that will be difficult to main-
tain and/or debug. This paper will not attempt to make any
refutation to those claims and practices; however, these met-
rics are also commonly used as predictors for error-prone
modules. As this paper will demonstrate, these complexity
measurements do notalwayspoint the way towards mod-
ules with increased error density.

The following paragraphs present a short overview of the
three complexity metrics mentioned previously.

Cyclomatic Complexity, orv(G), measures the number
of linearly independent paths1 through a program’s flow-
graph2. v(G) is calculated by:

v(G) = e− n + 2

whereG is a program’s flowgraph,e is the number of arcs
in the flowgraph, andn is the number of nodes in the flow-
graph [1]. For example, Figure 2 is a simple flowgraph; it’s
cyclomatic complexity is 3, since the graph has 6 arcs and
5 nodes (v(G) = 6− 5 + 2 = 3).

Essential Complexity, orev(G), is the extent to which
a flowgraph can be “reduced” by decomposing all the sub-
flowgraphs ofG that are D-structured primes3. ev(G) is
calculated by:

ev(G) = v(G)−m

1A set of paths is linearly independent if no path in the set is a linear
combination of any other paths in the set.

2A flowgraph is a directed graph where each node corresponds to a
program statement, and each arc indicates the flow of control from one
statement to another.

3D-structured primes are also sometimes referred to as “proper one-
entry one-exit subflowgraphs”. For a more thorough discussion of D-
primes, see [1].



wherem is the number of subflowgraphs ofG that are D-
structured primes. [1]

Design Complexity, oriv(G), is the cyclomatic com-
plexity of a module’s reduced flowgraph. The flowgraph,
G, of a module is reduced to eliminate any complexity
which does not influence the interrelationship between de-
sign modules. This complexity measurement reflects the
modules calling patterns to its immediate subordinate mod-
ules [6].

3.2 Halstead

Another commonly used collection of software metrics
are the Halstead Metrics [2]. They are named after their
creator, Maurice H. Halstead. Halstead felt that software
(or the writing of software) could be related to the themes
which were being advanced at that time in the psychology
literature. He created several metrics which are meant to
encapsulate these properties; these metrics can be extracted
by use of the McCabe IQ tool mentioned previously, and
are discussed in detail below.

Halstead began by defining some basic measurements
(these measurements are collected on a per module basis):

µ1 = number of unique operators
µ2 = number of unique operands

N1 = total occurrences of operators
N2 = total occurrences of operands

µ∗1 = potential operator count
µ∗2 = potential operand count

These six metrics are self explanatory, with the possi-
ble exception of the potential operator/operand counts.
Halstead definesµ∗1 and µ∗2 as the minimum possible
number of operators and operands for a module. This
minimum number would occur in a (potentially fictional)
language in which the required operation already existed,
possibly as a subroutine, function, or procedure. In such
a case,µ∗1 = 2, since at least two operators must appear
for any function; one for the name of the function, and
one to serve as an assignment or grouping symbol.µ∗2
represents the number of parameters, without repetition,
which would need to be passed to the function or procedure.

Using these measurements, Halstead defined thelength
of a programP as:

N = N1 + N2

The vocabulary ofP is:

µ = µ1 + µ2

The volumeof P , akin to the number of mental compar-
isons needed to write a program of length N, is:

V = N ∗ log2µ

V ∗ is the potential volume - the volume of the minimal size
implementation of P.

V ∗ = (2 + µ2
∗)log2(2 + µ2

∗)

Theprogram levelof a programP with volumeV is:

L = V ∗/V

The inverse of level isdifficulty:

D = 1/L

According to Halstead’s theory, we can calculate an
estimateL̂ of L as:

L̂ = 1/D = 2
µ1
∗ µ2

N2

The intelligence content of a program,I, is:

I = L̂ ∗ V

The effort required to generateP is given by:

E = V
L̂

= µ1N2Nlog2µ
2µ2

where the unit of measurementE is elementary mental
discriminations needed to understandP .

The required programming timeT for a program of
effort E is:

T = E/18seconds

4 KC2 Project

The rest of this paper is dedicated to a case study on one
NASA project, which will be referred to using the moniker
“KC2”. We will be addressing the relative merits of the
above metrics when used as error-predictors for this project.
KC2 is a C++ program which contains over 3000 modules.4

521 modules are of interest to us since these modules were

4A module, for the purposes of our tests, is the equivalent of a C func-
tion.
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Figure 3. Distribution of errors: most mod-
ules have no errors.
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Figure 4. Distribution of LOC: most modules
are very short.

built by NASA developers. The remaining 2500 or so mod-
ules are COTS5 software.

Of those 521 modules, 106 were found to have various
numbers of errors, ranging from 1 to 13. A graphical rep-
resentation of the errors per module and lines of code per
module are presented in Figure 3 and Figure 4, respectively.

5 The Case Study

5.1 Regression

The first test that was run on the provided metrics was
a simplistic regression technique, in which a curve fitting
algorithm was applied to each metric. In this particular
project,noneof the attributes were correlated to error rates.
This does not mean, however, that none of the attributes are
good error predictors; it merely indicates that in this do-
main, simplistic regression is unrevealing.

5.2 Treatment Learning

Since regression was not particularly insightful in this
domain, we turned to other techniques. In order to better

5COTS is an acronym for Commercial Off The Shelf

ORIGINAL:

outlook temp(oF) humidity windy? class
sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

SELECT class FROM original
WHERE outlook = ’overcast’

lots
lots
lots
lots

SELECT class FROM original
WHERE humidity >= 90

none
none
none
some
lots

Figure 5. Attributes that select for golf playing
behavior.

understand the key factors that predict for more/less errors,
we performed a coarse-grained sensitivity analysis. In this
analysis, the 521 examples were divided into two groups:
the 20% of modules with errors and the 80% of modules
without errors. This division was searched for a strong
select statementthat most changed the ratio of modules
with/without errors.

To understand the concept of a “strong select statement”,
consider the log of golf playing behavior seen in Figure 5.
In that log, we only playlots of golf in 6

5+3+6 = 43%
of the cases. To improve our game, we might search for
conditions that increases our golfing frequency. Two such
searches are shown in the bottom of Figure 5. In the case
of outlook=overcast , we playlotsof golf all the time.
In the case ofhumidity ≥ 90 , we only playlotsof golf
in 20% of the cases. The net effect of these two select state-
ments is shown in Figure 6.

The WHEREstatements within a select statement can
contain conjunctions of arbitrary size. Exploring all such
conjunctions manually is a tedious task. TAR2 is an auto-
matic tool for finding the strongest select statements[3, 7, 8,
9]; i.e., the statement thatmostselects for preferred behav-
ior while mostdiscouraging undesirable behavior. TAR2
calls this strongest select statement the “treatment” since it
is a recommended action for improving the current situa-
tion. The algorithm is automatic and, as used in this study,
searched the entire range of possible conditions. TAR2’s
configuration file lets an analyst search for the best select
statement using conjunctions of size 1,2,3,4, etc. Since



baseline outlook = overcast humidity ≥ 90
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LEGEND: none some lots

Figure 6. Changes to golf playing behavior
from the baseline.

TAR2’s search is elaborate, an analyst can automatically
find thebestandworstpossible situation within a data set.
For example, the select statements seen in Figure 6 were
learnt by TAR2 and show thebestandworstpossible situa-
tion for playinglotsof golf.

A common mistake that beginning treatment learners
make isover-training. Over-training happens when you al-
low TAR2 to gettoo specific in its select statements, and
your results end up too highly trained to be useful; i.e., your
results, while extremely applicable to current data, are un-
likely to apply to data seen in the future. One way of avoid-
ing this pitfall is by assessing the learnt treatments against
data not used during training. One method for doing so is
N-way cross validation. In this process, a training set is
divided intoN buckets. For each bucket in turn, a select
is learned on the otherN − 1 buckets, then tested on the
bucket that was put aside. A select statement is deemedsta-
ble if it works in the majority of allN turns. TAR2 comes
with anN-way cross validationtool that allows you to check
the validity of a select statement.

After performing treatment learning and 10-way cross
validation on our data set, the best(least errors) stable treat-
ments were:

L > 0.35 and T < 4.9

TAR2 can also be used to find theworst action in the
current situation merely by reversing the internal scoring
mechanism. The worst(most errors) stable treatments found
by TAR2 for this data set were:

LOC > 118 and ev(G) > 7

The effects of these select statements is shown in Fig-
ure 7, along with the results from the customaryv(G) > 10
andev(G) > 4 select statements. Note that although there
are other select statements which will significantly alter the
baseline distribution, none are as good as those listed above.
TAR2 automatically searches through the entire space of all
possible conjunctions of a specified size, and therefore as-
sures that you can find thebestpossible select statement
available for a data set.

Defect baseline: KEY:

0
33
66
99

20 80

defects > 0

defects = 0.

whenv(G) > 10 then . . . whenev(G) > 4 then . . .

0
33
66
99

70 30
0

33
66
99

75 25
whenLOC > 118 then . . . whenev(G) > 7 then . . .

0
33
66
99

83 17
0

33
66
99

79 21
whenL > 0.35 then . . . whenT < 4.9 then . . .

0
33
66
99

3 97
0

33
66
99

3 97
whenLOC < 44 then . . .

0
33
66
99

8 92

Figure 7. Results

Each of the distributions in Figure 7 should be compared
to the baseline distribution, which can be found at the top
of Figure 7. Clearly,v(G) > 10 andev(G) > 4 areboth
good select statements, in that they significantly alter the
distribution from the baseline. In addition, TAR2 was able
to determine thatev(G) > 7 is actually a better select state-
ment than either of the two customary McCabe metrics. It
is interesting to note thatev(G) actually performs better for
KC2 than the more widely usedv(G). However, neither
ev(G) nor v(G) are thestrongestselect statements to be
using (when predicting for errors), sinceLOC has a better
distribution.

In addition, the McCabe metrics are not useful at all
when attempting to predict for error-free code. With a
distribution of 97% error-free modules to 3% error-prone,
L > 0.35 andT < 4.9 are actuallyverystrong select state-
ments in this domain. In addition, the simplisticLOC met-
ric againproves it’s usefulness, as it can be used to predict
for error-free code as well, as the bottom of Figure 7 shows.

6 Discussion

This case study indicates that although McCabe com-
plexity metrics areOK as error predictors, other metrics
may prove to be better. It is also clear that simplistic regres-
sion techniques often shed little light on the error predicting
capabilities of various metrics; only through more thorough
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Figure 8. Excerpt from Complexity measure eval-
uation and selection[11].

testing can candidate attributes be detected. This study does
notattempt to suggest which metrics should be used for any
particular project; it only demonstrates that blind faith in
one metric is certainly not justified for multiple domains.

It is not our purpose to defame or otherwise injure the
reputation ofv(G) andev(G); certainly those metrics are
useful and viable options. For instance, in a similar study
conducted by J. Tian and M. Zelkowitz [11], it was found
that cyclomatic complexitywas the most useful attribute
for error-prediction; Figure 8 is an excerpt from that arti-
cle which demonstrates this fact. It is interesting to note,
however, that other metrics can perform better; in fact, in
this case study, the cheap and easy to collectLOC metric
actually performs exceptionally well asboth a selector for
error-prone and error-free modules. It has been suggested
by other researchers that in factLOC may be a better met-
ric to use when evaluating for error-prone code; the most
notable example of this is Martin Shepperd’s research [10].
Shepperd claimed that

...[Cyclomatic Complexity] is based upon poor
theoretical foundations and an inadequate model
of software development. The argument that the
metric provides the developer with a useful en-
gineering approximation is not borne out by the
empirical evidence. Furthermore, it would appear
that for a large class of software it is no more than
a proxy for, and in many cases outperformed by,
lines of code.

While we do not necessarily agree with Shepped’s scathing
views on cyclomatic complexity, we do acknowledge that

he is correct, at least for this domain, in his opinion that
v(G) is often outperformed byLOC.

Based on these results, it is obvious that what is a good
predictor for one project might not be at all useful on an-
other. Certainly, a blind faith in any one attribute is a dan-
gerous proposition. To sum the problem up succinctly, the
pressing research question is:Giventhat good error predic-
tors are project specific,how earlyin the development cy-
cle can a developer find the important predictor(s) for their
project?

7 Conclusion

In summary, we have shown two things which hold true
in this particular domain:

• McCabe complexity metrics arenot bad error-
predictors, but others are better.

• LOC, a relatively cheap and easy-to-collect metric, is
one of the best all-around error predictors.

Our future work addresses the pressing research question
described above. More specifically, in order to mitigate the
problem of finding good predictors for specific projects, we
believe that projects must be studied from inception to com-
pletion;i.e., given data sets with date stamps, how early can
data from inception to present predict for errors in modules
written one month ago? The results of such a study should
at least give a general idea of the time frame before a good
predictor can be found. Perhaps such a study might reveal
that good predictors change during a project; for example,
early in a project’s life cycle,LOC may be a good predictor,
while later onv(G) might be better.

We are anticipating being able to perform just such a
study on various projects at NASA. The results of these
studies could greatly aid in error predicting and project de-
pendency. Being able to predict for errors quickly and ac-
curately will reduce the time spent debugging and testing,
and should help to get software completed as quickly and
efficiently as possible.
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