
What Makes Finite-State Models more (or less) Testable?1

David Owen, Tim Menzies, Bojan Cukic
Lane Department of Computer Science

West Virginia University
PO Box 6109 Morgantown, WV 26506-6109, USA

{dowen|cukic}@csee.wvu.edu , tim@menzies.com

1 Introduction

How should we test software? Given a range of possible
test methods, when is one technique preferred to another?

Typically, these kinds of questions are answered with
reference to the inherent properties of the assessment mech-
anism. For example, Lowry et.al. [7] and Menzies & Cu-
kic [8] contrast the costs and defect detection decay rates of
formal methods, white box testing, and black box testing.
That analysis made assumptions about the completeness of
the search and the cost of setting up each run. A drawback
with that kind of analysis is it is silent about the model being
searched for defects1.

This paper studies how details of a particular model can
effect the efficacy of a search for detects. We find that if the
test method is fixed, we can identity classes of software that
are more or less testable. Using a combination ofmodel
mutatorsand machine learning, we find that we can iso-
late topological features that significantly change the effec-
tiveness of a defect detection tool. More specifically, we
show that for one defect detection tool (a stochastic search
engine) applied to a certain representation (finite state ma-
chines), we can increase the average odds of finding a defect
from 69% to 91%. The method used to change those odds
is quite general and should apply to other defect detection
tools being applied to other representations.

These results draw into question the results like those
of Lowry et.al. and Menzies & Cukic. If simple changes
to a model’s topology can increase detect detection to near
100%, then the efficacy of a defect detection tool must be
assessedin conjunction withthe program being assessed.

017th IEEE International Conference on Automated Software Engi-
neering, September 23-27, 2002, Edinburgh, UKhttp://ase.cs.
ucl.ac.uk/ . Date July 12, 2002. WP: ase.tex.

1Exception: It is widely acknowledged that model checking is expo-
nential on model size and so only a small part critical region of a total
system should be assessed via model checking.

2 Experimental Design

This study used the following tools: some finite state ma-
chines (FSMs); the LURCH1stochastic searchengine [10];
a model mutator; and the TAR2treatment learner[9]. This
section describes those tools.

2.1 FSMs

An FSM has the following features:

• Each FSMM ∈ S is a3-tuple(Q, Σ, δ).
• Q is a finite set of states.
• Σ is a finite set of input/output symbols.
• δ : Q × B −→ Q × B, whereB is a set of zero or

more symbols fromΣ, is the transition function.

A1

A2

-/m

B1

B2

m/-B2/- A1/-

S = {MA, MB}
MA = (QA, ΣA, δA)

QA = {A1, A2}
ΣA = {m, B2}, etc.

Figure 1. A system of communicating FSMs
(“m” is a message passed between the ma-
chines).

Figure 1 shows a very simple communicating FSM
model. States are indicated by labelled ovals, and edges
represent transitions that are triggered by input and that re-
sult in output. Edges are labelled:input / output. An im-
portant distinction in Figure 1 is ebtweenconsumablesand
non-consumables. A transition triggered by a messagecon-
sumesthe message, so that it is no longer able to trigger



another. But states are unaffected by transitions they trig-
ger; they are good for an arbitrary number of transitions.

FSMs can be characterized via the following parameters:

1. The number of individual finite-state machines in the
system. Figure 1 has two.

2. The number of states per finite-state machine. Figure 1
has two states per mission (true and false).

3. The number of transitions per machine. Figure 1 has
two transitions per machine.

4. The number of inputs per transition that are states in
other machines. Figure 1 has two such inputs: (A2,
B2).

5. The number of uniqueconsumablemessages that can
be passed between machines. Figure 1 has one such
message:m.

6. The number of inputs per transition that are consum-
able messages. Figure 1 usesm as input in one transi-
tion.

7. The number of outputs per transition that are consum-
able messages. In Figure 1,m appears as an output in
one transition.

2.2 LURCH1

A complete search for potential violations of temporal
properties within an FSM is intractable. The model check-
ing community has tried to optimize this search for decades.
While various techniques reduce the search space in certain
limited domains, the general problem remains intractable
(see the review in [5]).

When a complete search is too slow,stochastic searchis
an alternative that can be surprisingly effective. A repeated
result from the artificial intelligence literature, is that ran-
domly selected search pathways can find nearly optimal or
optimal results for large problems [4, 6, 11]. These results
prompted our development of LURCH1, a random search
engine for formal specifications [10].

To use LURCH1, models in different representations are
partially evaluated into variant of a directed and-or graph.
Conceptually, this graph is copied forN time ticks and the
outputs generated at timei − 1 become inputs for timei.
At runtime, LURCH1 maintains afrontier for the search.
When a node is popped off the frontier, it is discarded if it
contradicts an assertion made at the same time. Otherwise,
the node is added to the list of assertions.

LURCH1’s stochastic nature arises from how the search
proceeds after a new assertion is made. If all the pre-
conditions of the descendants of the new assertions have
been asserted then these descendants are added to the fron-
tier at a random position. As a result, what is asserted at
each run of LURCH1 can differ. For example, if the node
for x and¬x are both reachable from inputs, they will be
added to the frontier in some random order. Ifx gets popped

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400

U
ni

qu
e 

O
R

-n
od

es
 R

ea
ch

ed

Total OR-nodes Reached

Random search results for model of Dekker’s solution to
the two-process mutual exclusion problem (the model comes
from Holzmann [3]). Dots show when an error added to the
model is found by the search. The error is found in every
case.

Figure 2. Random search of AND-OR graphs
representing FSM models is effective in find-
ing errors.

first, then the nodex will be asserted and the node¬x will
be blocked. But if the node¬x gets popped first, then the
node¬x will be believed and the nodex will be blocked.

The stochastic search of LURCH1 is theoretically in-
complete but, in practice, it is surprisingly effective. For
example, Figure 2 (from Menzies et.al. [10]) shows ten tri-
als with a LURCH1 search over a model of Dekker’s solu-
tion to the two-process mutual exclusion problem (the orig-
inal model comes from Holzmann [3]). The dots represent
an error added to the model and found quickly by random
search in all ten trials. LURCH1 is very simple, yet can han-
dle searches much larger than many model checkers. For
example, Figure 3 shows random search results for a very
large FSM model. The composite FSM representing all in-
terleavings of the individual machines in the Figure 3 model
would require at most2.65 × 10178 states. This is well be-
yond the capability of model checking technology (10120

states according to [2]).

2.2.1 LURCH1 and Testability

Note theplateaushape of Figure 2 and Figure 3. If some
method can increase the height of that plateau, then that
method would have increased the chances the odds of find-
ing a defect.

This definition of increased “testability” is a reasonable
model-based extension of standard testability definitions.
According to the IEEE Glossary of Software Engineering
Terminology [13], testability is defined as “the degree to
which a system of components facilitates the establishment

2



0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

U
ni

qu
e 

O
R

-N
od

es
 R

ea
ch

ed

Total OR-Nodes Reached (millions)

Random search results for a very large randomly generated
FSM model, for which the set of FSMs being studied would
require at most 2.65× 10178 states.

Figure 3. Random search of AND-OR graphs
is scalable to very large models.

of test criteria and the performance of tests to determine
whether those criteria have been met”. Voas and Miller [12],
and later Bertolino and Stringini [1] clarify this definitions,
arguing that testability is “the probability that the program
will fail under test if it contains at least one fault”. If
LURCH1 quickly reveals many unique reachable nodes in
the model quickly and if some of these nodes contain faulty
logic, then those faults must be exposed2.

2.3 Model Mutator

LURCH1 was run over 15,000 FSMs generated semi-
randomly. Each FSM had parameter values drawn at ran-
dom from the following ranges:

1. 2–20 individual FSMs.
2. 4–486 states (states within all within machines).
3. 0–272 transitions per machine.
4. 0–737 transition inputs that are states in other ma-

chines.
5. 0–20 unique consumable messages.
6. 0–647 transition inputs that are consumable messages.
7. 0–719 transition outputs that are consumable mes-

sages.

These parameters where selected to ensure that FSMs
from real-world specifications fell within the above ranges
(for details of those real-world models, see [10]).

2Note that when the search reaches a plateau, there are no guarantees
provided about failure free field operation. But, unvisited nodes in the sys-
tem model are difficult to reach in the operational environment too, hence
the operational failure probability due to testable design of the model does
not increase.

The FSM generation process not truly random. Sev-
eralsanity checkswere imposed to block the generation of
bizarre FSMs:

• The current stateandnext statemust come from the
machine in which the transition is defined and must
not match.

• Inputs that are states must come fromothermachines,
and none may be mutually exclusive (the transition
could never occur if it required mutually exclusive in-
puts).

• The set of inputs that are messages from other ma-
chines contains no duplicates.

• The set of outputs that are messages to other machines
contains no duplicates.

2.4 Treatment Learning

The results of the 15,000 were analyzed by the TAR2
treatment learner[9]. Unlike standard machine learners,
TAR2 does not learndescriptionsof the different classes
in the training set. Such a description can be very large.
A smaller description of the essential features of a training
set is found by TAR2 and contains thedifferencesbetween
classes. TAR2 assumes that classes are ordered byscore
(a domain-specific measure); classes with a high score are
considered better than classes with a low score, and the most
desirable class (which has the highest score) is called the
bestclass. TAR2 finds rules that predict both an increase in
the frequency of better-class cases and a decrease in the fre-
quency of cases in worse classes; that is, TAR2 finds rules
that drive cases toward the best class and away from the
worst.

For this application, TAR2’s class scores reflected the
plateau height of LURCH1.

3 Results

Figure 4 shows the results of applying TAR2 to the
15,000 runs of LURCH1 over the semi-randomly generated
FSMs. The bottom half of Figure 4 shows which attributes
have the greatest affect on testability, given that the top three
are held low. The most significant attribute isstate inputs,
followed by message inputsandmessage outputs.To ver-
ify this result from TAR2, we generated 10,000 more FSMs
according to our sanity rules, but with the added constraints
of the bottom half of Figure 4. Figure 5 shows a compar-
ison of plateau height (our indicator of testability) for the
original data (top) and the new 10,000 runs (below). Note
that TAR2 has learnt FSM parameters significantly improve
FSM testability. In this case the improvement was a change
in the average plateau height from 69% to 91%.

3



←− Better Treatments
Machines lowest lowest lowest

(2–4)
States lowest lowest lowest

(4–49)
Transitions low low low

(0–109)
State Inputs high

(443–737)
Messages (not significant)
Message Inputs high

(389–647)
Message Outputs high

(432–719)

Figure 4. Best and worst treatments learned
by TAR2.

4 Conclusion

Simple changes to a model’s topology can increase de-
tect detection to near 100%. These changes can be learnt
automatically using model mutators (constrained by sanity
checks) and treatment learning. We recommend this method
of assessing the efficacy of a defect detection toolin con-
junction withthe program being assessed.

References

[1] L. S. A. Bertolino. On the use of tesability measures for de-
pendability assessment.IEEE Transactions on Software En-
gineering, 22(2):97–108, 1996.

[2] E. Clarke, Orna Grumberg, and Doron A. Peled.Model
Checking. MIT Press, Cambridge, MA, 1999.

[3] Gerard J. Holzmann. Basic SPIN Manual. Avail-
able at http://cm.bell-labs.com/cm/cs/what/
spin/Man/Manual.htm .

[4] H. Hoos and C. Boutilier. Solving combinatorial auctions us-
ing stochastic local search. InProc. of AAAI-2000, pages 22–
29. MIT Press, 2000.

[5] M. Houle, T. Menzies, and J. Powell. A fast search for
temporal properties of requirements, 2002. Available from
http://tim.menzies.com/pdf/02sp2.pdf .

[6] H. Kautz and B. Selman. Pushing the envelope: Plan-
ning, propositional logic and stochastic search. InPro-
ceedings of the Thirteenth National Conference on Artifi-
cial Intelligence and the Eighth Innovative Applications of
Artificial Intelligence Conference, pages 1194–1201, Menlo
Park, Aug. 4–8 1996. AAAI Press / MIT Press. Avail-
able from http://www.cc.gatech.edu/˜jimmyd/
summaries/kautz1996.ps .

[7] M. Lowry, M. Boyd, and D. Kulkarni. Towards a theory for
integration of mathematical verification and empirical testing.
In Proceedings, ASE’98: Automated Software Engineering,
pages 322–331, 1998.

[8] T. Menzies and B. Cukic. How many tests are enough? In
S. Chang, editor,Handbook of Software Engineering and
Knowledge Engineering, Volume II, 2002. Available from
http://tim.menzies.com/pdf/00ntests.pdf .

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100

N
um

be
r 

of
 G

ra
ph

s

Percentage of Graph (unique OR-nodes) Reached

Original search data— average plateau height = 69.39%.

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100

N
um

be
r 

of
 G

ra
ph

s

Percentage of Graph (unique OR-nodes) Reached

Search data for input models generated according to TAR2’s
suggestions— average plateau height = 91.34%.

Figure 5. Comparison of plateau height for
original search data (top) and new data based
on TAR2’s suggested treatments.

[9] T. Menzies and Y. Hu. Constraining discussions in re-
quirements engineering. InFirst International Work-
shop on Model-based Requirements Engineering, 2001.
Available from http://tim.menzies.com/pdf/
01lesstalk.pdf .

[10] T. Menzies, D. Owen, and B. Cukic. Saturation effects in
testing of formal models. InISSRE 2002, 2002. Available
from http://tim.menzies.com/pdf/02sat.pdf .

[11] B. Smith and M. Dyer. Locating the phase transition in bi-
nary constraint satisfaction problems.Artificial Intelligence,
81(1-2):155–181, 1996.

[12] J. Voas and K. Miller. Software testability: The new
verification. IEEE Software, pages 17–28, May 1995.
Available from http://www.cigital.com/papers/
download/ieeesoftware95.ps .

[13] IEEE glossary of software engineering terminology,
ANSI/IEEE standard 610.12, 1990.

4


