
Should NASA Embrace Agile Processes?

Jefferey Smith, Tim Menzies
Lane Department of Computer Science

West Virginia University
PO Box 6109, Morgantown

WV, 26506-6109, USA;
jefferey@jeffereysmith.com,tim@menzies.com

Abstract

As a growing number of NASA software projects tend
to stray from the conventional waterfall method of soft-
ware development, alternate development paradigms need
to be explored and assessed. This paper examines one such
paradigm, Agile Processes; and more specifically, the eco-
nomics of one its key practices, pair programming. It will
be shown that this core practice is only demonstrably useful
in a very small number of cases.

1 Introduction

A growing trend among NASA software projects is the
tendency for software development to move away from the
traditional software development paradigms. Previously,
NASA software has been developed by large software con-
tractor organizations with mature and traditional process
models. While this continues to be NASA’s main mode
of software development, there are an increasing number
of cases where an alternative approach is taken. For exam-
ple, the telescope controller for a current near-earth satellite
mission was developed by a university-based consortium
that used numerous heritage products and a loose consor-
tium of sub-contractors. This team produced useful code,
but not a fully developed traditional requirements docu-
ment.

The economic motivation for such non-traditional devel-
opment is clear: more science can be conducted for less
dollars. However, the safety implications such as the po-
tential for loss-of-mission is unclear. In situations such as
these, portions of code are being developedbeforethe re-
quirements are written. This then leads to requirements be-
ing written based upon the code; instead of the other way

0Submitted to the 27th Annual IEEE/NASA Software Engineering
Workshop, Greenbelt, MD, USA, December 5-6, 2002, Greenbelt Mar-
riott. http://sel.gsfc.nasa.gov/website/27ieee.htm .

around. These projects are clearly no longer following the
traditional waterfall model of software development:

Requirements ->
Design ->

Coding ->
Testing ->

Maintenance

In this light, alternate software development paradigms
should be explored as possible replacements for the water-
fall method.

One such alternate paradigm isAgile Process(AP) de-
velopment. AP is ”iterative, incremental, self-organizing,
and emergence” [5]. According to the Agile Manifesto, AP
is based on the idea of ”uncovering better ways of develop-
ing software by doing it and helping others do it [3].” In his
article, ”Get Ready for Agile Methods, With Care,” Barry
Boehm states that the primary difference between AP and
conventional methods is that ”[AP] methods derive much
of their agility by relying on the tacit knowledge embod-
ied in the team, rather than writing the knowledge down in
plans [2].” He goes on to discuss that while AP methods
risk making mistakes that could have been found by plan-
ning practices used by conventional methods, conventional
methods risk ”that rapid change will make the plans obso-
lete or very expensive to keep up to date [2].” While AP
may not be appropriate in every situation, there appears to
exist cases in which AP may be advantageous to conven-
tional methods.

Before beginning, it is important to stress the limits of
our study. This work will comment specifically on an ag-
ile process practice called ”pair programming”. We will
study pair programming because it is a core part of an agile
process called ”extreme programming”, which is the most
widely cited agile process in the literature. It will be shown
that this core practice is only demonstrably useful in a very
small number of cases. However, if another agile process

1

did not use pair programming, then the negative conclusions
of this paper would not apply to that agile process.

2 Agile Processes / Extreme Programming

AP is an approach that has gained popularity in recent
times. AP is a collection of software design practices and
techniques that diverge from the heavily structured method-
ologies in favor of a less structured, more adaptive ap-
proach. According to its manifesto [3], AP values. . .

• Individuals and interactions over processes and tools;
• Working software over comprehensive documentation;
• Customer collaboration over contract negotiation;
• Responding to change over following a plan.

In addition to these values, AP is based upon a set of twelve
principals:

1. The highest priority is to satisfy the customer through
early and continuous delivery of valuable software;

2. Welcome changing requirements, even late in devel-
opment. Agile processes harness change for the cus-
tomer’s competitive advantage;

3. Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale;

4. Business people and developers must work together
daily throughout the project;

5. Build projects around motivated individuals. Give
them the environment and support they need, and trust
them to get the job done;

6. The most efficient and effective method of conveying
information to and within a development team is face-
to-face conversation;

7. Working software is the primary measure of progress;

8. Agile processes promote sustainable development.
The sponsors, developers, and users should be able to
maintain a constant pace indefinitely;

9. Continuous attention to technical excellence and good
design enhances agility;

10. Simplicity–the art of maximizing the amount of work
not done–is essential;

11. The best architectures, requirements, and designs
emerge from self-organizing teams;

12. At regular intervals, the team reflects on how to be-
come more effective, then tunes and adjusts its behav-
ior accordingly.

0

5

10

15

20

25

30

35

40

gravesignificantmarginalinsig

pe
rc

en
t o

f
pr

oj
ec

ts

Figure 1. Ratio of different project error sever-
ities seen in 91 NASA IV&V projects 1996-
2002.

There are many positive aspects of AP which might be
attractive to the NASA organization:

• Continual interaction with the customer helps the
project to become more tailored to the customer’s
needs

• Frequent releases allow the customer to see progress
and working code more often

• Pair programming and continual testing leads to fewer
errors

Despite these benefits, however, there are some aspects
of AP that render it inappropriate for certain types of
projects. The best example of this is its approach towards
documentation. While some documentation is produced,
AP does not include the full documentation provided by
other methods. This is perfectly acceptable in many cases,
but in the case of safety critical systems, this full documen-
tation, like that which is produced as part of the waterfall
method, is required.

This doesn’t meant that AP should be abandoned. It sim-
ply means that AP is not an acceptable choice in certain situ-
ations. Figure 1 shows that out of 91 NASA IV&V projects,
more than one third of these projects were not of high criti-
cality (grave or significant). For projects such as these, AP
should still be explored for possible use.

A critique of AP is complicated by the broad and di-
verse nature of the AP movement. However, one of the most
popular AP approaches, Kent Beck’sextreme programming,
has been thoroughly specified; and therefore, it is easier to
study [1]. According to Beck, extreme programming has
the twelve key practices shown in Figure 2. The precise def-
inition of all these practices are beyond scope of this paper.
However, note the key role of one of the practices:pair pro-
gramming(PP). PP is the concept of two developers work-
ing together at a single machine, designing and writing code
cooperatively. Figure 2 shows the connection between XP

2

collective
ownership

continuous
nintergration

coding
standards

40 hour
week

refractoring

simple
design

metaphor

on-site
customer planning

game

testing

short
release

pair
programming

Figure 2. The connection between extreme programming practices. From [1]. Practices directly
effected by PP are shaded.

programming practices; the shaded practices have a direct
connection to PP. The centrality of PP to XP is evident from
this diagram. If PP is removed, it would directly affect all
of the shaded practices.

AP proponents claim that by working in pairs, develop-
ers produce code at a faster rate, and with fewer errors. But
the idea of developer pairs leads to two scenarios, each with
their own issues:

• Pool: If additional developers are added to a project
from a pool of developers to create the developer pairs,
then does the time/error advantage outweigh the addi-
tional developer costs?

• NoPool: If additional developers are not added, and
instead, the current developers are divided into groups
of two, then does the time/error advantage outweigh
the additional time needed to write code that results
from the fewer number of tasks that can be worked on
at one time?

To answer these questions, the economic effects of PP
on a software project need to be examined, and compared
to the outcome of conventional methods.

3 Müller/Padberg Study

A study of this nature has been conducted previously.
In their paper, ”Extreme Programming from an Engineer-
ing Economics Viewpoint,” M̈uller and Padberg compare
the economics of PP with those of conventional methods
[4]. This section examines their work. The next section dis-
cusses our concerns with their methods, and the procedure
we followed as a result.

3.1 Equations

In their paper, M̈uller and Padberg present an economic
model of software projects for both PP and conventional
methods. Their model is based on the Net Present Value
(NPV) of the software project, which is calculated and
compared for both programming methods.

TheNPV of the projects is found using Equation 1.

NPV =
AssetV alue

(1 + DiscountRate)
DevT ime

12
(1)

TheAssetV alue andDiscountRate are the same for both
projects. TheDiscountRate is used to simulate time to
market: a lower discount rate represents a longer time to
market, and a higher discount rate represents a faster time
to market. In NASA’s case, a fast time to market might be
the equivalent to a rapidly approaching launch date.

The equation for the development time,DevT ime, dif-
fers for the two development methods. Since the PP method
results in fewer errors, an allowance must be made in the
development time for the conventional method to allow for
the elimination of an equivalent number of errors. This ad-
ditional time for quality assurance is theQATime. The
DevT ime equation for the conventional method is:

DevTime = QATime + (2)

ProductSize

DeveloperProductivity ∗NumberOfDevelopers

And theDevT ime equation for the PP method is:

DevTime =
1

DeveloperProductivity
∗ 1

NumberOfPairs
(3)

∗ ProductSize

100% + PairSpeedAdvantage

where

3

Parameter

Developer Productivity 350 LOC/month

Developer Monthly Hours 135 hours/month

Defects per KLOC 100

Defects Eliminated by Conventional Processes 70%

Product Size 16,800 LOC

Developer Salary $50,000

Project Lead Salary $60,000

Asset Value $1,000,000

Table 1. Fixed parameters used by M üller and
Padberg

NumberOfPairs =
NumberOfDevelopers

2
(4)

TheQATime require three calculations. First, the num-
ber of defects left in a typical project must be calculated
using Equation 5.

DefectsLeft = ProductSize ∗ DPKLOC

1000
∗ (1−DNE) (5)

DPKLOC is the number of defects per thousand lines
of code, andDNE is the percent of defects not eliminated
by conventional techniques (1 - Defects Eliminated by Con-
ventional Processes). OnceDefectsLeft has been cal-
culated, the next step is to find theDefectDifference.
This is simply the DefectsLeft multiplied by the
PairDefectAdvantage, which is the percent of defects
PP eliminates that conventional programming does not.

DefectDifference = DefectsLeft ∗ PairDefectAdvantage (6)

The final step is to calculate the time required for con-
ventional developers to remove these extra defects. This is
known as theQATime, and is found using Equation 7.

QATime = DefectDifference ∗ DefectRemovalT ime

DeveloperMonthlyHours
(7)

∗ 1

NumberOfDevelopers

The final calculation that is required for the project
model, which is the same for both the conventional and the
PP method, is the development cost,DevCost. DevCost
is found using Equation 8.

DevCost =
DevTime

12

∗(NumberOfDevelopers ∗DeveloperSalary

+ProjectLeadSalary) (8)

Parameter
PairSpeedAdvantage 10% 20% 30% 40% 50%

PairDefectAdvantage 5% 10% 15% 20% 25% 30%

DefectRemovalTime 5h 10h 15h

DiscountRate 0% 25% 50% 75% 100%

Table 2. Parameters systematically varied by
Müller and Padberg

3.2 Method (Müller/Padberg)

For their study, M̈uller and Padberg used a set of fixed
parameters, see Table 1, and four parameters, that they con-
sidered to be key features, for which they systematically
varied their values (Table 2).

They used these values to calculate theNPV for the
conventional method and the PP method, and they did so
for both in two situations:

• NoPool: The number of developers was fixed. In this
situation, when the conventional method is usingn de-
velopers, the PP method is usingn

2 pairs.
• Pool: The number of developers is not fixed, as if there

existed pool of developers to create pairs with. In this
situation, when the conventional method is usingn de-
velopers, the PP method is usingn pairs, or2n devel-
opers.

3.3 Results (M̈uller/Padberg)

First, Müller and Padberg found that PP is advantageous
when the number of pairs is equivalent to the number of de-
velopers, as described in situation 2 above. In other words,
n developers are more efficient than n/2 pairs. Therefore, as
long as there exists additional tasks that can be assigned to
individual developers, PP is not the best solution.

However, if the project cannot be subdivided beyond n
tasks, and you have access to 2n developers, then PP has
the potential to be beneficial in certain cases. Müller and
Padberg found that PP is advantageous in this situation if
three criteria are met:

1. the project is of small to medium size (ProductSize
is not large)

2. the project is of high quality (AssetV alue is high)

3. the need for a rapid time to market is present
(DiscountRate is high)

4

a)

0

0.5

1

1.5

2

0 5000 10000

(P
ai

r/
co

nv
en

tio
na

l)
co

st

y values, sorted

baseline simulation

790

b)

0

0.5

1

1.5

2

0 5000 10000

(P
ai

r/
co

nv
en

tio
na

l)
co

st

y values, sorted

With max. developer productivity

1986

c)

0

0.5

1

1.5

2

0 5000 10000

(P
ai

r/
co

nv
en

tio
na

l)
co

st

y values, sorted

With max. pair speed & defect advantage

3680

Figure 3. Raw data plots of a) completely random
cases, b) cases withDeveloperProductivity set to max-
imum (T1), and c) cases withPairSpeedAdvantage and
PairDefectAdvantage set to maximum (T2). The vertical line
indicates the point where PP is no longer advantageous

4 Smith/Menzies Study

After examining the work done by M̈uller and Padberg,
we felt that a wider range of attributes could be explored.
By only varying four parameters, a large number of the
model’s attributes were not being examined as possible fac-
tors in determining the advantages of PP.

4.1 Method (Smith/Menzies)

To correct this, the M̈uller and Padberg model was re-
implemented, and random values within appropriate ranges
(see Table 3) were generated for a larger set of attributes.

Parameter Min Max

PairSpeedAdvantage 10% 50%

PairDefectAdvantage 5% 30%

DefectRemovalTime (hours) 5 15

DiscountRate 0% 100%

ProductSize (LOC) 10000 250000

DeveloperSalary ($) 45000 65000

ProjectLeaderSalary ($) 60000 90000

AssetValue ($) 200000 2000000

DeveloperProductivity (LOC/month) 100 500

NumberofDevelopers 4 20

DefectsPerKLOC 4 100

DefectsNotEliminated 10% 80%

Table 3. Parameters and ranges used by
Smith and Menzies

These attributes were then input into the model and, using
Equation 9, the total cost was found for both AP and con-
ventional development methods.

TotalCost = [(1− 1

(1 + DiscountRate)
DevT ime

12
) ∗ AssetV alue] (9)

+ DevCost

Equation 9 is a modified version of Equation 1. This
modified equation was used so that the resulting values
would always be positive. This then allowed us to use the
following ratio without worrying about the effects of nega-
tive numbers:

TotalCostofPP

TotalCostofConventional
(10)

This ratio was our means of comparison between the two
methods.

The random generation and calculations were repeated
for 10,000 cases, the results of each being recorded. These
10,000 cases were then used with a treatment learner to find
the attributes that led to an advantage for PP.

Note that this approach generates very large data files.
The TAR2 treatment learneris a tool for performing au-
tomatic sensitivity analysis of large logs looking for con-
straints to parameter ranges that can mostimproveor de-
gradethe performance of a system [6].TAR2performs an
exhaustive search over the data, and is capable of discover-
ing treatments not easily found by hand. In this study,im-
proveor degradewas measured according to Equation 10;
i.e. the impact on the ratio of PP’s cost to the cost of con-
ventional methods.

The treatment learner was applied to the test cases in two
separate studies:

• S1: no possible treatments were ignored. That is, no
attributes were ignored as possible factors that could
be changed to influence the performance of PP.

5

• S2: select attributes that the authors con-
sidered to be unchangeable were ignored as
possible treatments. These attributes were
PairSpeedAdvantage, PairDefectAdvantage,
andDefectRemovalT ime.

Also, each of these studies were examined in the two sit-
uations,NoPool and Pool, described in section 3.2, for a
total set of four studies:S1/Pool, S1/NoPool, S2/Pool, and
S2/NoPool

In addition to these completely random tests, two addi-
tional tests were conducted with specific values set for var-
ious attributes. These were done to examine the effects of
specific attributes about which the authors wanted to know
more. These tests were as follows:

• T1: DeveloperProductivity was set to the maxi-
mum value, 500 LOC/month, to see the distribution
when developers are being the most productive.

• T2: PairSpeedAdvantage and
PairDefectAdvantage were set to their maxi-
mum values, 50% and 30% respectively, to see the
distribution when pairs are operating at their greatest
rate of advantage over individuals.

4.2 Results (Smith/Menzies)

4.2.1 Summary (T1 and T2)

A summary of our results is shown in Figure 3. In those
plots, pair programming is at an advantage over conven-
tional approaches when PP

Conventional > 1.
Plot a in Figure 3 shows the output of our model from

10,000 runs across the distributions shown in Table 3. Note
that in only 8% of the runs is there an advantage to PP.

Plot b in Figure 3 shows the output fromT1. When
DeveloperProductivity was set to the maximum value,
PP was advantageous in approximately 20% of the cases.

Plot c in Figure 3 shows the output fromT2. From this
plot it can be seen that even when the two attributes that
have the most effect on the advantage of PP over conven-
tional methods are at their highest values, still only about
37% of the cases resulted in an advantage for PP. This is
the greatest advantage we found, even after usingTAR2to
exhaustively search all the attribute ranges.

4.2.2 Details

In both S1/PoolandS1/NoPoolit was found that increas-
ing PairSpeedAdvantage and PairDefectAdvantage
was the way to most improve PP’s advantage over
conventional methods. This is not surprising since
PairSpeedAdvantage andPairDefectAdvantage rep-
resent advantages that PP has over conventional methods.
Another attribute property that showed some influence in

increasing the advantage of PP inS1/NoPoolwas a high
DefectRemovalT ime. This too makes sense because
conventional methods are prone to more defects, and there-
fore, a highDefectRemovalT ime would result in conven-
tional developers working significantly more than developer
pairs.

Considering that it may not be possible to simply
changePairSpeedAdvantage, PairDefectAdvantage,
andDefectRemovalT ime as needed, studiesS2/Pooland
S2/NoPoolignored these attributes as possible treatments,
and looked for additional features that could lead to an ad-
vantage for PP. InS2/Poolit was found that there were three
things things that significantly contributed to an advantage
of PP over conventional methods:

1. A high DiscountRate (> 0.42)

2. A smallProductSize (10,000 to 60,000 LOC)

3. A high AssetV alue (≈ $1.6M to $2.0M)

These are the same three factors that were found by Müller
and Padberg when a pool of developers was present.

In S2/NoPool, no significant treatments were found.
Therefore, when a pool of developers is not present, or when
additional tasks are present as described by Müller and Pad-
berg in section 3.3, PP does not have an advantage over con-
ventional methods.

5 Conclusions

We offer two conclusions. Software development ap-
proaches such as AP/XP that do not precisely pre-specify
the requirements are not indicated for NASA projects with
significant or grave risks. Based on the IV&V experience
1996-2002 (Figure 1), this excludes around 64% of NASA
software projects from using AP/XP.

For the remaining projects, our model has only endorsed
AP/XP over conventional approaches in a relatively small
and specialized set of cases; i.e. when:

• the project is relatively small
• an abundance of developers exists
• a rapid development time is needed

This is not to say that NASA should avoid AP/XP. How-
ever, this study concludes that a convincing case for AP/XP
cannot be based on the factors modelled in this paper; i.e.

• increased productivity of pairs over conventional ap-
proaches

• productivity vs. cost
• lower error rates

6

Proponents of AP/XP must therefore base their case on
other factors not modelled in this paper, such as (e.g.) in-
creased performance in rapid changing environments, or de-
creased cost due to conventional requirements reworking to
accommodate changes.

Finally, it is important to reiterate the limitations of our
study. We focus primarily on the AP practice of pair pro-
gramming. If an AP method does not include pair program-
ming as part of its process, then the negative results of our
study are not applicable.

Acknowledgements

This research was conducted at West Virginia University
under NASA contract NCC2-0979. The work was spon-
sored by the NASA Office of Safety and Mission Assur-
ance under the Software Assurance Research Program led
by the NASA IV&V Facility. Reference herein to any spe-
cific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government.

References

[1] K. Beck. Extreme Programming Explained: Embrace
Change. Addison Wesley, 2000.

[2] B. Boehm. Get ready for agile methods, with care.Computer,
35(1):295–321, January 2002.

[3] M. B. et. al. Manifesto for agile software development, 2001.
Available fromhttp://www.agilemanifesto.org/ .

[4] M. M. Mller and F. Padberg. Extreme programming from
an engineering economics viewpoint. InProceedings of the
Fourth International Workshop on Economics-Driven Soft-
ware Engineering Research (EDSER), 2002.

[5] K. Schwaber, 2002. Quote from the First eWorkshop on Ag-
ile Methods. Available fromhttp://fc-md.umd.edu/
projects/Agile/Summary/Summary1.htm .

[6] T.Menzies and Y. Hu. The tar2 treatment learner, 2002.
Available from http://www.ece.ubc.ca/twiki/
pub/Softeng/TreatmentLearner/intro.pdf .

7

