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Here are some ROC curves for the metrics shown in Figure 1 and the
mystery project “KC-1”1

Metric Type Metric Definiton
McCabe v(G) Cyclomatic Complexity

ev(G) Essential Complexity
iv(G) Design Complexity
LOC Lines of Code

Halstead N Length
V Volume
L Level
D Difficulty
I Intelligent Content
E Effort
B Error Estimate
T Programming Time

Line Count LOCode Lines of Code
LOComment Lines of Comment
LOBlank Lines of Blank
LOCodeAndComment Lines of Code and Comment

Operator/Operand UniqOp Unique Operators
UniqOpnd Unique Operands
TotalOp Total Operators
TotalOpnd Total Operands

Branch BranchCount Total Branch Count

Fig. 1 Metric Groups.

All the following graphs are left-hand-side, right-hand-side pairs that
relate to the same parameter; e.g.
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The left-hand-side graphs are the standard ROC curves; i.e. given a table
of the following form:

true=0 true=1
detected=0 A B
detected=1 C D

1 And if you want to know what that project is, ask Ken Costello.
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then
pf =

C

A + C

is the probability of a false alarm and

pd =
D

B + D

is the probability of a true detection.
A good ROC curve approaches pd = 1 (i.e. we really see something) and

pf = 0 (i.e. we don’t make mistakes). The “best” ROC curve I found for
KC-2 was Unique operands and that is the dotted line on each left-hand-side
graph. FYI, the best we seem to get out of Unique operands reads to me as

best =< pd, pf >=< 0.8, 0.2 >

BUT, then I got worried about the support for this conclusion. A “good”
conclusion is supported by lots of data. Such “good” conclusions are more
likely to be applicable in future applications.

So let’s define:
support =

C + D

521
and is the number of times the 521 items in the data set made our detector
go “ping”. The right-hand-side graphs shows how support, pf, pd change as
some attribute changes.

So now I can reveal the secret ordering rule. The graphs are ordered
by how much support each parameter gets within 20% of best (the region
shown as a rectangle in the left-hand graphs).

Of course, this analysis ignores two more possible criteria:

Timeliness: How early in a project lifecycle can a good detector be seen?
External validity: How well do these detectors on unseen data?

(And thats a problem for another day...)

1 Metrics

Oh, and I better explain the metrics.

1.1 McCabe

The McCabe metrics are a collection of four software metrics: essential
complexity, cyclomatic complexity, design complexity and LOC [?,?,?]. Of
these four, all but LOC are metrics which were developed by T. J. McCabe.
McCabe & Associates claim that these complexity measurements provide
insight into the reliability and maintainability of a module. For example,
around NASA IV&V, a cyclomatic complexity of over 10 or an essential
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Fig. 2 Example program flowgraph

complexity of over 4 is flagged as a module that will be difficult to maintain
and/or debug. This paper will not attempt to make any refutation to those
claims and practices; however, these metrics are also commonly used as
predictors for error-prone modules. As this paper will demonstrate, these
complexity measurements do not always point the way towards modules
with increased error density.

The following paragraphs present a short overview of the three complex-
ity metrics mentioned previously.

Cyclomatic Complexity, or v(G), measures the number of linearly inde-
pendent paths2 through a program’s flowgraph3. v(G) is calculated by:

v(G) = e− n + 2

where G is a program’s flowgraph, e is the number of arcs in the flowgraph,
and n is the number of nodes in the flowgraph [1]. For example, Figure 2
is a simple flowgraph; it’s cyclomatic complexity is 3, since the graph has 6
arcs and 5 nodes (v(G) = 6− 5 + 2 = 3).

Essential Complexity, or ev(G), is the extent to which a flowgraph can be
“reduced” by decomposing all the subflowgraphs of G that are D-structured
primes 4. ev(G) is calculated by:

ev(G) = v(G)−m

where m is the number of subflowgraphs of G that are D-structured primes. [1]

2 A set of paths is linearly independent if no path in the set is a linear combi-
nation of any other paths in the set

3 A flowgraph is a directed graph where each node corresponds to a program
statement, and each arc indicates the flow of control from one statement to another

4 D-structured primes are also sometimes referred to as “proper one-entry one-
exit subflowgraphs”. For a more thorough discussion of D-primes, see [1]
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Design Complexity, or iv(G), is the cyclomatic complexity of a module’s
reduced flowgraph. The flowgraph, G, of a module is reduced to eliminate
any complexity which does not influence the interrelationship between de-
sign modules. This complexity measurement reflects the modules calling
patterns to its immediate subordinate modules [?].

1.2 Halstead

Another commonly used collection of software metrics are the Halstead
Metrics [2]. They are named after their creator, Maurice H. Halstead. Hal-
stead felt that software (or the writing of software) could be related to the
themes which were being advanced at that time in the psychology literature.
He created several metrics which are meant to encapsulate these properties;
these metrics can be extracted by use of the McCabe IQ tool mentioned
previously, and are discussed in detail below.

Halstead began by defining some basic measurements (these measure-
ments are collected on a per module basis):

µ1 = number of unique operators
µ2 = number of unique operands

N1 = total occurrences of operators
N2 = total occurrences of operands

µ∗1 = potential operator count
µ∗2 = potential operand count

These six metrics are self explanatory, with the possible exception of the
potential operator/operand counts. Halstead defines µ∗1 and µ∗2 as the min-
imum possible number of operators and operands for a module. This mini-
mum number would occur in a (potentially fictional) language in which the
required operation already existed, possibly as a subroutine, function, or
procedure. In such a case, µ∗1 = 2, since at least two operators must appear
for any function; one for the name of the function, and one to serve as an
assignment or grouping symbol. µ∗2 represents the number of parameters,
without repetition, which would need to be passed to the function or pro-
cedure.

Using these measurements, Halstead defined the length of a program P
as:

N = N1 + N2

The vocabulary of P is:

µ = µ1 + µ2
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The volume of P , akin to the number of mental comparisons needed to write
a program of length N, is:

V = N ∗ log2µ

V ∗ is the potential volume - the volume of the minimal size implementation
of P.

V ∗ = (2 + µ2
∗)log2(2 + µ2

∗)

The program level of a program P with volume V is:

L = V ∗/V

The inverse of level is difficulty :

D = 1/L

According to Halstead’s theory, we can calculate an estimate L̂ of L as:

L̂ = 1/D = 2
µ1
∗ µ2

N2

The intelligence content of a program, I, is:

I = L̂ ∗ V

The effort required to generate P is given by:

E = V
L̂

= µ1N2Nlog2µ
2µ2

where the unit of measurement E is elementary mental discriminations
needed to understand P .

The required programming time T for a program of effort E is:

T = E/18seconds
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