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Abstract

Formal analysis of software is a powerful analysis tool,
but can be too costly. Random search of formal models can
reduce that cost, but is theoretically incomplete. However,
random search of finite-state machines exhibits anearly sat-
uration effect, i.e., random search quickly yields all that
can be found, even after a much longer search. Hence, we
avoid the theoretical problem of incompleteness,provided
that testing continues until after the saturation point. Such
a random search is rapid, consumes little memory, is simple
to implement, and can handle very large formal models (in
one experiment shown here, over10178 states).

1 Introduction

Formal modelling, analysis and verification are very ac-
tive research areas in software assurance. Proponents of for-
mal methods promise improved software reliability (see the
long list of applications in [26]). However, doubts exist re-
lated to the practicality and cost of applying formal meth-
ods:

• The cost of developing the formal model or a query,
referred to in the rest of this paper as thewriting cost.
Often PhD-level mathematical expertise is required for
writing such models.
• The cost of executing queries of the formal model, i.e.,

therunning cost. A formal query can be impractically
slow to execute since it should explore all possible in-
teractions. Such an exploration may require exponen-
tial CPU or memory resources.
• The cost of introducing changes into the formal model,

i.e., the rewrite cost. Analysts often rewrite formal
models into a more abstract and succinct form in an
attempt to reduce therunning cost.

Many researchers have tried to reduce these costs using a
variety of methods, such as restricted modelling languages

and temporal logic patterns discussed in the related work
section. In summary, much progress has been made in re-
ducing thewriting cost, but the general problem of a high
running costpersists despite decades of work.

In an attempt to minimize therunning costand thereby
decrease therewrite cost(which is associated with modify-
ing models to decrease verification run times), we have been
exploring formal models compiled into a variant of AND-
OR graphs calledNAYO graphs[36, 38, 39]. These NAYO
graphs have the advantage that they can be auto-generated
from commonly used representations, such as finite state
machines, but searching them does not require exponential
memory, as is required by standard model checkers working
on finite-state models.

While NAYO graphs avoid the memory problems of
model checkers, they may be very slow to search. As we
shall see later on, acomplete searchof NAYO graphs is
prohibitively long (exponential on the size of the graph), in-
curring unacceptablerunning cost.

The alternative to complete search isincomplete search.
A repeated and recent result in the artificial intelligence lit-
erature is that such incomplete searches may be surpris-
ingly effective. The logical form of complete search of
a NAYO graph is similar to the SAT (satisfiability) prob-
lem [34] (in fact, exhaustive search of a NAYO graph is
NP-complete [45]).Random searchis an incomplete strat-
egy often used for SAT problems:

• When competing constraints block progress, one con-
straint (selected at random) is favored.
• Future impasses are also anticipated and resolved ran-

domly, i.e., this search finds a randomly selected subset
of a formal model—this is what we mean byincom-
plete.
• Random search runs, resets, and retriesN times. The

best solution seen in any run is returned as the result.

A repeated result is that random search finds optimal or
nearly optimal results for large satisfiability problems [28,
31, 51]. Further, random search finds a result even when
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Figure 1. The saturation effect.

exhaustive search is not feasible. These results motivated
us to explore the application of random search techniques
in software engineering, investigating search over NAYO
graphs generated from finite-state machines. Our research
lead to the following discovery:

Random search over formal models of software
specifications exhibits asaturation effect.

An example of the saturation effect is shown in thesatu-
ration curve of Figure 1. In that curve, most of the states ob-
served and analyzed by searching a (NAYO) graph are dis-
covered very early in the process. Saturation usually mani-
fests itself as a sharp initial increase in the number of unique
states visited (states unobserved in previous searches), fol-
lowed by a plateau where extra effort does not yield any
more unique results.

Assessment methods that lack the saturation effect have
the property that, the longer the assessment, the more
unique results are found: see theno saturationcurve of Fig-
ure 1. On the other hand, assessment methods that exhibit
a saturation effect support early stopping rules. Such rules
reduce the cost of formal analysis, i.e., therunning cost. We
can stop searching a formal model when it is very unlikely
that prolonged search will uncover new results, i.e., once
the saturation plateau is encountered.

Assessment methods using early stopping rules run the
risk of false positives, i.e., reporting that no faults are
present when further assessment would have found them.
Hence, early stopping can only be endorsed for searches
that exhibitadequacyandflat plateauproperties:

Adequacy: An adequate assessment method does not fail
to recognize faults in states visited (covered) prior to
the occurrence of saturation.

Flat plateau: If the saturation curve results in aflat
plateau, then additional errors, if present in the unseen
portion of the formal model, are not detected. How-
ever, due to the flatness of the plateau, they are most
likely to remain unnoticed upon system deployment,
unless its operating regime undergoes drastic changes.

Our claim is that random search of NAYO graphs gener-
ated from finite-state machines demonstrates both adequacy
and consistently flat plateaus. So it appears that early stop-
ping is possible for testing of formal models, assuming we
are using random search over NAYO graphs to test them. If
true, this would eliminate a significant portion of therun-
ning costand therewrite cost.

The rest of this paper defends this claim. After a discus-
sion on related work, we describe an environment for trans-
lating communicating finite-state machine software mod-
els into NAYO graphs. Multiple experiments with random
search over these graphs demonstrate repeated occurrence
of the saturation effect. Case studies will be presented sug-
gesting that our method of testing formal models isade-
quateand generatesflat plateaus.

2 Related Work

2.1 The Saturation Effect

Saturation is consistent with programs containing zones
that are easily reachable and zones that are not reachable at
all. Elsewhere, we have surveyed the numerous reports of
this effect in the software engineering and knowledge engi-
neering literature [36, 37]. This section is a brief sample of
those surveys.

Horgan & Mathur [29] document systems where most
program paths get exercised early with little further im-
provement as testing continues. Mutation testers often re-
port that a small sample of their mutations1 find as much as
a much larger sample of mutations [2,7,42,53].

Numerous researchers report that much of the apparent
complexity of their program collapses into a very small
zone through which all execution paths must traverse. For
example, Avritzer et.al. [3] found that a sample of 6% of
all inputs to a telecommunications expert system covered
99.9% of all inputs seen in one year’s operation of that pro-
gram. In other work, Bieman & Schultz [6] document a
natural language processing system where less than 50 in-
puts were enough to exercise all du-pathways2 in 95% of
the system modules. A similar effect was noted by Harrold
et.al. [22], who studied how control-flow diagrams grow as
program size grows. A worst-case control-flow graph is one
where every program statement links to every other state-
ment, i.e. the number of edges in the graph grows with
the square of the number of statements. However, for over
4000 Fortran routines and 3147 C functions, the control
flow graph grows linearly with the number of statements.
That is, at least in the systems seen in the Harrold et.al.

1A mutantof a program is a syntactically valid but randomly selected
variation to a program; e.g. swapping all plus signs to a minus sign.

2A du-pathway is a link from where a variable isdefinedto where it is
used.
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study, the program pathways form single-parent trees. This
collapsing effect has been observed in many domains: “col-
lapsed” program portions have been calledmaster-variables
in scheduling [13],backbonesin the satisfiability commu-
nity [46, 50], andminimal environmentsin truth mainte-
nance systems ATMS [15].

Saturation is such a widespread effect that it has
prompted several mathematical studies. Menzies & Singh
concluded that saturation is a property which should emerge
in most programs (in the average case) [41]. Another
simulation-based analysis, reported at ISSRE 2000 [38],
made a similar conclusion.

2.2 Formal Modelling

In mission-critical or safety-critical applications, where
required safety and reliability justify the high cost of soft-
ware and system assurance, formal verification is often
used—see the long list of applications in [26]. Running a
single formal query can find many faults, if they exist. How-
ever, finding the same faults with specific test cases may re-
quire generating a large number of inputs and running them
many times.

Another useful feature of formal analysis is that verifi-
cation engines for formal models such as the SPINmodel
checker[26] returncounter examplesshowing exactly how
an invariant is violated. Such counter examples are useful
in localizing and repairing faults.

Temporal logicis a useful notation for describing the
temporal properties of a device. Temporal logic is classi-
cal logic augmented with temporal operators such as�X
(alwaysX is true),♦X (eventuallyX is true),©X (X is
true at the next time point),X U Y : (X is true untilY is
true). For example, consider the property

Always, the elevator door never opens more than
twice between the source floor and the destination
floor.

SupposeP denotes elevator doors opening,Q denotes
the arrival of an elevator at the source floor andR denotes
the arrival at the destination floor. The following daunting
expression models our rule about the elevator doors:

�((Q ∧ ♦ R) → (( ¬ P ∧ ¬ R)
U (R ∨ ((P ∧ ¬ R)
U (R ∨ (( ¬ P ∧ ¬ R)
U (R ∨ ((P ∧ ¬ R)
U (R ∨ ( ¬ P ∨ R))))))))))

Automated model checking tools can search a formal
representation of a problem (program) to find counter-
examples to the supplied correctness constraint (e.g., the
expression above). This search explores all the possible in-
teractions within the program. In the worst case, the number

of such interactions (system states) is exponential with re-
spect to the number of different assignments to variables in
the system. Hence, therunning costassociated with a query
can be excessive. This largerunning costoften forces an-
alysts to shorten and rewrite the formal models or formal
constraints. Such a rewrite incurs therewrite cost. Also,
in an attempt to simplify formal system representation, an
analyst may unintentionally ignore some, potentially signif-
icant, system detail.

Significant research efforts target the reduction of writ-
ing and running costs for formal verification. For example,
simplified modelling environments have been developed,
such as SCR [23–25] or influence diagrams [40], through
which users can express their models in simple and intu-
itive frameworks. Models written in these environments
can be automatically mapped into model checkers, such as
SPIN, thus combining easy modelling of requirements spec-
ifications with formal verification. Furthermore, Dwyer,
Avrunin & Corbett [16, 17] identifiedtemporal logic pat-
ternswithin the constraints seen in many real-world prop-
erties models. For each pattern, they defined an expansion
from the intuitive pseudo-English form of the pattern to a
formal temporal logic formula. In this way, analysts are
shielded from the complexity of formal logics. For ex-
ample, ourwriting cost for the elevator expression was, in
fact, minimal. We just looked up the “bounded existence”
temporal logic pattern athttp://www.cis.ksu.edu/
santos/spec-patterns/ltl.html and extracted
the expression associated withtransitions to P-states occur
at most 2 times between Q and R.

These and similar tools reduce thewriting costbut do not
necessarily reduce therunning costor therewrite cost. The
rewrite costis incurred when therunning costis too high
and the models or constraints must be abbreviated.

There is no guarantee that formal verification is tractable
over the constraints and models built using temporal logic
patterns and tools like SCR. Restricted modelling languages
may generate models simple enough to perform rigorous
formal verification, but the restrictions on the language can
be excessive. For example, checking temporal properties
within simple influence diagrams can take merely linear
time [40], but such a language can’t model common con-
structs such as sequences of actions or recursion. Hence,
analysts may be forced to use more general modelling lan-
guages. Unfortunately, the highrunning costof such gen-
eral verification languages persists despite decades of work.

2.3 Reducing the Running Cost

Many researchers have explored reducing therunning
costusing a variety of techniques:

• Symbolic model checking: use binary-decision dia-
grams (BDD’s) to succinctly represent the otherwise
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excessively large state space [10]. Tools for work-
ing with BDD’s are widely available—see (e.g.) bdd-
portal.org.

• Abstraction or partial ordering: use only the part of
the space required for a particular counter-example.
Implementations exploiting this technique can con-
strain how the space is traversed [20] or constructed
in the first place [49].

• Clustering: divide the system model into sub-systems
which can be reasoned about separately [9].

• Meta-knowledge: study only succinct meta-knowledge
of the space. One example used an eigenvector anal-
ysis of the long-term properties of the systems model
under study [30].

• Exploit symmetry: find properties in some part of the
system model, then re-use those counter-examples if
ever those parts are found elsewhere in the model [8].

• Semantic minimization: replace the space with some
smaller, equivalent space. For example, BAN-
DERA [12] reduces both the system’s writing cost and
the running cost by automatically extracting (slicing)
the minimum portions of a JAVA program’s bytecodes
relevant to the particular properties specified by the an-
alyst.

While the above techniques have all been useful in
some application domains, they may not be universally
applicable. Certain optimizations require expensive pre-
processing [30]. Also, these methods may rely on certain
combinatorial features of the system being studied. Ex-
ploiting symmetry is only useful if the system under study
is highly symmetric. Clustering generally fails for tightly
connected models. Hence, in the general case, it seems that
only relatively small models (although the maximum size
is increasing due to increasing in processing power) can be
formally verified using state-space search techniques.

2.4 Other Stopping Rules for Testing

Early stopping rules in testing have been thoroughly
studied. Certification tests using reliability demonstration
charts have been introduced by Musa, Iannino and Oku-
moto [43, 44]. Areliability demonstration chartis shown
in Figure 2. There are three regions on the chart:reject, test
andaccept. A failure is plotted if it occurs during random
testing, in which tests are selected according to theopera-
tional profile (an operational profile is a statement of what
input values are expected at runtime). The vertical axis on
the chart denotes the failure number, while the horizontal
axis denotes normalized occurrence time (for example, oc-
currence time multiplied by the failure intensity objective).
Depending on where the failure is plotted with respect to
the graph regions, testing is stopped (with the program ei-
ther accepted or rejected) or continued. The number of tests

Reject

Cont.

Accept

Normalized
Time to
Failure

Failure
Number

Figure 2. The reliability demonstration chart.

required for reliability certification test in this technique de-
pends on the position of the lines between reject, continue
and accept regions.

Another method for defining early stopping rules is to
use Bayesian prior probabilities. Testing can stop early
when priors stabilize and the probability of failure on de-
mand is low. Consider the case when failure occurs within
a run of 5,000 tests. Suppose that failure is detected at test
3,500. The problem is: how many additional tests need to
be executed successfully following one or more failures, to
be able to certify requested reliability without debugging?
Littlewood and Wright [32] proposed one solution, based
on Bayesian statistics. At the start of the certification test,
computen1, the number of failure free randomly selected
test executions needed to certify required reliability. If all
n1 executions succeed, testing can stop and software reli-
ability can be certified at the required level. Otherwise, a
failure is observed at executions1 (s1 < n1). In the light of
evidence of one failure ins1 executions, a number of further
failure free executions,n2, wheren2 > n1, is determined.
Test executions proceed and eithern2 executions succeed
(and reliability is certified), or a failure is observed on de-
mands1 + s2. In the later case, the testing continues. Note
that if the program does not have the required reliability,
testing may continue forever. In a sense, this technique is
similar to Musa’s reliability certification charts, but the rea-
soning that leads to accept or continue testing decisions is
different. Readers interested in understanding the details of
this approach are encouraged to read [14,32,33].

Despite all this work, our reading of the literature is that
we are the first to discuss early stopping rules based on ran-
domized search of formal models.

2.5 Other Non-Exhaustive Search Strategies

Our work might be characterized as the application of
heuristic search to formal methods. The intuition behind
heuristic search is that expert knowledge can solve prob-
lems faster than brute force methods. For example, one
method is to maintain a “frontier” list of “promising” op-
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tions. When new options are found, they are assessed via
a heuristic “distance function” that guesses how close the
new options are to the target solution. Options are added
to the frontier sorted by the score assigned to them by the
heuristic, and all but the topN options are ignored.

Experiments with this approach have yielded mixed re-
sults. Model checking has been optimized via such a heuris-
tic search [18] but, in personal communication with us, the
authors of that work report that the implementation was sur-
prisingly complicated.

Others have used anassume-guaranteeapproach to re-
duce the running cost of model checking [47]. With this
approach there are two properties specifications, those as-
sumed, which are written into the software model, and
those to be verified. By carefully choosing which proper-
ties go into each category, the analyst can control the size of
model—and therefore the running time.

Our claim is, for procedures that exhibit the saturation
effect, complex search strategies are not required, since ran-
dom search would quickly find all that there is to find. Fur-
ther, the simplicity of our implementation recommends it
over (e.g.) approaches cited above.

2.6 Testability

The idea of saturation effects in software testing is re-
lated to the idea oftestability. In a sense, we are using ran-
dom search on formal models as a way of determing which
are highly testable (i.e., those that exhibit a saturation ef-
fect) and which are difficult to test (i.e., those that do not
exhibit saturation).

Testability has been defined more formally elsewhere:
according to the IEEE Glossary of Software Engineering
Terminology [1], testability is defined as “the degree to
which a system of components facilitates the establishment
of test criteria and the performance of tests to determine
whether those criteria have been met.” Voas and Miller [52],
and later Bertolino and Stringini [5] clarify this definition,
arguing that testability is “the probability that the program
will fail under test if it contains at least one fault.”

If testability can be estimated (and this is not an easy
task), it can serve as the basis to draw inferences on sys-
tem verification based on test results. According to Ham-
let and Voas [21], repeated failure-free executions of a pro-
gram with a high probability of revealing failures (if they
exist) should provide higher confidence in assessed reliabil-
ity. Bertolino and Stringini dispute this point of view [5]
because, if faults remain in the testable program, there is
a higher probability they will cause a failure in field use.
Therefore, the reliability of a testable program does not have
to be higher than the reliability of an untestable program,
given that the two passed the same number of tests. Testable
software designs should facilitaterevealing the faultsduring

verification process, without creating a greater probability
of failure in operation.

Our rather informal notion of testability, based on
whether or not we see a saturation effect, is not inconsistent
with the definitions above. If (a) a random search procedure
over a NAYO graph reveals many unique reachable nodes
in the model quickly and if (b) some of these nodes con-
tain faulty logic, then those faults must be exposed. Note
that when the search reaches saturation, there are no guar-
antees provided about failure free field operation. But un-
visited nodes in the system model are difficult to reach in
the operational environment too, hence the operational fail-
ure probability due to testable design of the model does not
increase.

3 Formal Models

Our experiments in random search over formal mod-
els are based oncommunicating finite-state machines(or
FSMs) translated to a type of AND-OR graph (the compact
NAYO graph representation mentioned in section 1). Finite-
state machines are commonly used to formally model con-
current software systems. By translating finite-state models
into NAYO graphs, we are able to represent the same infor-
mation in a much smaller space. This section describes the
automatic translation process.

3.1 FSMs

We define a systemS of communicating FSMs in the
following way:

• Each FSMM ∈ S is a3-tuple(Q,Σ, δ).
• Q is a finite set of states.
• Σ is a finite set of input/output symbols (including

symbols representing states in other machines and
symbols representing messages passed between ma-
chines).
• δ : Q × B −→ Q × B, whereB is a set of zero or

more symbols fromΣ, is the transition function.

Figure 3 shows a very simple communicating FSM
model. States are indicated by labeled ovals, and edges rep-
resent transitions. Edges are labelled:input / output. Here
are some of the parameters listed above, with their values
for the model shown in Figure 3:

• Set of FSMsS = {MA,MB}.
• FSMMA = (QA,ΣA, δA).
• Set of statesQA = {A1,A2}.
• Set of input / output symbolsΣA = {m (message),B2

(state from another machine)}, etc.

Such FSMs can be used to formally model both a system
and the properties of that system. By compilingboth the
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B1

B2

m/-B2/- A1/-

Figure 3. A system of two communicating
FSMs (the machine on the right is referred
to below as “ MA,” the machine on the left as
“MB”; “m” is a message passed between the
machines).

properties and system into FSMs, formal verification and
heuristic testing reduces to the issue ofacceptance. We say
that the larger FSM representing the programacceptsthe
smaller FSM representing the properties if the latter can be
found within the former. If so, then the properties can be
reached within the program.

It is usual practice to negate the desired properties before
testing for acceptance. If acceptance of the negated proper-
ties, i.e., failure can be shown, then the path found by the
model checker leading to the failure can be returned as a
counter-exampleto the property, showing exactly how the
program can fail.

3.2 NAYOs

Figure 4 shows an AND-OR graph equivalent to the
communicating FSM model shown in Figure 3. We call
this type of AND-OR graph a NAYO [38] since it contains
the following features:

• A setN of undirected NO-edges connecting incompat-
ible (logically inconsistent) nodes.

• A setA of AND-nodes—an AND-node is TRUE if all
of its YES-edge parents are TRUE.

• A setY of directed YES-edges.
• A setO of OR-nodes—an OR-node is TRUE if any of

its YES-edge parents are TRUE.

Figure 5 shows the procedure used to automatically
translate from a communicating FSM model (e.g., Fig-
ure 3), to a NAYO graph (e.g., Figure 4). In general, for a
system ofk FSMs withn states andm single-input, single-
output transitions per machine, the resulting NAYO has:

• mk AND-nodes (Figure 5, line 5)+ nk OR-nodes
(line 3)= O((m+ n)k) nodes.

A2

A1

no

and

and

and

m

and

B2

B1

no

Figure 4. NAYO graph equivalent to FSM
shown in Figure 3 (NO-edges dotted, AND-
nodes shaded).

1: for (each finite-state machine) do
2: for (each state) do
3: Make an OR-node; connect it with a NO-edge to each

OR-node representing another of this machine’s states.
4: for (each transition in this finite-state machine) do
5: Make an AND-node;
6: Make current state a YES-edge parent of the AND-node;
7: Make input(s) (a) YES-edge parent(s) of the AND-node;
8: Make next state a YES-edge child of the AND-node;
9: Make output(s) (a) YES-edge child(ren) of the AND-node.

Figure 5. Automatic translation procedure
from FSMs to NAYOs.

• 4mk YES-edges (lines 6-9)+ (n/2)(n − 1)k NO-
edges (lines 3-4)= O((m+ n2)k) edges.

An FSM composite (the type of graph constructed by
a model checker to represent a system of communicating
FSMs) for the same system will in the worst case require
O(nk) states andO(nk−2) transitions [27]. To give a more
concrete idea of the space saved by using a NAYO graph,
Table 1 compares the FSM composite to the NAYO graph
for several models. Three of these models will be discussed
further below.

Unfortunately the problem of finding all consistent as-
signments in a NAYO graph is NP-complete, as mentioned
above and shown in [45]. So there is a tradeoff here: with
a model checker, we can quickly search an exponentially
large composite FSM; with our NAYO graph technique we
can represent the information in a small space but require
exponential time to exhaustively search it. The focus of
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States in FSM
Model Composite Nodes in

(upper bound) NAYO Graph

Dekker 2-Process
Mutual Exclusion 2,304 40
Model from [19]
TCP Protocol

Model from [48] 2,467 84

SCR Specification
Model from [4] 1.05x107 73

Large Randomly
Generated Model 2.65x10178 4,007

Table 1. Size comparison of NAYO and FSM
composite for a range of models.

model checking research has been to reduce the number of
states required by the finite-state composite. Our NAYO
graph scheme addresses the statespaceexplosion problem,
but creates a new problem, since exhaustive search requires
exponentialtime. We address this NAYO time problem by
using a partial (not exhaustive) random search.

4 Random Search

Our random search test scheme runs over an abstraction
of the program, and so we do not have to explore the ac-
tual execution pathways of the programs normal operation.
There is therefore a change of false negative—our method
will find errors after exploring more behaviors of the pro-
gram than seen in actual operation. However, given the sat-
uration effect, there isless chanceof a false positive, since
our method over-samples the space of possible behaviors.

We sayless chancerather thanno chancefor the fol-
lowing reason: if the program encounters input conditions
that fall out of the range used in our random tests, then our
search may not find the errors that result from those real-
world inputs. In this regard, our technique is no different
from any other method that draws conclusions based on se-
lected input conditions. Nevertheless, our random search
approach offers some advantages over other test methods.
In thistwo model method, a very large space of inputs can be
explored. And given that such formal models exhibit a sat-
uration effect, our approach is not likely to be prohibitively
expensive.

The rest of this section describes our random search
method for NAYO graphs. This search is designed to solve
the following problem:

• Given some (not necessarily consistent) input set of
OR-nodes . . .
• Find an output set implied by (and consistent with at

least part of) the input, and make this output set as large
as possible.

• Using this output set as input for the next iteration, find
the next output set.

• Ultimately, we want a series of internally consistent
output sets, each of which implies the next and is as
large as possible.

Ideally each output set contains an OR-node for a state in
each of the finite-state machines from the original model—
if so, that output set is equivalent to one of the states in the
composite FSM that would be searched by a model checker
(and we have found it without explicitly constructing the
composite FSM). But in general, because the random search
is not exhaustive, it may not tell us quite as much as a more
time- (and / or space-) consuming technique; that is, each
output set will constitute only apartial description of a state
in the composite.

The properties we check for are also partially defined
states in the FSM composite that would be searched by a
model checker. More complex temporal properties involve
relationships between states, so to check for these using our
approach we would search for relationships betweenpar-
tially defined states.

Figure 6 shows our NAYO random search procedure.
The core ideas of the algorithm aretime-copies, random se-
lection, andwaitValues. These terms are defined as follows.

Time Copies: The algorithm’s view of time is that the
NAYO graph is copied up toMAX times and nodes
at timei connect to nodes at timei+ 1 via a temporal
linking policy. Our policy is to use the outputs reached
in one time copy as the inputs to the next time copy.
Note thattime copiesis a conceptual view only. Fig-
ure 6 actually executes over a single time copy (with
the appropriate indices being reset when the reasoning
mores timei to timei+ 1).

Random Selection: The algorithm runs through a queue
of found nodes and checks the children of each. If
a child is consistent with the current output set, it is
added to the queue—inconsistencywould be indicated
in the NAYO graph by a NO-edge between the child
and some node in the current output set. This process
continues until the queue is empty. Nodes are added to
the queue in a random order (see lines 11, 28 and 32)
The order in which nodes end up in the queue deter-
mines which will be popped first, and that determines
which node’s children via NO-edges will be disquali-
fied first. In effect, the search flips a coin when it must
decide between two incompatible paths.

WaitValue: Each time a node is reached its waitValue is
decremented. Our NAYO traversal does not carry on
the children of a node unless the node is waiting on
nothing, i.e., its waitValue is zero (see line 27 of the
algorithm). The waitValues are initialized as follows:
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1: struct node {
2: yesList (list of children via YES-edges)
3: noList (list of children via NO-edges)
4: type {AND,OR}
5: disqualified (integer ≥ 0)
6: waitValue (integer ≥ 0)
7: found (integer ≥ 0) }

Initialize the graph:

8: for (∀ nodes n) do
9: if (n.type = OR) then
10: if (n ∈ input) then
11: n.waitValue← 0; Q← n at random index.
12: else if (n /∈ input) then
13: n.waitValue← 1.
14: else if (n.type = AND) then
15: n.waitValue← |parents of n|.

The main search procedure:

16: time← 0.
17: while (time ≤ MAX) do
18: while (Q 6= ∅) do
19: n← pop(Q).
20: if (n.disqualified 6= time) then
21: n.found← time; n.disqualified← time.
22: for (∀ n’ ∈ n.noList) do
23: n’.disqualified← time.
24: for (∀ n’ ∈ n.yesList) do
25: if (n’.waitValue > 0) then
26: n’.waitValue← n’.waitValue − 1.
27: if (n’.waitValue = 0) then
28: n’.found← time; Q← n’ at random index.
29: for (∀ n) do
30: if (n.type = OR) then
31: if (n.found = time) then
32: Q← n at random index.
33: else if (n.found 6= time) then
34: n.waitValue← 1.
35: else if (n.type = AND) then
36: n.waitValue = |parents of n|.
37: time← time + 1.

Figure 6. Random search procedure for NAYO
graphs.

• The waitValue of known inputs is zero.
• The waitValue of OR-nodes not included in the

input set is initialized to 1, i.e., reaching any of
the parents of an OR-node enables traversal to
that node’s children.
• AND-nodes’ waitValues are initialized to their

number of parents, i.e., all the parents of an
AND-node must be reached before traversing on
to the AND-node’s children.

These waitValues are initialized in lines 8-15.

In the rest of this section we discuss the details of Fig-
ure 6. First of all, note that only OR-nodes may be part of
the input set, because our translation procedure (Figure 5)
creates only OR-nodes for states and messages in the origi-
nal finite-state machines. Next, thedisqualifiedfield marks
nodes known to be inconsistent with the set believed true
at the current time (line 23). These are nodes reached via
NO-edges; nodes are also disqualified after they are pro-
cessed to prevent redundant searching at the current time

(line 23). Thefoundfield marks nodes believed true at the
current time.

The important part of the search occurs between lines 18
and 28. We begin with the input set of nodes in the queue. A
node is removed (line 19); if it has already been disqualified,
it is ignored (line 20). Otherwise, we mark itfound and
disqualify it so it will not be processed again (line 21). We
then proceed to disqualify all of its children via NO-edges
(line 23) and then explore its children via YES-edges. For
these, we decrement waitValues, and if the waitValue of a
child node becomes 0 (we now believe the node is true at
the current time), we mark itfoundand put it in the queue
at a random index. Lines 29–36 prepare for the timei + 1.
Nodes found at timei are put into the queue for input to
time i + 1 (line 32), and all other nodes are reset to their
initial waitValues (lines 33–36).

From lines 17-18 and lines 22 and 24 of the algorithm,
we see that it is linear on the maximum size of the queue,
multiplied by some linear factors (the maximum time ticks
used in the search, the maximum number of no-edges per
node, and the maximum number of yes-edges per node).
Since a node can only be placed in the queue once per time
tick, the algorithm isO(n), wheren is the number of nodes
in the NAYO.

This random search has the advantage of linear-time ex-
ecution, but the theoretical disadvantage of incompleteness,
since its random search may miss some faults. However, as
the case studies in the next section show, for a given range
of real-world and artificial models the incompleteness prob-
lem did not occur in experiments.

5 Random Search Case Studies

This section offers several case studies with our random
search. For the case studies discussed here, random search
was observed to beadequate(able to find errors before the
saturation plateau) and to exhibitflat plateaus( saturation—
therefore early stopping rules are supported).

Figure 7 shows Dekker’s solution to the two-process
mutual exclusion problem written in Promela (from [19]),
which is the input language used with the model checker
SPIN [26]. Promela has been designed to look like a high-
level programming language, but represents communicat-
ing FSMs. SPIN is capable of automatically generating the
finite-state machine version of a Promela model; Figure 8
shows the model from Figure 7 in this form.

Figure 9 shows the result of a series of random searches
on a NAYO graph representing the finite-state model of
Dekker’s mutual exclusion solution from Figure 8. Each
plot shows ten trials covering a range of MAX time val-
ues; for each trial the search in Figure 6 was repeated many
times, each time with a random set of inputs, keeping track
of the total OR-nodes processed (y-axis) and the unique
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#define true 1
#define false 0
#define Aturn false
#define Bturn true

bool x, y, t;

proctype A() { x = true; t = Bturn;
(y == false || t == Aturn);
/* critical section */
x = false }

proctype B() { y = true; t = Aturn;
(x == false || t == Bturn);
/* critical section */
y = false }

init { run A(); run B() }

Figure 7. Dekker’s solution to the two-process
mutual exclusion problem, as Promela
from [19].

OR-nodes reached (x-axis) during that trial. In order to
show that our random search is capable of finding a fault, we
have added to our NAYO graph a Boolean variable called
safe, which is initially true and becomes false if proctype
A and proctype B are ever simultaneously in state 4 (the
critical section). We have also added the equivalent of the
following transition to proctype A(), allowing it to go di-
rectly into its critical section without checking variables y
and t:

state 3 -> state 4 => (true)

The searches shown in Figure 9 are typical of hundreds
of experiments. In every fault-free Dekker model search,
we quickly find all but one of the OR-nodes in the NAYO
graph (23 of 24)—we never find the nodesafe= false. In
the model with the fault, we quickly find every node (all
24), including the node representing the fault.

Figure 10 shows search results for the more complex
TCP protocol finite-state model from [48]. This model con-
sists of two larger FSM’s (larger than FSM’s in the Dekker
model above), a client and a server. We see that here
the search requires more time and is capable of finding a
smaller percentage of the OR-nodes in the NAYO graph
(there are about 40 OR-nodes in the NAYO graph; here we
find 27). So the saturation effect is more pronounced in the
Dekker model than the TCP model. We infer from this that
the Dekker model is in some sense more testable than the
TCP model.

Figure 11 shows search results for randomly generated
models typical of thousands of experiments. Here we com-
pare a model with size and structure like the Dekker model
(a few small individual finite-state machines and no con-
sumed message inputs) to a model like TCP (two large state
machines and transitions triggered by approximately 20 dif-

proctype A
state 1 -> state 2 => x = 1
state 2 -> state 3 => t = 1
state 3 -> state 4 => ((y == 0) || (t == 0))
state 4 -> state 5 => x = 0
state 5 -> state 0 => -end-

proctype B
state 1 -> state 2 => y = 1
state 2 -> state 3 => t = 0
state 3 -> state 4 => ((x == 0) || (t == 1))
state 4 -> state 5 => y = 0
state 5 -> state 0 => -end-

proctype init
state 1 -> state 2 => (run A())
state 2 -> state 3 => (run B())
state 3 -> state 0 => -end-

Transition inputs and outputs are in the column on the
right. Inputs are enclosed in paranthesis, e.g., ((y ==
0) || (t == 0)); outputs are not, e.g., x = 1 . For
processes A and B, state 4 represents the area marked
critical section in the Promela model.

Figure 8. Figure 7 model as finite-state ma-
chines output by SPIN.

ferent possible messages). Both plots show the results for
twenty trials covering a range of MAX time values. As
expected, the saturation effect is more pronounced in the
Dekker-like model.

In Figure 12 we show search results for a very large
model generated at random. This model has 250 individ-
ual finite-state machines with an average of about 6 states
each and 1,455 local states in total. The size of its equiv-
alent finite-state machine composite would be bounded at
2.65x10178 states. This is well beyond the capability of
model checking technology (10120 states according to [11]).

6 Discussion

We have explored the merits of replacing an intractable
complete search of formal models with an incomplete ran-
dom search over formal models converted to NAYO graphs.
Such incomplete searches are faster than complete search
and require less memory.

Theoretically, such random searches suffer from the
problem of false positives, i.e., reporting that no faults
are present when further assessment would have found
them. This theoretical problem did not show up in prac-
tice. Our random search was observed to be adequate (we
found faults before the saturation plateau) and to exhibit flat
plateaus (further search after the saturation point is not re-
quired).

A significant advantage of our scheme is the size of the
formal models that can be tested. Figure 12 shows that our
method can handle models of a size that would defeat most
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particular trial the error node was reached.

Figure 9. Dekker’s two-process mutual exclu-
sion solution: random search results

model checkers.
Another major advantage of our approach over tradi-

tional model checkers is the simplicity of our scheme. Fig-
ure 5 and Figure 6 show most of the details of our approach.

Table 2 compares the resources and capabilities of model
checking, complete (exhaustive) search of NAYO graphs,
and partial testing of NAYO graphs using random search.
This table clearly captures the motivation for work on par-
tial random NAYO search: we solve the exponential mem-
ory size requirement problem by using a NAYO representa-
tion, and we solve the exponential time problem of exhaus-
tive search by using a partial random search. Further, the
random NAYO search was not only found adequate (since
it could find errors), it was also determined to be surpris-
ingly effective (since the observed plateaus were very flat).

We propose the following early stopping rule for testing
of formal models:

• After representating FSMs as NAYOs, track the num-
ber of unique nodes found during random search.
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Twenty trials covering a range of MAX time values; as
before, in each trial the search is repeated many times,
each time with a different random input set.

Figure 10. TCP model from [48]: random
search results.

Complete Search Complete Model Partial Random
of NAYO Graph Checking Search NAYO Search

Large
Memory Small—O(n2) (exponential) Small—O(n2)

Slow Linear on Linear
Time (exponential) Memory on Input

Surprisingly
Remarks Complete Complete little

incompleteness

Table 2. Comparison of Model Checking and
Partial Random NAYO Search.

• Stop when that number plateaus.
• If that plateau never occurs, then abandon random

search and use more complete methods such as model
checking or theorem proving.

For domains that exhibit the saturation effect, model
checking and/or theorem proving may not be required.
Based on our experiments, two average case mathematical
analyses [38, 41], and a literature review [35], we believe
the saturation effect is common. We further speculate that
random search will be sufficient in many domains. Hence,
early stopping often will be possible. Providing more evi-
dence in support of this claim the the topic of our ongoing
research efforts.
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