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More Success and Failure Factors in Software Reuse
Tim Menzies, Justin S. Di Stefano

I. I NTRODUCTION

Abstract— Numerous discrepancies exist between expert opinion and
empirical data reported in Morisio et.al.’s recent TSE article. The differ-
ences related to what factors encouraged successful reuse in software or-
ganizations. This note describes how those differences were detected and
comments on their methodological implications.
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In the April 2002 TSE articleSuccess and Failure Factors in Soft-
ware Reuse[1], Morisio et.al. sought key factors that predicted for
successful software reuse. Their data came from a set of structured
interviews conducted with project managers of 24 European projects
from 19 companies in the period 1994 to 1997. Those projects were
trying to achieve company-wide reuse of between one to a hundred
assets. Nine of those 24 projects were judged by their respective man-
agers as failures. Morisio et.al. employed a well-designed interview
process to collect a wide set of project attributes (for a complete listing
of those attributes, see the appendix).

There is much that is exemplary in the approach taken by Morisio
et.al. For example, their data collection method is well-documented.
Also, an extensive manual analysis of their data is presented in the pa-
per, including a full discussion of all nine failing reuse projects.§6 of
that paper “A Reuse Introduction Decision Sequence” offers a detailed
set of recommendations for organizations seeking to create reusable
assets. Their related work section takes care to contrast their results
with other researchers. An appendix to the paper shows a clustering
analysis of the projects and the decision tree of Figure 1 that Morisio
et.al. argue represents the two major predictors for reuse.

failure

success

Human Factors

= no (7)

Product Type

= yes (16) = isolated (1)

= product family (15)

Fig. 1. A decision tree learnt by the CART data mining algorithm [5] from the
Morisio et.al. data. Numbers denote how many examples exercise some edge.

Another exemplary feature of the Morisio et.al. study was that they
presented their entire data set in their article. The inclusion of this
data set allows other researchers to check their conclusions. When we
checked their conclusions using several data miners, we found patterns
that disagree with the decision sequence described in§6 of Morisio
et.al. These differences are summarized in Figure 2.

Before focusing on those disagreements, it is important to stress
that, in many aspects, we agree with Morisio et.al. For example, Fig-
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Attribute Morisio et.al. this paper

Application Domain Not analyzed ×
Size of Baseline Not analyzed X
Production Type X ×
Top Management Commitment X X (barely)
Reuse Approach × X
Domain Analysis × X

Fig. 2. Conclusions where we disagree with Morisio et.al.×/X= no evi-
dence/some evidence (respectively) in this data set that this attribute is relevant
to determining success or failure of a reuse project. The labelbarely is ex-
plained in the text.

ure 3 shows many attributes for which neither Morisio et.al. nor our-
selves could find evidence that they predicted for successful reuse (see
the entries marked with a “×”). For example, one of these “no evi-
dence” attributes was use ofDevelopment Approach = OO. We
completely endorse Morisio et.al.’s point that (e.g.) switching to C++
is insufficient to guarantee a successful reuse project. As to the other
“no evidence” attributes”, our studies don’t say they don’t matter: only
that they did not appear to matter in the projects sampled by Morisio
et.al. Figure 3 also shows other attributes that both our studies report
predict for successful reuse. However, we could only findbarely sup-
portive or very weak supportivefor some of those attributes (barely
supportiveandvery weak supportare defined below).

Attributes Morisio et.al. this paper

SP maturity × ×
Software Staff × ×
Overall Staff × ×
Staff Experience × ×
Type of Software × ×
Development Approach × ×
Software and Product × ×
Origin × ×
# assets × ×
Qualification × ×
Rewards Policy × ×
Work Products × ×
Independent Team × ×
When Assets Built × ×
Configuration Management × ×
Key Reuse Roles Introduced × X (very weak)
Repository X X
Human Factors X X
Reuse Processes Introduced X X (barely)
Non-Reuse Processes Modified X X (very weak)

Fig. 3. Conclusions where we agree with Morisio et.al.×/X= no evi-
dence/some evidence (respectively) in this data set that this attribute is relevant
to determining success or failure of a reuse project. All the×marks in the mid-
dle column denote attributes which were not mentioned in§6 of Morisio et.al.
and were not in the decision tree they learnt from their data (see Figure 1). All
theX marks in the right-hand column refer to attributes seen in decision trees
generated in this study. The labelsbarelyandvery weaklyare explained in the
text.
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II. DATA M INERS

Having described where our studies agreed, we now describe where
the application of three data miners caused us to disagree with the
conclusions of Morisio et.al. To do that, we must first describe our
data miners. The goal of data mining is to find important patterns in
data sets. Analyzing these data sets by hand is problematic at best, and
can take substantial time and effort. It is both quicker and easier if a
computer can be “taught” to search for these patterns.

In the21st century, data mining is a very mature field. Many power-
ful mining tools are freely available via the world wide web. This study
applied three such mining tools to the Morisio et.al. data: the APRI-
ORI association rule learner[2]; the J4.8decision tree learner[3];
and the TAR2treatment learner[4]. Our implementations of APRI-
ORI and J4.8 come from the WEKA toolkit [3]1 while TAR2 came
from the treatment learning download page2. The essential details of
these tools are summarized below.

Decision tree learnersfind mappings between classes and non-class
attributes. The class attributes in the Morisio et.al. data set weresuc-
cessful reuseandfailed reusewhile the non-class attributes are shown
in the appendix. Figure 1 shows one example of such a mapping
between class and non-class attributes. Note that of the nearly two
dozen non-class attributes collected by Morisio et.al., only two appear
in the decision tree. Decision tree learners seek themost informative
attribute rangesthat splits the training data into subsets with similar
classes. The process repeats recursively for each subset and returns
one sub-tree for each recursive call. Different decision tree learners
use different criteria for splitting the training sets. The CART algo-
rithm [5] used by Morisio et.al. uses the GINA index. In our study, we
used J4.8 [3] which is the JAVA variant of C4.5 [6] that comes with the
WEKA. C4.5 uses a splitting criteria based on information theory.

Decision tree learning can also be used to determine which attributes
are most important using anattribute removal experiment. Decision
trees have a root node which mentions the attribute range most use-
ful in splitting the training data. If that attribute is removed from the
training set and the learner is run again, then the root node seen in
the new tree contains thenext most importantattribute. The results of
attribute removal experiments on the Morisio et.al. data is shown in
Figure 4:
• We say that an attribute isbarely supportiveif it is removed in

the next attribute removal experiment but the classification accu-
racy does not change. Figure 4 shows thatReuse Processes Intro-
ducedandTop Management Commitmentare barely supportive
attributes.

• We say that an attribute isvery weakif it first appears as a non-
root node of a decision tree that is learnt very late in an attribute
removal experiment; i.e. only after many more supportive at-
tributes have been removed.Key Reuse Roles Introducedand
Non-Reuse Processes Modifiedare very weak attributes since
they only appeared in J4.8’s decision trees after experiment 4 of
Figure 4.

Association rule learnersfind attributes that commonly occur to-
gether in a training set. In the associationLHS =⇒ RHS, no at-
tribute can appear on both sides of the association; i.e.LHS∩RHS =
∅. The ruleLHS =⇒ RHS holds in the example set withconfidence
c if c% of the examples that containLHS also containRHS; i.e.
c = |LHS∪RHS|∗100

|LHS| . The ruleLHS =⇒ RHS hassupports in
the example set ifs% of the examples containLHS ∪ RHS; i.e.
s = |LHS∪RHS|∗100

|D| where|D| is the number of examples. Associ-
ation rule learners return rules with high confidence (e.g.c > 90%).

1http://www.cs.waikato.ac.nz/˜ml/weka/
2http://www.ece.ubc.ca/twiki/bin/view/Softeng/

TreatmentLearner

# experiment classification
accuracy

0 all attributes 96%
1 withoutHuman Factors 79%
2 withoutReuse Processes Introduced 79%
3 withoutProduction Type 67%
4 withoutTop management commitment67%

Fig. 4. Attribute removal experiments with J4.8. Each experimentI reruns the
decision tree learningwithout the attribute found in the root of the tree seen in
experimentI − 1.

The search for associations is often culled via first rejecting associa-
tions with low support. Association rule learners can be viewed as gen-
eralizations of decision tree learning since the latter restrict theRHS
of rules to just one special class attribute while the former can add any
number of attributes to theRHS. Example association rule learners
include the implementation of the APRIORI [2] algorithm, available in
the WEKA. Figure 5 shows the associations seen in the Morisio et.al.
data.

1) Production Type=product-family =⇒ Rewards Policy=no
2) Production Type=product-family ∧ Independent Team=no =⇒ Rewards

Policy=no
3) Production Type=product-family ∧ Top Management Commitment=yes

=⇒ Rewards Policy=no
4) Software and Product=product =⇒ Rewards Policy=no
5) Production Type=product-family∧ Independent Team=no∧When Assets

Developed=justintime =⇒ Rewards Policy=no
6) Production Type=product-family ∧ When Assets Developed=justintime

=⇒ Rewards Policy=no ∧ Independent Team=no
7) Independent Team=no ∧ When Assets Developed=justintime =⇒

Rewards Policy=no ∧ Production Type=product-family
8) When Assets Developed=justintime =⇒ Rewards Policy=no ∧

Production Type=product-family ∧ Independent Team=no
9) Top Management Commitment=yes ∧ Rewards Policy=no =⇒

Production Type=product-family
10) When Assets Developed=justintime ∧ Rewards Policy=no =⇒

Production Type=product-family ∧ Independent Team=no

Fig. 5. Associations learnt by the WEKA’s APRIORI implementation from
the Morisio et.al.’s data.

Treatment learning seeks atreatmentRX that returns a subset of the
training setD′ ⊆ D with morepreferred classes andlessundesired
classes than inD. Here,D′ contains all examples that don’t contra-
dict the treatment; i.e.D′ = {d ∈ D : d ∧RX 0 ⊥}. The intuition
here is that the treatment is some action that could improve the current
situation. The TAR2 treatment learner requires the user to assign a nu-
meric score to each class that represents how much a user likes/hates
that class. For example, in the Morisio et.al. study, asuccessful reuse
projectwould be worth more than anunsuccessfulproject. Treatment
learning is different from decision tree learning in that treatment learn-
ers find treatments thatchangethe class distribution while decision tree
learnersdescribethe different classes. The class descriptors found by
decision tree learners are useful when studying the detailed features
of a class. Treatments are useful when seeking actions that nudge the
system towards preferred behavior. When TAR2 was applied to the
Morisio et.al. data, it found that the following attribute ranges most
selected for successful reuse projects:
• Size of Baseline = L; i.e. 100-500 KLOC;
• Domain Analysis = yes; i.e. domain analysis was performed;
• Reuse Approach = tight; i.e. reusable products are tightly

coupled.

III. R ESULTS

Figure 2 shows where the conclusions offered by these learners dif-
fered from Morisio et.al. For example, Morisio et.al. commented
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that they had to remove two attributes from their analysis “due to
the low number of cases” [1, p355]. Accordingly, they removed
Application domain andSize of baseline. We found no reason
to do the same: our learners functioned adequately when given all at-
tributes.

Our learners found nothing interesting aboutapplication domain.
However, contrary to the assumptions of Morisio et.al.,Size of baseline
was found to be avery powerfulattribute for selecting for successful
reuse:

• 100% of the 8 projects whereSize of baseline was “large”were
judged to be reuse successes.

This result is simple to explain: reuse works best when most of the
problem has already been mapped out and analysts just need to add
in relatively small pieces, here and there. Support for our explana-
tion comes from Abs et.al. [7, p21] who argue that a learning curve
must be traversed before a module can be adapted. By the time you
know enough to change a little of that module, you may as well have
re-written 60% of it from scratch; see Figure 6. Note that when
Size of baseline is large, then the % changed by any new applica-
tion is likely to be a small modification to the overall system. Hence,
those changes would be cheap and easy to perform since they would
fall into the lower left-hand side of Figure 6.
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Fig. 6. COCOMO-II, the cost of reuse with X% changes. From [7].

The treatment learner also showed two other areas where our learn-
ers offer different conclusions to Morisio et.al.:

• 100% of the 11 projects whereReuse approach were “tight”
were judged to be reuse successes (Morisio et.al. never comment
on the merits ofreuse approach).

• 100% of the 9 projects that usedDomain analysis were judged
to be reuse successes.

We also take issue with how Morisio et.al. learnt the decision tree
of Figure 1. According to that decision tree:

• Human Factorsis the best predictor for successful reuse projects.
• The only caveat to this pattern is the sub-tree testing forProduct

Typesthat are isolated systems (see the edge labelled “[1]” in
Figure 1).

The merits of theProduct Typesub-tree in Figure 1 is dubious.
Without that sub-tree, the simple tree of Figure 7 accurately predicts
for successful/unsuccessful reuse in23

24
≈ 96% of the examples. With

that sub-tree, the sub-tree catches the 4% special case whereHuman
Factorsdoes not predict for successful. While this seems a valid rea-
son for adding theProduct Typesub-tree, the empirical basis for it is
very weak (one example). Conflating Figure 7 with the extra sub-tree
of Figure 1 is not justified, in our view, based on this single example.

failure

success

Human Factors

= no (8)

= yes (16/1)

Fig. 7. A decision tree learnt from the Morisio et.al. data by the WEKA’s J4.8
implementation. Numbers denote how many examples exercise some edge.

Morisio et.al. also argued thatTop Management Commitmentwas
a major factor in achieving a successful reuse program. While we
find this claim to be intuitive, we are duty bound to report that none
of learners found it to be predictive or associated with anything else.
While Top Management Commitmentappears in the learnt associations
of Figure 5, none of those associations include successful or unsuc-
cessful reuse. Further, recalling Figure 4,Top Management Commit-
mentis a barely supportive attribute; i.e. the data of Morisio et.al. of-
fers little evidence that this attribute is useful in predicting successful
reuse.

IV. D ISCUSSION

There are several possible reasons why our analysis differs from
theirs. Firstly, our mining tools only had access to the data published in
Morisio et.al. and not the managers interviews in their analysis. That
is, §6 of Morisio et.al. might be a summary of the discussions with
project managers rather than conclusions drawn from their automatic
analysis.

Secondly, our analysis of the data uses different machine learners
to Morisio et.al’s study. Some of these differences are minor: CART
and C4.5/J4.8 come from the same family of learners and just differ on
details of the splitting criteria. However, there are major differences in
the other machine learners we used. For example, TAR2 is a recently
invented learner by Menzies & Hu [4]. TAR2’s report ofdifferences
between classes is a novel and succinct method of isolating the key
factors that can most change a situation.

V. M ETHODOLOGICAL IMPLICATIONS FORSOFTWARE

RESEARCH

The above analysis took less than two days and was enabled by the
availability of free, fast, and mature data mining tools from the world
wide web. Given the availability of these tools, we would recommend
a change to the methodology of studies like (e.g.) Morisio et.al. In
their approach no questions were asked after the data analysis period.
Since these learners are so simple to use and readily available, we sug-
gest a two-part interview process where the questions of part two are
informed by the answers in part one.

Part one would be to “throw the net wide” and ask a large number of
easy-to-answer questions. Interesting patterns could be then be found
within the answers to part one using a range of machine learners.

The part two questions would be to “narrow the net” and focus on
complex issues in controlled situations with a smaller group of users
(perhaps users with more experience in the domain being studied). The
part two questions should be designed to confirm or refute the patterns
automatically detected by data miners after part one.

The advantage of this method is that unusual features can be found
quickly (using data mining), then explored with the user group in the
part two questionnaire. A variant of this approach (using pivot tables
within a spreadsheet and not data miners) has recently been used with
great effect at NASA [8], [9], [10].
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Attribute Value # Notes
Project id 1..∞
Top management yes 20 top management reuse committed
commitment no 4
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Nonreuse process yes 16 >= 1 nonreuse processes modified
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Human factors yes 16 human factors handled; e.g. via aware-
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no 8

Repository yes 23 assets in repository tool
no 0

Fig. 8. High-level control variables - key high-level management decisions
about a reuse program. Note that all 23 projects seen in this data set used a
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APPENDIX

Figures 8, 9 and 10 describe the attributes collected by the Morisio
et.al. study.

Attribute Value # Notes
Project id 1..∞
Software L 6 > 201 people on the project.
staff M 9 51 . . . 200 people on the project.

S 9 1 . . . 50 people on the project.
Overall
Staff

X 10 > 501 people.

L 7 201 . . . 500 people.
M 5 51 . . . 200 people.
S 2 1 . . . 50 people.

Production product-family 20 projects related; evolve over time
Type isolated 4 projects have little in common
Software product 17 software is embedded in a product
and alone 4 software is standalone product
product process 2 software embedded in a process
SP high 6 CMM level 3 or higher
maturity medium 13 ISO 9001 certification or CMM level 2

low 5 not high or medium
Application TLC 7 telecommunications
domain FMS 4 flight management systems

ATC 1 air traffic control
TS 1 train simulation
TTC 7 train traffic control
Bank 1 bank
Book-keeping 1 book-keeping
Measurement 1 management, control of measurements
Space 1 aerospace applications
Manufacturing 3 manufacturing
SE-Tools 2 software tools

Type of Embedded-RT 6 embedded, real-time
software Non-Embedded-RT 2 non-embedded, real-time

Technical 12 non-embedded, non-real-time, small
DBMS, important control part

Business 4 non-embedded, non-real-time, impor-
tant DBMS, limited control part

Size of
baseline

L 8 100 . . . 500 KLOC,
> 100 person months

M 13 10 . . . 100 KLOC,
10 . . . 100 person months

S 2 < 10 KLOC, < 10 person months
DevelopmentOO 15 object oriented
Approach proc 8 procedural
Staff high 7 > 5 years average
experience medium 15 2 . . . 4 years average

low 1 <= 1 year average

Fig. 9. State Variables - attributes over which a company has no control.

Attribute Value # Notes
Project id 1..∞
Reuse approach loose 12 assets loosely coupled

tight 11 assets coupled, used in groups)
Domain Analysis yes 9 domain analysis was performed

no 14
Origin ex-novo 4 assets are developed from scratch

reeng 15 assets via reengineering old work
as-is 4 old products used without change

Independent team yes 2 independent team makes assets
no 21 development projects makes assets

When assets built before 7 well before they are reused
just-in-time 16 just before they are reused

Qualification yes 14 assets undergo a qualification process
no 9 no defined qualification process

Configuration yes 16 configuration management used
management no 7
Rewards policy yes 3 a rewards policy for reuse in place

no 21 no rewards policy in place
# of assets 1 to 20 5 number of assets in the repository

21 to 50 3
51 to 100 8
100+ 7

Work-products C code
D design
R requirements

Fig. 10. Low-Level Control Variables - Specific approaches to the implemen-
tation of reuse. Numbers of work products are counted differently to the other
parameters: i.e. C=10, D+C=4; R+D+C=9.


