
A Fast Search for Temporal Properties of Requirements
Michael E. Houle, Tim Menzies, John Powell

Abstract—Early testing of requirements can decrease the cost of removing errors in
software projects. However, unless done carefully, that testing process can significantly
add to the cost of requirements engineering. In this paper, we consider requirements
systems models that can be expressed in the form of topoi, which are graphs represent-
ing statements of gradual influences among variables. We propose an iterative search
heuristic for examples of multi-step temporal properties supported by topoi, based on
a very efficient exact algorithm for producing a partition of variable-state combina-
tions into two temporally-consistent sets. Such examples may be of interest in their
own right, or may serve as counter-examples to conjectures within the model. Topoi
have the advantage of being easy to formulate, although they cannot express certain
complex concepts such as iteration and sub-routine calls. Despite their unsuitability
for traditional model checking domains, we provide evidence of their usefulness for
requirements analysis.

I. INTRODUCTION

The case for more formality in requirements engineering is over-
whelming. Many errors in software can be traced back to errors in the
requirements [2]. Often, the conception of a system is improved as a
direct result of the discovery of inadequacies in the current conception.
The earlier such inadequacies are found, the better, since the cost of
removing errors at the requirements stage can be orders of magnitude
cheaper than the cost of removing errors in the final system [3].

The benefit of formally checking a system is that a formal analysis
can find more errors than standard testing. A single formal first-order
query is equivalent to many white-box or black-box test inputs.

The cost of testing requirements engineering may be impractically
high. These costs include the modelling cost, the execution cost, the
personnel cost, and the development brake. The modelling cost is
incurred when analysts create the systems model, and the properties
model needed for formal analysis. Both models need to be expressed in
some machine-readable form. The properties model contains a formal
temporal logic1 description of the invariants that must be tested in the
systems model, and is often much smaller than the systems model.

A rigorous analysis of formal properties has a high execution cost,
since it implies a full-scale search through the systems model. For ex-
ample, if a given systems model has � variables, each of which may
take on a finite number of unique values � , then the size of the state
space associated with that model is � � . This space can be too large
to explore, even on today’s fast machines. Despite extensive research
into speeding up this search (see the discussion of related work in

�
IV),

analysts often must painstakingly rework the systems and properties
models into more abstract and succinct forms that are small enough to
permit formal analysis. Analysts skilled in formal methods must be re-
cruited or trained. Since such analysts are generally hard to find and
retain, formal methods have a high personnel cost. These costs can
be so high that the requirements must be frozen for some time while
one performs the formal analysis. Hence, one of the costs of formal

Michael Houle is with IBM Research, Tokyo Research Laboratory, 1623-14 Shimotsuruma, Yamato-shi,
Kanagawa-ken 242-8502, Japan (on leave from the School of Information Technologies, The University of
Sydney, Sydney, NSW 2006, Australia), meh@trl.ibm.co.jp

Tim Menzies is with the Lane Department of Computer Science & Electrical Engineering, West Virginia
University, PO Box 6109, Morgantown, WV 26506-6109, tim@menzies.com

John Powell is with the Jet Propulsion Laboratory Quality Assurance Office, Mail Stop 125-233, 4800
Oak Grove Drive, Pasadena, CA 91109-8099, john.powell@ivv.nasa.gov

Much of this work was performed while Menzies & Powell worked at the NASA/WVU Software Re-
search Laboratory, IV&V Facility, Fairmont, West Virginia, partially supported by NASA through cooper-
ative agreement #NCC 2-979.

An earlier and shorter version of this paper appeared at ICSE 2001 as Fast Formal Analysis of Require-
ments via “Topoi Diagrams” [1].�

Temporal logic is classical logic augmented with temporal operators such as ��� (always � is true),� � (eventually � is true), 	
� (� is true at the next time point), ���� : (� is true until is true).

analysis is development brake that slows down the requirements pro-
cess. Slowing down the requirements process is unacceptable for fast
moving software companies.

Ideally, an automated method for reducing the cost of testing require-
ments would reduce the execution cost as well as the cost and skill in-
volved in building the properties and systems models. If achievable,
such a method would also reduce the personnel cost, since it would
not require such highly-skilled analysts. Having reduced the person-
nel, modelling, and execution costs, this hypothetical method would
inevitably decrease the development brake.

Some progress has already been made in reducing the cost of proper-
ties modelling using temporal logic patterns. Dwyer, Avrunin & Cor-
bett [5, 6] have identified patterns within the temporal logic formula
seen in many real-world properties models. For each pattern, they
have defined an expansion from the intuitive pseudo-English form of
the pattern to a formal temporal logic formula. In this way, analysts are
shielded from the complexity of formal logics. For example, the simple
pseudo-English statement

always � brake � on � between � danger � seen � and � car � stop �
can be automatically expanded into the more arcane formal statement:� ����� danger � seen ������� car � stop ������� car � stop ���� ��� brake � on ����� car � stop �����
One drawback with temporal logic patterns is that while complex tem-
poral formulae can be automatically generated from intuitive pseudo-
English, the execution cost remains. That is, even though we can
quickly build the properties model, we may not be able to explore all
of that model.

In this article, we argue that we can greatly reduce the execution cost
for a class of systems models seen in the requirements stage. We as-
sume that temporal logic patterns have reduced the modelling cost of
the properties. Hence, what remains is the modelling cost of the sys-
tem. The key to this reduction is SP2, a new algorithm for generating
time series (defined below) from topoi, which are statements of grad-
ual influences between variables [4]. Topoi can represented graphically
by topos diagrams, an example of which is shown in Figure 1. The
experience of Dieng, Corby & Lapalut [4] and Menzies [7] is that do-
main experts can sketch topoi very quickly and so (for requirements
that are topos-compatible) our approach also reduces the systems mod-
elling cost.

These cost-reduction benefits can only be realized if we accept cer-
tain restrictions. Specifically, the systems model must be expressed as
topos diagrams. Topoi are not very expressive, and exclude statements
such as first-order assertions, iterations, sub-routine calls, and assign-
ments. Due to these language limitations, our approach is not suited to
domains that need the excluded statements, such as complex protocols
seen in concurrent processes.

These restrictions are not fatal to the modelling process, at least at
the requirements stage. We will show by means of examples that topos
diagrams are sufficient to represent a wide range of diagrams seen in
certain approaches to requirements engineering and recording design
rationales. Hence, when we say that this approach is practical and use-
ful, we really mean practical and useful for early life cycle require-
ments discussions only.

II. ABOUT TOPOI

Our approach assumes that requirements systems models are ex-
pressed in the form of topoi, which are statements of gradual influ-

HOULE, MENZIES, POWELL: FAST SEARCH FOR TEMPORAL PROPERTIES; SUBMITTED TO IEEE TRANS. ON SE, February 25, 2002 2

-

Capabilities[driver] Driving-period[driver]

Complexity[situation]

Age[driver]

Physical-handicap[driver] Experience[driver]

Available-reaction-time[driver] Risk-of-accident[driver]

Slacker[period]

Power[vehicle]

Comfort[vehicle]

Avoidance-action-quality[driver]

Speed[vehicle] State-quality[vehicle]

Visibility[roadsign]

+ +

+

+

+

+ +

-

-

-

-

-

Age[vehicle]-

Kinetic-energy[vehicle] Importance[deformation]

Violence[crash]
++

-
-

+

Fig. 1. An example topos from [4]. Informally, we say that indicates “encourages” while ! indicates “discourages”.

usability

flexibility

-

flexible
work

patterns

+

maintainability

+

performance

-

and

+

sharing of
information

+

task
switching

+

Option1b

Question1

+

Question2

+

Option1a
+

Option1c
+

Criterion1

+

-

Criterion2 -

-

Criterion3
-

Option2a +

Option2b

+

Option2c

+

age<7

moron

motives

means

opportunity

witness

and1

infant

guilty jail

and2

responsible

+

+
+

+

+

+ +
-

+

legally-
-

-

coldSwim

nna

+

acth

+

cortico

+

temp

+

-

- dex

+

Figure 2.i: A soft-goal graph: the
and node denotes that both sharing
of information and task switching are
enabled by flexible work patterns.

Figure 2.ii: A questions-options-criteria
graph from [8].

Figure 2.iii: Topos from Figure 3. Figure 2.iv: The Smythe ’87 the-
ory. From [9]: statements of gradual
knowledge relating to laboratory ex-
periments on mammals.

Fig. 2. Sample topos diagrams.

ences such as (i) the more X, the more Y; (ii) the less X the less Y;
(iii) the more X, the less Y; or (iv) the less X the less Y. Dieng et al.
provide many examples of topoi from their records of interviews with
experts [4], in which they offer such statements as: the more there is
water infiltration in the roadway body, the worse the foundation risks
to be; and if there is a punctual undressing and if the roadway is be-
tween five and fifteen years old, then the cause ‘too old coating’ is all
the more certain since the roadway is older.

Our experience has always been that the systems modelling cost with
topoi is very low. Topos graphs can be quickly generated in the require-
ments stage. Two feuding stakeholders with two marker pens and one
whiteboard can generate many, many topoi in just a few hours.

A. Example Topoi

Topos graphs can be found in many domains. Figure 1 shows a topos
from an insurance domain using the graphical notation of the 3DKAT
tool of Dieng et al. [4]. Figure 2.i shows a soft-goal graph of the style
used by Mylopoulos, Cheng & Yu [10] to represent gradual knowl-
edge about non-functional requirements. Here, an expert describes how
to increase business flexibility. Figure 2.ii shows a questions-options-
criteria (QOC) graph from the design rationale community [8]. In QOC
graphs, questions suggest further options, and deciding on a certain op-

if guilty then jail.
if age < 7 then infant.
if infant or moron

then not legally_responsible.
if legally_responsible and guilty

then jail.
if motive and means and opportunity and witnesses

then guilty.
if guilty and not legally_responsible

then not jail.

Fig. 3. Rule-based requirements from a legal system.

tion can raise other questions. Those options that are selected are sur-
rounded by a box. Options are assessed according to criteria based on
gradual knowledge that tend to support or tend to reject them. QOCs
can succinctly summarize lengthy debates; for example, 480 sentences
uttered in a debate between two analysts on interface options can be
displayed in a QOC graph on a single page [11]. Figure 2.iii shows
a topos generated from the requirements of a rule-based legal system,
shown in Figure 3. This translation assumes that propositions in the
rule base are modelled as a belief-strength pair such as � infant "$#%� , for
some &(')#*',+ .

HOULE, MENZIES, POWELL: FAST SEARCH FOR TEMPORAL PROPERTIES; SUBMITTED TO IEEE TRANS. ON SE, February 25, 2002 3

B. Topoi Are Over-generalized and Over-constrained

Topoi edges constrain the values of the node variables they connect
and, often, they are over-constrained; that is, they cannot all be sat-
isfied simultaneously. However, it is unrealistic to assume that every
influence represented by a topos edge must have an effect. To make
use of topoi in explaining an observation or testing the plausibility of a
hypothesis, we must therefore be prepared to use only subsets of their
edges. For example, consider Figure 2.i and the case of flexibility and
usability increasing while performance decreases. Note that we can
explain flexibility increasing, but only if we can avoid the contradictory
conclusion offered by the edge from usability.

Ignoring inconsistencies when it is convenient to do so runs the
risk of excessive over-generalization; that is, more conclusions may
be reachable in the abstract model than in the real system being mod-
elled. A pre-experimental concern is that informal topoi are so over-
generalized that we could use them to infer any set of desired properties
(researchers in qualitative simulation call this the chatter problem [12]).
This concern is not always justified. While topoi are over-generalized,
they may still be restrictive enough to be useful. For example, recall
Figure 2.i and the fragment:

usability -� flexibility -. performance

Note that there is no way to explain the output of increased flexibility
(/ flexibility 021) from the input of increased usability and performance
(/ usability 03" performance 041).

For another example, consider Figure 4 due to Smythe, who ex-
tracted the list of gradual influences claimed by a set of articles
from different authors discussing human internal physiology [13].
Feldman & Compton, then Menzies, showed that despite over-
generalization, Figure 4 could be used to detect a large number of
previously-unnoticed errors published in international refereed jour-
nals [14–16]. Interestingly, these faults were found using the tables
of data published to support those theories: their experiments reported
observations that could not be reproduced via Figure 4.

For a last example of the utility of topoi, in
�
III-H we will discuss

experiments where a topos-based search for temporal properties out-
performed a state-of-the-art model checker (SPIN [17]).

C. Comprehension Problems

Topoi seem quite simple, but often defy manual analysis, possibly
due to their over-constrained and over-generalized nature. For exam-
ple, Menzies’ topos tester [7] found behaviors in very small topoi (Fig-
ure 2.iv) that had not been discovered even after days of manual analy-
sis. The difficulty in analyzing topoi worsens as the topoi become more
complex, as often happens when statements of gradual influence are
collected from more than one stakeholder. Our experience has been that
humans cannot confidently explore by hand the dense maze of interac-
tions within topoi as complex as the one shown in Figure 4, regardless
of the magnification and quality of the layout.

D. Topoi: Formal Definition

Formally, a topos is a directed, possibly cyclic graph 5(6879";:=< , with
the node set 7 corresponding to variables, and the edge set : indicating
influences of one variable upon another.

Each node >@?A7 is associated with a state that describes the type
of change that the corresponding variable is experiencing. These states
can themselves change over time:

up: the value of > is increasing (denoted by >B0);
down: the value of > is decreasing (denoted by >DC);
steady: the value of > is set and is neither increasing or decreasing;
unknown: the value of > has not yet been set.

acth

cortisolProduction

+

acthProduction

+

acutEdex=0

glucocorticoid

-

neControl

-

temp2

adrx

catechole

-

cortisol

-

temp3

-

aluminium

daProduction

-

ne2dhpg

-

da

+

ne

+ -

+

brainGlucose

-

sateity

-

serotoninProduction

neProduction

+

brainGlucoseUptake

+

glucose

+ -

ghProduction

pHgh

glucagonProd

-

temp1

fromLiver

fromPancreas

catecholeDisp

+ -

catecholeProd

+

chroniCdex=0

chroniCdiaz=0

-

chroniCglucose=0

chroniCinsulin=0

insulin

-

pns

--

toKidneys

chroniCtolbut=0

+

corticoidProduction

+

+ -

crf

srif

-

-

pPrl

- prlRelease

-

+ -

+

da2Hva

+ -

+

hva

dex

dhpg

sns

-

-

-

diaz=0

-

etherstr=0

stress

fiveHIAA

ghrh

-

-

-

serotoninTOfiveHIAA

vagus

fromGut

+ +

gentle=0

+ -

+

hgh

glucagon

glucagonDis

+ -+

toTissue

guan=0

-- -

-

-

+ -

+

hghInj=0 hypox=0

-

prl

-

+ -

insulin10=0insulin30=0insulinBolis

msg

-

--

-

serotonin

-

ne2Epin

++ -

parg=0

- -

-

+

+ -

swimstr=0

t4

-

+ -

tolbut10=0tolbut20=0 tolbut30

twoDg=0

-

yoh=0

now(adrx)

--

now(guan)

- ---

now(hypox)

-

now(msg)

- -

-

-

Fig. 4. A large topos with many loops.

An edge E=�F�HGB"I>4� of : must be of one of two types, according to
whether the influence of G on > is positive or negative. A positive edge

(indicated by GKJ� >) enables > to become up if G is up, and to become

down if G is down. A negative edge (indicated by GL-� >) allows > to
become down if G is up, and to become up if G is down.

In a topos, it is possible for pairs of competing influences to can-

cel out. For example, in a topos with edges G J�NM and > J�OM , the
states GP0 and >QC would enable both M 0 and M C . In such a situation,
either choice of state would be allowed; however, the competing influ-
ences can also be recognized simultaneously by placing M into the state
steady.

Finally, nodes are initially in the state unknown until such time as
they change to one of the other three states. Once a node has changed
state, it can never again become unknown.

This formal semantics is sufficient to guide the translation of topoi
for a formal model checker such as SPIN. Figure 5 shows the results of

HOULE, MENZIES, POWELL: FAST SEARCH FOR TEMPORAL PROPERTIES; SUBMITTED TO IEEE TRANS. ON SE, February 25, 2002 4

#define DOWN 0
#define STEADY 1
#define UP 2
#define UNDEF 3
#define ARRIVED 0
#define LEFT 1

byte chg_cold_swim = UNDEF /* chg_cold_swim = {ARRIVED,LEFT} */
byte chg_dex = UNDEF /* chg_dex = {ARRIVED,SWIM} */
byte cold_swim = UNDEF /* cold_swim = {DOWN,STEADY,UP} */
byte dex = UNDEF /* dex = {DOWN,STEADY,UP} */
byte temp = UNDEF /* temp = {DOWN,STEADY,UP} */
byte nna = UNDEF /* nna = {DOWN,STEADY,UP} */
byte acth = UNDEF /* acth = {DOWN,STEADY,UP} */
byte cortico = UNDEF /* cortico = {DOWN,STEADY,UP} */

active proctype smythe() {
if
::dex == UNDEF -> dex = DOWN
::dex == UNDEF -> dex = STEADY
::dex == UNDEF -> dex = UP

fi;
if
::cold_swim == UNDEF -> cold_swim = DOWN
::cold_swim == UNDEF -> cold_swim = STEADY
::cold_swim == UNDEF -> cold_swim = UP

fi;
if
::chg_dex == UNDEF -> chg_dex = ARRIVED
::chg_dex == UNDEF -> chg_dex = LEFT

fi;
if
::chg_cold_swim == UNDEF -> chg_cold_swim = ARRIVED
::chg_cold_swim == UNDEF -> chg_cold_swim = LEFT

fi;
if
::chg_dex == ARRIVED -> temp = UP
::chg_dex == LEFT -> temp = DOWN

fi;
if
::chg_cold_swim == ARRIVED -> nna = UP
::chg_cold_swim == LEFT -> nna = DOWN

fi;
do
::(chg_cold_swim == ARRIVED && temp == UP) -> nna = STEADY
::(chg_cold_swim == LEFT && temp == DOWN) -> nna = STEADY
::temp == DOWN -> nna = UP
::temp == UP -> nna = DOWN
::temp == DOWN -> acth = UP
::temp == UP -> acth = DOWN
::nna == UP -> acth = UP
::nna == DOWN -> acth = DOWN
::acth == UP -> cortico = UP
::acth == DOWN -> cortico = DOWN
::cortico == UP -> temp = UP
::(cortico == UP && chg_dex == LEFT) -> temp = STEADY
::cortico == DOWN -> temp = DOWN
::(cortico == DOWN && chg_dex == ARRIVED) -> temp = STEADY
::(temp == UP && nna == UP) -> acth = STEADY
::(temp == DOWN && nna == DOWN) -> acth = STEADY

od;
}

Fig. 5. Figure 2.iv expressed in the PROMELA language used by SPIN [17].

such a translation of Figure 2.iv. Inputs and outputs to that model are
generated by studying pairs of experimental observations. The differ-
ence in the experimental treatments is the input to the system and the
difference in the observations is the output to the model. For example,
if we increase the injections of dex from one experiment to another,
then we say that chg dex � arrived.

E. Model Checking and Topoi

We can test topoi using libraries of expected or desired system be-
havior. Such libraries can be quickly built via interviews with users. We
have found it useful to structure these interviews in an OO framework.
After generating use cases and particular scenarios, we ask designers
to specify the expected inputs and required outputs for each scenario.
This leads to the generation of two artifacts: a topos graph describing
how designers believe influences should propagate through a system,
and a properties model. The latter can be in the language of temporal
logic, as used by model checkers such SPIN.

While standard model checkers can check properties of Figure 5 in
less than a second, they can fail to terminate for larger systems mod-
els. In one study, we offered 40 temporal properties to SPIN along
with Figure 4, expressed in the PROMELA language. Given 100MB
of maximum RAM, SPIN ran out of memory for most of the trials. We
suspect that SPIN was attempting to search too much of what turns out
to be a very large search space. Figure 4 contains 80 variables, each of
which has can assume one of four states (up, down, steady, unknown);
in this case, the total state space is of size at least R2S�T�UV+W&YX�S . In a
second study, we reduced the size of the state space to Z[S�T=UF+W&Y\�S by
disallowing steady values. However, even in this reduced system, SPIN
ran out of memory for 29 of the 40 properties [18]. In summary, even
though topoi can be processed by standard model checkers, in practice,
this may not be feasible.

x v w zy
++

+

+

- x v w zy

x v w zy

Figure 6.i: analyst topos Figure 6.ii: twinned topos (edge weights not
shown).

Fig. 6. Generation of a twinned topos from an analyst’s topos.

III. SP2 AND RAPTURE

While general topoi defeat general-purpose model checkers, special-
ized search engines can quickly check the temporal properties of re-
lated graphs we call twinned topoi. A temporal property for the origi-
nal topos can be demonstrated using its corresponding twinned topos,
by checking for set membership of the property negation within a time
series (defined below) of nodes reachable from the input set]�^L7 .
Candidate time series can be generated for the set membership test in
nearly-linear time for each, using the SP2 algorithm described later. If
a given time series does not provide an example of some desired prop-
erty, the SP2 input parameters can be slightly modified to produce a
different yet similar time series, one that hopefully has a better chance
of containing an example. We will refer to this parameter modification
strategy as coaxing, and the iterative heuristic that makes use of it as
RAPTURE. Our proposal is thus to replace the inherently exponential
methods of general-purpose model checkers with the repeated applica-
tion of a nearly-linear-time algorithm.

A. Twinned Topoi

Given an original topos graph 5`_a687b_a"$:�_9< , the twinned topos of
5 _ is a graph 5(6879"�:�< such that:c for every node >,?d7e_ , there exists a pair of nodes >f03"$>(C3?g7
uniquely corresponding to > with states up and down, respectively;
c every positive edge GhJ� >i?�: _ corresponds uniquely with a pair
of edges �HGj03"�>D02� and �HGkC4"�>BC[� of : ;
c every negative edge Gh-� >�?l:�_ corresponds uniquely with a pair
of edges �HGj03"�>DC2� and �HGkC4"�>B0[� of : ;c for each edge pair E2mn"$Epoq?r: as defined above, the edges E2m and Epo
are assigned identical non-negative real weights sB�tEum;���vsB�tEpon� .
Given a node M ?w7 , we will refer to its unique paired node as the
twin M of M . Similarly, each edge Ex�y�HGB"�>4��?A: is paired with its
unique twin EP�z� GB" >4� . The twin of a twin is itself; that is, M � M and
E��vE . A subset # of 7 is consistent if for all {�?�# , we have {@|?}# .
Given a consistent subset #~^,7 , we denote by # the set of twins of

the nodes of # . # is itself consistent, and again, #���# .
Twinned topoi are related to ordinary topoi in that the variable-state

pairs >q0 and >qC are explicitly represented as distinct nodes, and the
state transitions they enable are represented as distinct edges. How-
ever, in twinned topoi, the unknown state is not explicitly represented,
and the steady state is disallowed altogether. A topos and its corre-
sponding twinned topos are shown in Figure 6. Note that we do not
require analysts to write twinned topoi. Rather, analysts generate topoi
such as Figure 1 and Figure 2, from which twinned topoi are generated
by an automatic process in which the edge weights are initially chosen
to be identical.

B. Time Series

In order to obtain examples of desired temporal properties, we use
the twinned topos to generate sequences of variable states, called time
series. The variable-state combinations are assigned to discrete time
steps, where all state changes at a given step are considered to occur

HOULE, MENZIES, POWELL: FAST SEARCH FOR TEMPORAL PROPERTIES; SUBMITTED TO IEEE TRANS. ON SE, February 25, 2002 5

simultaneously. Before their first appearance in the time series, all vari-
ables are assumed to be in an unknown state. Thereafter, from one time
step to the next, the state of the variables may change to either up or
down. The states at any time step must be consistent; that is, a variable
cannot be up and down simultaneously. A time series must also be re-
alizable, in that the state changes between time steps must correspond
to a set of transitions within the twinned topos. A time series thus pro-
vides a history of variable-state combinations from which examples of
temporal properties can be extracted.

More formally, given a twinned topos 5(6879";:=< , a valid time series
is a sequence �k���n�����8� T ";� m "n�n�W�n";� � � of subsets of 7 satisfying the
following conditions:
1. For all &(')�j'�� , ��� is consistent.
2. For all &�����'�� , all nodes of �e��^�7 are reachable from the
nodes of � � - m via a collection of paths within 5 which (except for
their starting nodes) pass only through nodes of � � .
The twinned topos nodes in � T are called the inputs of � . Many differ-
ent valid time series can share a common set of inputs � T .
C. Testing Properties Using Time Series

Model checkers such as SPIN do not prove properties directly.
Rather, they disprove properties by finding specific examples where
the negation of the property holds. We do the same, by searching for
such examples within time series.

As an example, consider the temporal logic statement
� �H� � �H�����W����" (1)

which can be read as “whenever we have � , then we will always have �
at least until such time as we have � ”. The expression �=�N� stands for
“ � weak until � ”, where � is not necessarily guaranteed to become true.

To disprove the above statement, it suffices to exhibit an example
satisfying the negation

� � �H� � �H�����W���
� � � �H� � �H���N�n���
� �Q�H�q� � �H�=�N�n��� (2)

Statement (2) can be read as “we will eventually have � , such that from
then onward, we will have not- � at least until after we have encountered
not- � ”. Clearly, any example satisfying (2) would disprove (1).

To find examples satisfying temporal logic statements such as 2, it
helps to think of the statement as being represented by a finite-state
automaton (FSA) in which the transitions represent the passage of time
from one step to the next. Each transition is labeled with conditions
on the current state, which if satisfied trigger the transition to the next
state. If a valid time series can be verified by the FSA of a temporal
logic statement, then the time series constitutes an example satisfying
the statement. Methods for converting temporal logic statements into
FSA are well-known and discussed elsewhere [19].

Not every temporal logic statement can be represented by such finite
state automata. For instance, no FSA can accept an example satisfying
statements such as

� � (“always a”). However, any statement that can
be satisfied by an example of finite length can be represented by some
FSA.

D. Generating Time Series Using SP2

The key to generating consistent and realizable time series from a
twinned topos is an algorithm, SP2, that partitions the set of all reach-
able nodes into two subsets. Provided that the input node set is itself
consistent, the two reachable subsets generated by SP2 are each guar-
anteed to be consistent. These subsets are then used as the basis of an
assignment of nodes of the twinned topos to the steps of a time series.

The full description of SP2, as well as the proof of the consistency
conditions, are relatively complex, and for this reason have been rele-
gated to an Appendix. For now, we note only the main features of the

algorithm. Let] be a consistent subset of 7 serving as the inputs to the
time series to be generated. The SP2 algorithm produces the following
in �f�$� 7��W�v� :x�����Y�
� 7�� � time:
1. The set of all nodes �K^A7 reachable from] .
2. A partition of � into consistent subsets � T and � m such that]@^
� T .
3. A directed shortest path forest (collection of trees) � spanning the
nodes of � in such a way that:

(a) every node >�?�� is reachable via � from some node of] ,
(b) the length of the unique path in � from the input nodes to > is the

minimum possible over all such paths in the topos, where the length of
any path is defined as the sum of its edge weights;

(c) every node of � T is reachable from some node of] via a path of
� containing only nodes of � T .

Furthermore, if a given node M ?i7 is reachable from] but its twinM ?i7 is not, then M is guaranteed to appear in � T and not in � m .
Consider the sequence � � o � �*�H]�"�� T "$� m �)�t� T

� � m ��� . It is not
hard to see that � � o � satisfies all the criteria of a valid time series: since
] , � T and �=m are all consistent, and since � T

� �`m contains no twins
of elements of � m , then �k� o � must be consistent. From condition 3c
stated above, �Q� o � must also be realizable. However, �Q� o � spans only
two time steps past the initial input step, and thus may be too short to
provide examples for the desired temporal properties.

Longer time series can be produced by generating additional con-
sistent and realizable node sets from � T and � m . For all �� *+ , we
define the node set � � to be the set of nodes of � � - o that are reach-
able from some node of �P� - m in 5 without passing through any nodes
of � � � � - o . � � can be generated iteratively from � � - o and � � - musing methods such as breadth-first search (BFS) in linear time, or Di-
jkstra’s single-source shortest-paths algorithm in �f�$� 7��;��� :��I�¡�¢�
� 7�� �
time [20]. Clearly

� Tq£ �Po £ � Xq£ �n�W�
and

�=m £ � \
£ �
¤ £ �n�W�n"
and so � � is consistent for all �9¥�& . These subsets can be used to build
a time series � �¡�n� �z�8� T "$�¦mW";��op"W�n�§�n";� � � wherec � T �¨] ;c �©mk��� T ;c �e�©����� - m¦�%�8��� - m

� �P� - m�� for all +q�)�9'�� .
The arguments for the validity of �Q� o � can also be applied to show the
validity of � ���n� , for all ��¥¨ª .
E. Variation of Time Series via Delay

Even if a twinned topos happens to support a sought-after temporal
property, there is of course no guarantee that a single valid time series
will contain an example of that property. In practice, testing a variety
of time series improves the chances of finding one containing the de-
sired example. Here, we discuss a strategy for increasing the variety of
available valid time series, in which a set of nodes is identified that can
be safely delayed to a later time step.

As it partitions the reachable nodes into sets � T and � m , the SP2
algorithm always places nodes into � T whenever the placement would
not lead to an inconsistency — a node is assigned to � m only if its
twin has already been assigned to � T . None of the nodes of �=m could
be reassigned to � T without generating an inconsistency. On the other
hand, there may be elements of � T that are guaranteed never to generate
consistency or reachability violations if delayed to later time steps.

Consider, as an example, the maximal set of nodes « T ^A� T satisfy-
ing the following two conditions:c if G�?�« T , then its twin G�|?�� ;c if Gi?�« T , and > is a descendant of G in � , then neither > nor > is in
� m (note that >�?�� T would also imply that >�?�« T).
Clearly, the nodes of « T are consistent with any other reachable nodes.
Moreover, the two conditions together ensure that the reachability of

HOULE, MENZIES, POWELL: FAST SEARCH FOR TEMPORAL PROPERTIES; SUBMITTED TO IEEE TRANS. ON SE, February 25, 2002 6

x

v w

zy

zyR1

L0

R0

Fig. 7. ¬¦ , ¬ � and ®e from Figure 6, generated using ¯�°[± as the input set.

any node in � � « T does not depend on any node of « T . Figure 7 shows
the classification into � T , �=m and « T of those nodes of the twinned
topos of Figure 6 that are reachable from the input set]��,/²{�1 .

The nodes of « T can be delayed until an arbitrarily-chosen time step
to yield a valid time series �Q���n�$��³2���´�8� T ";� m ";� o "§�n�n�n"�� � � , with +(�
³f'A� , defined as follows:c � T �¨] ;c � m ��� T

� « T ;c �e�©����� - m¦�%�8��� - m
� �P� - m�� for all ª��)�9�l³ ;c �4µ
��« T ;c � µ J m ��� µ - m �r�8� µ - m
� � µ - m � , if ³f��� ;c � � ��� � - m �%�8� � - m

� � � - m � for all ³P�¨+
�)�j'�� .
Using a given spanning forest and initial node partition, many other
valid time series could conceivably be generated based on the delay of
nodes of « T to differing time steps, rather than to a common time step
as described above.

F. Variation of Time Series via Coaxing

In the time series generated using the methods described above, the
initial node partition into � T and � m has a great impact on which nodes
are placed at a given time step. Changing the partition can thus promote
whole new classes of examples, and extinguish others. The SP2 algo-
rithm allows the user to influence this initial partition, by means of the
edge weights assigned to the topos graph. As described in more detail
in the Appendix, for every reachable twinned node pair /²>�" >31 , SP2
places the node closer to the inputs into � T , and the node farther from
the inputs into � m . If the edge weights are adjusted so that the order of
the two shortest path lengths becomes reversed, then a call to SP2 with
the new edge weights would swap the placements of the nodes in the
initial partition. We refer to the process of reassigning nodes by means
of edge weight adjustments as coaxing.

There are two situations in which one might want to use coaxing.
First, a failure to generate an example of a desired temporal property
may indicate a node swap that could, if successful, produce a time se-
ries containing examples that are closer to the target. Second, while
the twinning conditions allow SP2 to compute partitions correctly and
efficiently, the reachability paths for examples based on these partitions
may make use of forbidden topos nodes. By coaxing these forbidden
nodes towards the leaves of the shortest path forest � , one can increase
the possibility of reaching the desired variable states of an example
without encountering the forbidden nodes.

Both these situations arise with the twinned topos associated with
Figure 2, when enforcing the special conditions required by the and-
nodes of the original topos. Any time series making use of the and-
node and + at time step ¶ must have its antecedents motives, means,
opportunity and witness present at time step ¶j·A+ , and its consequent
guilty present at time step ¶ . If one or more or the antecedents do not
appear at time ¶9·¨+ , coaxing can be used to encourage them to move
from one side of the SP2 node partition to the other, thereby changing
the time steps in which they can be found. Similarly, the consequent or
even the and-node itself can be influenced to move. Furthermore, the
node twin and + is essentially meaningless, and must be avoided by the
reachability paths of any valid examples.

Whatever the motivation for coaxing, the method is essentially the
same. When generating the spanning forest � , it is possible to identify

nodes we want to avoid and nodes we need to find on the pathways to
nodes in examples. Increasing the weights of certain edges will push
nodes back towards the leaves of � , allowing other nodes to be pro-
moted in their place. The adjustments must be made with care. First,
when changing weights, the twinning properties must be maintained.
That is, if we increase the weight of edge E by the amount ¸f �& , then
we must also add ¸ to the weight of E . Second, there is little point in
coaxing nodes that are descendants in � of other nodes that are being
coaxed. Third, there may be many edges along the unique path of �
from the input nodes to the node > to be coaxed. Ideally, to limit the
impact of the weight change to as few nodes as possible, we should ad-
just only the weight on the path edge that is incident to to > (as well as
the twin of this edge). In

�
A-E of the Appendix, we present the coaxing

heuristics in more detail.

G. RAPTURE

There are many possible strategies for coaxing unwanted nodes off
the paths towards desired nodes. The choices of coaxing rules should
ideally be tailored to the kinds of examples sought. However, provided
that one can identify the earliest time step at which the violation of
the desired example can be determined, and the nodes whose presence
or absence is the cause, a promising coaxing operation can be decided
upon. The FSA used to verify the example can generally be adapted to
report the cause or causes of a violation. If the violation is due to the
presence of a node, that node can be coaxed away (that is, towards the
leaves of the shortest path forest); if due to the absence of a node, the
twin of the node can be coaxed away.

Figure 8 illustrates a simple heuristic, called RAPTURE, that repeat-
edly uses SP2 and coaxing to generate and evaluate time sequences.
The number of iterations ¹ is a parameter decided upon by the user;
each iteration can be performed in �f�tº�� 7x�e�y� :x�»�tº¼�½���Y�
� 7�� ���
time, where º is the maximum number of steps of any time series
generated throughout the course of the execution. A contribution of
�f�tº@�$� 7}�²�,� :�� ��� to the complexity comes from the repeated compu-
tation of reachable nodes in Step 2d, using standard graph search tech-
niques such as depth-first search or breadth-first search. As mentioned
earlier, the call to SP2 requires �f�$� 7}���v� :��¾�¡�¢�P� 7x� � time. The cost of
applying the FSA to the time series (Steps 2k-2m) can be performed in
�f�tº�� 7}� � time assuming that the size of the FSA is considered to be
bounded by some constant. Once the target node has been identified,
coaxing it away (Step 2o) is a simple matter of adjusting the weights of
a constant number of edges, and thus requires only constant time per
iteration.

RAPTURE should be viewed as just one possible way to apply our
techniques. Clearly, many variants are possible. For example, RAP-
TURE only coaxes one vertex at a time and makes no use of « T delays.
Variants on RAPTURE could explore (e.g.) coaxing multiple vertices.

H. Experiments

H.1 Experiments with Coaxing

A major pre-experimental concern was that the nearly linear-time
processing of SP2 could be embedded in a coaxing process that ter-
minated only after a very long number of iterations. After much ex-
perimentation, we can report that we have never seen this worst-case
behavior in practice: either the target temporal property was verified
after a small number of iterations, or it could not be verified even after
a very large number of iterations. In the large set of experimental stud-
ies described in [18], randomly generated topos graphs were probed for
randomly selected properties. In those experiments:c The topos size was fixed to 10,000 nodes;c The topos fanout was varied from 2 to 6 edges per node;c The frequency of conjunctions (and-nodes) was varied from 5% to
75% of the total number of nodes;

HOULE, MENZIES, POWELL: FAST SEARCH FOR TEMPORAL PROPERTIES; SUBMITTED TO IEEE TRANS. ON SE, February 25, 2002 7

function RAPTURE (inputs: ¿ ; topos: ÀDÁ ; limit: Â ; FSA: Ã): time series Ä
1. À�Å TWIN � À�Á �
2. repeat Â times
2a. ÆbÇ�Å¨È
2b. ÉËÊÍÌ8Æ Ì8Æ �$Î Å SP2 (G,I)
2c. � Å o
2d. while (ÆeÏ
ÐÑ ÆeÏnÒ Ç and Æ�ÏnÒ � ÐÑ È)
2d1. Æ Ï Å nodes of À reachable from Æ ÏWÒ �
2d2. ÆeÏQÅ¨ÆeÏ¦ÓÔÆeÏWÒ Ç
2d3. � Å � J m2d4. ÆeÏQÅ¨È

end while
2e. � Å � - m2f. Ä Å)¿
2g. Ä � Å�Æ
2h. for � Å m to � do
2i. ÄYÕËÖ � Å�ÆbÕ3×aÆbÕ Ò ��Ø ÆbÕ

end for
2j. ÄPÅ � Ä Ì8Ä � Ì�ÙIÙ�Ù�Ì8Ä Ï �
2k. if Ã accepts Ä then
2k1. return Ä

end if
2l. Ú�Å set of nodes whose presence caused the rejection of Ä by Ã
2m. Û�Å set of nodes whose absence caused the rejection of Ä by Ã
2n. Ü9Å a node of Ú=× Û with minimum path length to ¿ in Ê
2o. À�Å COAX � Ü �

end repeat
3. return null
end RAPTURE

Fig. 8. The RAPTURE heuristic.

SPIN SP2 Number of Cases
?? found 21
?? not found 8

found found 11
not found not found 0

found not found 0
not found found 0

RAM used (max) 100MB Ý m MB

Fig. 9. Finding properties of Figure 4 using SPIN and SP2. “??” denotes that SPIN did not
terminate in 100MB of RAM.

c The results after 10 coaxing iterations were compared to the results
after 100 iterations.

In all cases, the coverage of the goals reached a plateau after at most
five iterations of SP2 plus coaxing. Also, the plateau reached after 10
coaxes differed little from that reached after up to 100 coaxes. Fur-
thermore, SP2 never used more than 1MB of memory or one minute
of runtime. Our conclusion from these experiments is that the use of
heuristic coaxing in RAPTURE does not diminish the time or space
efficiency of SP2 in either the successful or unsuccessful cases.

H.2 Comparisons with SPIN

Figure 9 shows a comparison of SPIN versus SP2 using properties
of the general form �©# (“eventually # ”) and the systems model of
Figure 4. Of the 40 properties which were analyzed by both SPIN and
SP2, SPIN was able to return a verification result in only 11 out of
40 cases (ª¢Þ2� ß¢à) before running out of memory. In every case where
SPIN did return a verification result, SP2’s result was in agreement.

Regarding computer resources, SP2 used less than 1% of the RAM
required by SPIN. Also, in the case of the properties that were not
found, SP2 terminated in less than one second of CPU time while SPIN
took much longer.

We mentioned earlier that one pre-experimental concern with infor-
mal topoi is that they are so under-defined that we could use them to
infer any set of properties at all. Figure 9 shows that this is not always
true. In the case of 8 of the 40 properties, SP2 could not find them
across the large under-defined topos of Figure 4.

IV. DISCUSSION

A. History

Historically, this work is based on Feldman & Compton’s study of
the validation of topoi [14] (which they called qualitative compartmen-
tal models). Menzies conjectured that this inference problem is NP-
hard, and attempted a heuristic optimization of the validation process.
The resulting procedure, HT4, ran orders of magnitude faster than the
validation engine built by Feldman & Compton. However, HT4 still
suffered from exponential runtimes [7, 16, 21].

That prior work also made the restrictive assumption that topoi were
treated as propositional theories, that is, with each variable receiving
a single, precise assignment. This assumption was made after observ-
ing that experts only ever used topoi to generate acyclic explanations.
Cyclic explanations introduce a temporal aspect to variable assignment;
that is, if variables cannot be assigned contradictory values, then the ex-
planation

�¦0 � �30 � �¦C
is only sensible when /²�=03"I��C21 occur at different times. Cyclic ex-
planations are required when adding temporal simulation properties to
qualitative compartmental models. Assuming a certain restriction on
topos edge types, Cohen, Menzies, Waugh & Goss showed that the
cost of checking temporal properties of topos-based simulations is a
function of the number of time-ticks in the query [22].

B. Lightweight Formal Reasoning for Requirements

Other researchers have explored formal methods for requirements
engineering. For example, in the KAOS system [23], analysts gen-
erate a properties model by incrementally augmenting object-oriented
scenario diagrams with temporal logic statements. Potentially, this re-
search reduces the costs of testing requirements by integrating the gen-
eration of the properties model into the rest of the system development.
Our reading of the KAOS work is that while the resulting model may
be more formal, the level of skill required to write the temporal logic
can significantly increase the personnel cost. Further, the extra time
required for the augmentation could add to the development brake.

In other work, Schneider et al. [3] explored reducing the manual
modelling costs using lightweight formal methods. In the lightweight
approach, only partial descriptions of the systems and properties mod-
els were constructed using the SPIN formal analysis tool [17]. Despite
their incomplete nature, Schneider et al. found that such partial models
could still detect significant systems errors. While exciting research,
this approach still incurs a personnel cost, as scarce expertise is re-
quired to drive tools such as SPIN.

C. Representing Temporal Options

In our research, we explore the temporal properties of a topos graph
5(6879"$á�< , whose nodes can be associated with disjunctions (the default)
or conjunctions (special and-nodes). A disjunction node >}?%7 can be
reached if any antecedent nodes Gg?g7 can be reached, where G is
an antecedent of > if �HGB"�>4�}?K: . On the other hand, a conjunction
node can be reached only if all its antecedents can be simultaneously
reached.

Two alternate representations for temporal properties are a flow-
graph 5qâ and a Clarke-style state space 5qã . These alternative methods
are discussed below.

C.1 Flowgraphs

In a flow graph 5 â 687 â "$: â < , values at a node >�?�7 â are the result
of a transformation performed during the traversal of an edge upstream
from that node. Our original topos graphs reduce to simple flowgraphs
in the case when 7 contains no conjunctions. Methods for exploring
the temporal properties of flowgraphs have been extensively explored.
For example, Olender & Osterweil’s CECIL system [24] uses Tarjan’s

HOULE, MENZIES, POWELL: FAST SEARCH FOR TEMPORAL PROPERTIES; SUBMITTED TO IEEE TRANS. ON SE, February 25, 2002 8

path solving algorithms [25] to condense the flowgraph to a regular
expression summarizing the whole graph. This reduced space is then
explored for violations to system constraints.

For another example of flowgraph-based work, Corbett [26] mapped
FSAs to flowgraphs from some start state to some final state where
the flow through some arc � is represented by an integer variable { � .
Assuming that in-flows to a state must equal the out-flows from that
state, flow equations can be generated. As shown by Corbett, solu-
tions to such a system of flow equations can be sought for using integer
programming (IP) techniques. The verification examples in a twinned
topos can also be formulated as an IP problem; however, the RAPTURE
method can be viewed as an iterative-search optimization heuristic for
this IP problem that makes use of an exact solution (SP2) to a closely-
related problem.

C.2 State-space Search

In state space 5
ãY687`ãp"�:=ã§< , each >@?A7`ã contains consistent value
assignments to all program variables, and each E`?�: ã is a state change
permitted by the program. Clarke’s classic model checker (MC) per-
forms a linear-time search across a state space to find a set of states that
lead to a violation of some desired temporal property [27]. If the MC
search terminates, then the search path is a counter-example showing
how that program can fail. While the search takes linear time in terms
of the size of the state space, this size is exponential on the number of
assignments per variable. Elaborate techniques have been developed in
an attempt to limit the state space explosion. A sample of these tech-
niques are described below.

c Abstraction or partial ordering: use only the part of the space re-
quired for a particular counter-example. Implementations exploiting
this technique can constrain how the space is traversed [28], or con-
structed in the first place [3].c Clustering: divide the systems model into sub-systems which can be
reasoned about separately [29].c Meta-knowledge: study only succinct meta-knowledge of the space.
One example used an eigenvector analysis of the long-term properties
of the systems model under study [30].c Exploit symmetry: find properties in some part of the systems model,
then reuse those counter-examples if ever those parts are found else-
where in the systems model [31].c Semantic minimization: replace the space with some smaller, equiv-
alent space. For example, the BANDERA system [32] reduces both
the systems modelling cost and the execution cost by automatically ex-
tracting (slicing) the minimum portions of a JAVA program’s bytecodes
which are relevant to particular properties models.

While the above techniques have all been useful in their test domains,
they may not be universally applicable. Certain optimizations, such as
those of [30], require expensive pre-processing. Also, these methods
may rely on certain combinatorial features of the system being stud-
ied. Exploiting symmetry is only useful if the system under study is
highly symmetric. Clustering generally fails for tightly connected mod-
els. Further, for requirements engineering, systems like BANDERA are
not suitable. BANDERA only works on already-implemented systems;
that is, not until long after the requirements phase has ended.

Hence, in the general case, it seems that only small models can be
tested using state-space search techniques. Further, these models must
be precisely specified. In contrast, this work describes methods for
quickly finding properties in large, loosely-specified models.

Our results to date are promising. However, an open issue with the
techniques is their adaptability to other models with more complex tem-
poral properties. Currently, we are working to explore a wider range of
models and a wider range of temporal properties.

ACKNOWLEDGEMENTS

This paper benefitted greatly from the insightful comments of the
anonymous reviewers.

REFERENCES

[1] T. Menzies, J. Powell, and M. E. Houle, “Fast formal analysis of requirements via ’topoi diagrams’,”
in ICSE 2001, 2001, Available from http://tim.menzies.com/pdf/00fastre.pdf.

[2] D.J. Reifer, “Software failure modes and effects analysis,” IEEE Transactions on Reliability, pp.
247–249, 1979.

[3] F. Schneider, S.M. Easterbrook, J.R. Callahan, G.J. Holzmann, W.K. Reinholtz, A. Ko, and M. Sha-
habuddin, “Validating requirements for fault tolerant systems using model checking,” in 3rd IEEE
International Conference On Requirements Engineering, 1998.

[4] R. Dieng, O. Corby, and S. Lapalut, “Acquisition and exploitation of gradual knowledge,” Interna-
tional Journal of Human-Computer Studies, vol. 42, pp. 465–499, 1995.

[5] M. B. Dwyer, G. S. Avrunin, and J.C. Corbett, “A system specification of patterns,” http://www.
cis.ksu.edu/santos/spec-patterns/, 1997.

[6] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett, “Patterns in property specifications for finite-state
verification,” in ICSE98: Proceedings of the 21st International Conference on Software Engineering,
May 1998.

[7] T.J. Menzies, Principles for Generalised Testing of Knowledge Bases, Ph.D. thesis, University
of New South Wales, 1995, Ph.D. thesis. Available from http://tim.menzies.com/pdf/

95thesis.pdf.
[8] S. Buckingham Shum and N. Hammond, “Argumentation-based design rationale: What use at what

cost?,” International Journal of Human-Computer Studies, vol. 40, no. 4, pp. 603–652, 1994.
[9] G.A. Smythe, “Hypothalamic noradrenergic activation of stress-induced adrenocorticotropin

(ACTH) release: Effects of acute and chronic dexamethasone pre-treatment in the rat.,” Exp. Clin.
Endocrinol. (Life Sci. Adv.), pp. 141–144, 6 1987.

[10] J. Mylopoulos, L. Cheng, and E. Yu, “From object-oriented to goal-oriented requirements analysis,”
Communications of the ACM, vol. 42, no. 1, pp. 31–37, January 1999.

[11] A. MacLean, R.M. Young, V. Bellotti, and T.P. Moran, “Questions, options and criteria: Elements of
design space analysis,” in Design Rationale: Concepts, Techniques, and Use, T.P. Moran and J.M.
Carroll, Eds., pp. 53–106. Lawerence Erlbaum Associates, 1996.

[12] B. Kuipers, “Qualitative simulation,” Artificial Intelligence, vol. 29, pp. 229–338, 1986.
[13] G.A. Smythe, “Brain-hypothalmus, Pituitary and the Endocrine Pancreas,” The Endocrine Pancreas,

1989.
[14] B. Feldman, P. Compton, and G. Smythe, “Towards Hypothesis Testing: JUSTIN, Prototype System

Using Justification in Context,” in Proceedings of the Joint Australian Conference on Artificial
Intelligence, AI ’89, 1989, pp. 319–331.

[15] T.J. Menzies and P. Compton, “Applications of abduction: Hypothesis testing of neuroendocrino-
logical qualitative compartmental models,” Artificial Intelligence in Medicine, vol. 10, pp. 145–175,
1997, Available from http://tim.menzies.com/pdf/96aim.pdf.

[16] T.J. Menzies, “On the practicality of abductive validation,” in ECAI ’96, 1996, Available from
http:/tim.menzies.com/pdf/96ok.pdf.

[17] G.J. Holzmann, “The model checker SPIN,” IEEE Transactions on Software Engineering, vol. 23,
no. 5, pp. 279–295, May 1997.

[18] J.D. Powell, “The rapture/sp2 approach to model checking: An explanation and viability experimen-
tation,” 1999.

[19] R. Gerth, D. Peled, M. Vardi, and P. Wolper, “Simple on-the-fly automatic verification of linear
temporal logic,” in Proc. PSTV 1995 Conference, Warsaw, Poland, 1995, Available from http:

//cm.bell-labs.com/cm/cs/who/gerard/gz/ltl.pdf.
[20] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol.

1, pp. 269–271, 1959.
[21] T.J. Menzies, “Applications of abduction: Knowledge level modeling,” International Journal of

Human Computer Studies, vol. 45, pp. 305–355, 1996, Available from http://tim.menzies.

com/pdf/96abkl.pdf.

[22] T.J. Menzies, R.F. Cohen, S. Waugh, and S. Goss, “Applications of abduction: Testing very long
qualitative simulations,” IEEE Transactions of Data and Knowledge Engineering (accepted for
publication, 2000), 2003, Available from http://tim.menzies.com/pdf/97iedge.pdf.

[23] A. van Lamsweerde and L. Willemet, “Inferring declarative requirements specifications from oper-
ational scenarios,” IEEE Transactions on Software Engineering, Special Issue on Scenario Manage-
ment, November 1998.

[24] K.M. Olender and L.J. Osterweil, “Interprocedural static analysis of sequencing constraints,”
TOSEM, vol. 1, no. 2, pp. 21–52, 1992.

[25] R.E. Tarjan, “Fast algorithms for solving path problems,” Journal of the Association for Computing
Machinery, vol. 28, no. 3, pp. 594–614, July 1981.

[26] J. Corbett, “An empirical evaluation of three methods for deadlock analysis of ada tasking programs,”
in Proceedings of the 1994 International Symposium on Software Testing and Analysis (ISSTA), 1994.

[27] E.M. Clarke, E.A. Emerson, and A.P. Sistla, “Automatic verification of finite-state concurrent sys-
tems using temporal logic specifications,” ACM Transactions on Programming Languages and Sys-
tems, vol. 8, no. 2, pp. 244–263, April 1986.

[28] P. Godefroid, “On the costs and benefits of using partial-order methods for the verificiation of
concurrent systems (invited papers),” in The 1996 DIMACS workshop on Partial Order Methods in
Verificaition, July 24-26, 1996, 1997, pp. 289–303.

[29] E.M. Clark and D. E. Long, “Compositional model checking,” in Fourth Annual Symposium on
Logic in Computer Science, 1989.

[30] Y. Ishida, “Using global properties for qualitative reasoning: A qualitative system theory,” in
Proceedings of IJCAI ’89, 1989, pp. 1174–1179.

[31] E.M. Clark and T. Filkorn, “Exploiting symmetry in temporal logic model checking,” in Fifth
International Conference on Computer Aided Verification. 1993, Springer-Verlag.

[32] J. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasarenu, Robby, and H. Zheng, “Bandera:
Extracting finite-state models from java source code,” in Proceedings ICSE2000, Limerick, Ireland,
2000, pp. 439–448.

HOULE, MENZIES, POWELL: FAST SEARCH FOR TEMPORAL PROPERTIES; SUBMITTED TO IEEE TRANS. ON SE, February 25, 2002 9

[33] T.E. Cormen, C. E. Leiserson, and R.L. Rivest, Introduction to Algorithms, MIT Press, 1990, ISBN:
0262031418.

[34] M. Lowrey, M. Boyd, and D. Kulkarni, “Towards a theory for integration of mathematical verifica-
tion and empirical testing,” in Proceedings, ASE’98: Automated Software Engineering, 1998, pp.
322–331.

[35] Y. Iwasaki, “Qualitative physics,” in The Handbook of Artificial Intelligence, P.R. Cohen A. Barr
and E.A. Feigenbaum, Eds., vol. 4, pp. 323–413. Addison Wesley, 1989.

[36] Y. Iwasaki and H.A. Simon, “Causality in device behaviour,” Artificial Intelligence, vol. 29, pp.
3–31, 1986.

[37] Y. Iwasaki, “Causal ordering in a mixed structure,” in Proceedings of AAAI ’88, 1988, pp. 313–318.
[38] N. Leveson, Safeware System Safety And Computers, Addison-Wesley, 1995.

APPENDIX

I. PROOF OF CORRECTNESS FOR ALGORITHM SP2

A. Main Result

Consider a path ä��z�»å T "HåBmn"n�§�n�n"tåbæP� in the twinned topos 5(6879"�:�< ,
originating at å T ?�7 and terminating at å æ ?�7 . The length of ä ,
denoted sB�Hä©� , is the sum of the lengths of its edges, ç æ� sB���»å � - m "Hå � ��� .If �è�½& , the length of the path shall be deemed to be zero. We will
restrict our attention to paths which are simple; that is, those in which
no node appears more than once.

Any path ä achieving the minimum length over all paths from å T to
åbæ shall be called a shortest path from å T to å�æ in 5 ; alternatively, the
distance from å T to å æ is the length of any shortest path between them.
This terminology can be extended to sets of nodes in the following
manner: if # and é are sets of nodes, then a path ä is a shortest path
from # to é if å T ?�# , åbæK?�é , and ä has length no greater than any
other path originating at a node in # and terminating at a node in é .
Shortest paths from sets to a single node, and from a single node to a
set, can be defined analogously.

Path ä may or may not be consistent. If not, then there exists a value
� between 1 and the number of edges of the path such that the deletion
of � edges of ä yields �`�v+ consistent subpaths. If � is the minimum
such value, we say that the path is � -inconsistent. The set of � edges
deleted shall be referred to as a cut set of the path, each edge of which
will be called a cut edge.

In this Appendix, we prove the following result:
Theorem 1: Let 5(687�";:�< be a twinned topos, and let] be a consis-

tent subset of 7 . Let � be the set of all nodes of 7 reachable from
some node of] in 5 . Then there exists a subgraph �f6t��"�: Æ < of 5
such that:
1. For every >�?�� , exactly one shortest path êj�H>4� from] to > in 5 is
also contained in � .
2. � is the union of the paths ê9�H>4� taken over all >�?i� .
3. Every path ê9�H>4� is either consistent or 1-inconsistent.
4. There exists a set of cut edges resolving all 1-inconsistent paths
ê9�H>4� , such that no shortest path ê9�H>4� contains more than one cut edge.
5. The cut edges define a partition of � into two disjoint node sets � T
and � m such thatc]�^�� T ,c � T and � m are both consistent, andc edge �HGB"I>4� is a cut edge if and only if Gi?�� T and >�?��`m .

A subgraph � satisfying the conditions of the theorem shall be re-
ferred to as the reachability graph for] in 5 . We shall also show that
reachability graphs can be computed in �f�$� 7��¢�z� :��I�¡�¢�P� 7�� � time in
general, and in �f�$� 7��W�,� :�� � time when all edge lengths are identical.

B. Paths

Each cut edge E��´�»åb��"ëåb� J m;� can be associated with the node pairs
it separates. If åbì and åbí are nodes of the path such that �¨'L� and
�`¥¨�e��+ and å ì � å í , then the deletion of any edge of ä on the path
from å ì to å í (including E) ensures that no subpath of ä contains both
å ì and å í . The edges on the path from å ì to å í form a cut interval
associated with E . The intersection of all cut intervals associated with
edge E will be called the cut intersection î��tEp� of E .

Since the number of cut intersections is � , and cannot be reduced, no
two cut intersections may overlap (otherwise, deletion of an edge in the
overlap resolves all cut intervals of both cut intersections, contradicting
the minimality of �).

Observation 2: Let E and ï be distinct cut edges drawn from the
same cut set of path ä in 5 . Then their associated cut intersections
îÔ�tEY� and îÔ�8ïb� must share no edges.

Lemma 3: Let { and ð be nodes of 5 such that ð is reachable from
{ . Thenc ð is reachable from { , andc the distance from { to ð is equal to the distance from { to ð .
Proof Let äF�N�»å T "HåBmn"n�§�n�n"tåbæP� be a shortest path from å T �~{
to åbæV�*ð . Since the edge �»åb�I"Håb� J m;� is in 5 for all &¨'��}��� ,
the edge � å � " å � J m � must be in 5 as well. This implies that the path
äi�z� å T " å m "n�W�§�n" å æ � exists from å T � { to å æ � ð .

The paths ä and ä are both of length sB�HäB� . ä must be a shortest path
from { to ð ; otherwise, if a shorter path existed from { to ð , a path of
the same length would exist from { to ð , contradicting the assumption
that ä was shortest.

�

Lemma 4: If ¶ is reachable from ñ in 5 , then any shortest path from
ñ to ¶ is either consistent or 1-inconsistent.
Proof By contradiction: let us assume that every path from ñ to ¶
is neither consistent nor 1-inconsistent. Then consider a shortest path
ä,�ò�»å T "Hå m "n�§�W�n"Hå æ � from å T �yñ to å æ ��¶ in 5 . Let s � be the
length of the subpath äb�B�z�»å T "§�n�W�n"Håb�8� of ä , for all &(')�j')� .

Path ä must be � -inconsistent, for some �@¥gª . Let]¢m`���»åÍì4"Hå�í��
and] o ���»å�ó²"Hå�ôY� be two cut intersections associated with the cut set
of ä . By Observation 2,] m and] o must be disjoint, and thus without
loss of generality we may assume that &('����)�P')õ
�)ö�')� .

Since the endpoints of cut intersections derive from cut intervals, åeí
must be separated from its negation å í�÷ � å í by] m . This implies that
�§øD'����)� . Similarly, node å�ó must be separated from å óI÷ � å�ô by] o ,
where õ
�)ö�'�õ�ø .

Lemma 3 implies that the distance from å í�÷ to å óI÷ is the same as the
distance from å í to å�ó — that is, s�óÔ·�s í . Since the path from å T to
å í8÷ is of length s í8÷ , and the path from å ó¾÷ to å æ is of length s æ ·ùs óI÷ ,
there exists a path from å T to å æ of length

s í8÷ �l�8s ó ·}s í �2�l�8s�æ%·}s ó¾÷ �9�vs�æ%·%�8s óI÷ ·}s ó �3·%�8s í ·}s í8÷ �k�¨s�æ=�
This contradicts the assumption that the distance from ñ to ¶ was s æ .�

C. Shortest Path Trees

The proof of the main theorem is by construction. Let] be a consis-
tent subset of 7 . Consider now an augmentation of the graph 5(687�"$:=<
by two artificial nodes ú and ú , and a pair of artificial edges �HúY"�ñ²� and
� úu" ñ²� for each ñ}?�] . The length of each artificial edge is deemed to
be û� w& , an arbitrary positive constant. The resultant graph — call it
5`ü¢687(üY"$:�üW< — remains a twinned topos.

Within the graph 5 ü , a variant of Dijkstra’s single-source shortest
path algorithm [20] is used to construct a tree of shortest paths from ú to
all nodes reachable from ú ; a pseudocode description of the algorithm
is shown in Figure 10. Since the only neighbours of ú are the nodes of
] , the tree would also contain shortest paths to all nodes reachable from
] . These paths together constitute a shortest path forest in 5 .

As with Dijkstra’s original algorithm, SP2 grows the shortest path
tree � ü from the artificial root in greedy fashion, ensuring that the cur-
rent tree is always a shortest path tree over the nodes it spans. A priority
queue PQ is used to keep track of candidate edges for inclusion. Each
entry in the queue consists of:c an edge �HGD"�>4� , where > is the candidate node and G is a node already
in the tree;

HOULE, MENZIES, POWELL: FAST SEARCH FOR TEMPORAL PROPERTIES; SUBMITTED TO IEEE TRANS. ON SE, February 25, 2002 10

function SP2 (twinned topos ýÔþHÿ�� ���
; inputs �):

forest � ; node sets ¬ ��¬ � ; cut edges �
0. ý��
	dý augmented with artificial nodes � , �
1. for each ���ÿ do��� ����	��è¯ all nodes are unvisited ±� � ����	��}¯ no node is below a cut edge ±

end for
2. PQ 	�� � 	��
3. ¬ 	½¯��W±
4. ¬ � 	��
5. for each initial node �
�� do

PQ 	 PQ �`¯�� �!�"�#�$�%�'&(&�±
end for

6. while PQ is not empty do
6a. �#)*�"� +,�-��&.&/	 deletemin � PQ &
6b. if

��� ���102 � then
go to next iteration of the while loop

end if
6c. if) 2 ��� ��� and �3q¬ � then¯ let ° be the parent of � in ���§±

if +402 ° then
go to next iteration of the while loop

end if
end if

6d.
��� ���5	�)�¯�� becomes visited ±

6e1. if +6`¬¦ and ��0`¬¦ then¬¦7	d¬¦8�`¯��p±
6e2. else ¬ � 	d¬ � �`¯��p±

if +6`¬ then� � ����	9� +,�-��&
else � � ����	�� � +*�
end if

end if
6f. �
��	��
�:�`¯;� +,�-��&�±
6g. for each < such that � �=�><?&8 �

do
PQ 	 PQ �`¯�� ��� ���W A@��.� �=�><?&B&%�$� �=�><?&(&¾±

end for
end while

7. ¬¦7	d¬¦8C¦¯$�W±
8. �D	��
�:C¦¯;� ���>�'&"E>�
��²±
9. return � , ¬ , ¬ � , �
end SP2

Fig. 10. The SP2 algorithm

c a distance ö , the length of the shortest path from the root to > passing
through G .

The entries in the queue are prioritized according to their values of ö ,
with small values being given the highest priority. Although not strictly
necessary for Theorem 1 to hold, we will later require PQ to be stable,
in that two entries having the same distance ö should emerge from PQ
in the same order in which they were inserted. Once a node > is inserted
into the tree, its distance FHG >JI from ú will have been calculated and
stored.

As nodes are added to the shortest path tree, they are assigned to one
of the two sets � T and �=m . Whenever possible, the new node (call it
>) is added to set � T . Only in those situations where an assignment to
� T would result in an inconsistency (that is, when > already belongs to
� T), or in a path with more than one cut edge, is an assignment of > to
�=m considered. If the edge �HGB"�>4� is inserted, with G�?i� T and >�?��=m ,
the transition from � T to � m is noted as the cut edge KLG >JI above > . All
subsequent descendents M below > will also inherit KLG M I9�L�HGB"�>4� as
the cut edge above it.

In certain conditions, SP2 will choose to defer the insertion of node
> altogether. It shall be shown in Lemma 5 that whenever the algorithm
defers the insertion (Step 6c of Figure 10), a path of equal length will
eventually be found to > passing through another node. Step 6c is the
only point of difference in how Dijkstra’s algorithm and Algorithm SP2

handle the insertion of nodes into the shortest path tree.
If PQ is implemented using a heap, the worst-case time of the algo-

rithm is in �f�$� 7��;�A� :x�����Y�
� 7�� � . As is the case with the many variants
of Dijkstra’s algorithm, data structures such as two-dimensional lookup
tables or Fibonacci heaps can also be used to organize the insertion of
nodes into the tree, with varying time complexities (see [33] for de-
tails). However, it is worth mentioning that some distributions of edge
length (such as when all edges have identical length) allow for the use
of an ordinary FIFO (First-In-First-Out) queue, resulting in an overall
worst-case time in �f�$� :�� � .

Lemma 5: Given a twinned topos 5(6879"$:=< and a consistent input set
]�^A7 :

1. Algorithm SP2 correctly creates a shortest path forest � of all nodes
reachable from] in 5 .
2. The partition sets � T and � m are both consistent.

Proof The only difference in the construction of the shortest path tree
between Algorithm SP2 and Dijkstra’s algorithm is in the rejection of
certain edges that is carried out in Step 6c. Provided that the nodes
are added to the tree in non-decreasing order of their distances from ú ,
the arguments that show the correctness of Dijksta’s algorithm apply
to SP2 as well. To show that Algorithm SP2 constructs a shortest path
tree � ü , one need only show that whenever an edge �HGD"�>4� is rejected
at Step 6c, node > will be attached by means of another edge without
changing its distance from ú .

The argument that � T and � m are consistent is by induction: we
assume that after each of the previous insertions of a node M into � ü ,
c � ü was a correct shortest path tree for the nodes it spanned,c all nodes having distances to ú strictly less than FHG M I have been
included in the tree.c the current sets � T and �=m were both consistent.

Initially, the tree consists of the single artificial root node ú , for which
the lemma holds.

Assume now that the edge �HGB"I>4� is considered for inclusion. If >
is already reachable using � ü , the edge will be discarded at Step 6b.
Otherwise, the execution continues at Step 6c.

If > is not already in the tree, then > is added to the tree in Steps 6d
through 6f. Node > is assigned to the same node set (� T or � m) as its
parent G .

If > is already in the tree, then it must have been assigned to either
� T or � m . If >x?�� T , then > will be correctly placed in � m at Step 6e2,
regardless of the status of G . If >x?%� m , then > cannot be placed in � m
without violating the consistency of �=m . Step 6e appears to allow this
to happen in the case where >�?i�=m and Gi?%�`m , and FHG >5IB�MFHG >JI . If
FHG >5Ib�NFHG >JI instead, then the edge is rejected at Step 6c unless Gx��{
— control never reaches Step 6e for the edge �HGD"�>4� unless � GB" >4� is
in � ü . However, we will now show that the former situation never
arises, and that rejecting the edge in the latter situation is always safe,
whenever >�?i� m .

If G�?�� m as well as >�?�� m , then there must be a cut edge � å µ - m " å µ �along the path êj� >2����� å T " åBmn"§�n�n�n" åbæP� , where å T �gú and å�æg� > .
For � åuµ - mn" åuµY� to be a cut edge, å4µ must have been added to the shortest
path tree before å µ . The induction hypothesis therefore implies that
FHG å µ I�'OFHG å µ I . By the properties of twinned topoi, there must be a
path from åuµ to > of the same length as that from åuµ to > . This would
imply the existence of a path from ú to > of length no more than FHG >5I .

If FHG >5IÔ�PFHG >JI , we have a contradiction, as we have found a path
from ú to > of length strictly less than FHG >JI . It remains to be shown
that if FHG >5IÔ�QFHG >JI , any rejection of �HGB"I>4� that occurs in Step 6c is
safe. We shall do this by showing that at least one opportunity exists
for connecting > without violating the consistency of � T and � m . In
particular, we shall show that > can be attached to å æ - m �¨{ .

Consider now the path ê ø �H>4� formed by ê9�»å æ - m � followed by the

HOULE, MENZIES, POWELL: FAST SEARCH FOR TEMPORAL PROPERTIES; SUBMITTED TO IEEE TRANS. ON SE, February 25, 2002 11

edge �»åbæ - mn"�>4� .
FHG åbæ - m'Iu�)sB��� åbæ - m§" >4�����RFHG >5Ie�NFHG >JI
'AsB�Hê ø �H>4�����NFHG å æ - m Iu�)sB���»å æ - m "�>4���

Lemma 3 implies that sB��� åbæ - mn" >4���x�*sB���»å�æ - mW"�>4��� , and therefore
FHG åbæ - m$I�'SFHG åbæ - m"I . However, we have already shown that FHG å4µ�ID¥
FHG å µ I , from which it follows that

FHG å µ Iu�)sB��� å µ " å µ J m "n�§�n�n" å æ - m ���¥MFHG å µ I4�)sB���»å µ "Hå µ J m "n�W�§�n"Hå æ - m �I�
and FHG åbæ - m$Iù¥TFHG å�æ - m"I . We must therefore have FHG åeæ - m'I%�FHG å æ - m I .Since FHG >JID�RFHG >5ID NFHG å æ - m Ie�UFHG å æ - m I , the length of the path
from ú to > through å æ - m is equal to FHG >JI , the shortest path length
from ú to > . Also, since FHG åeæ - m'I��PFHG >JI , åbæ - m must already have
been added to the tree by the time > is considered. In this regard at
least, å æ - m �¨{ is a suitable candidate for attaching > to.

The node å æ - m must be in � m . Otherwise, if å æ - m were in � T ,å æ � > would have been added to � T at Step 6e1 (as > had not yet been
encountered when > was added to the tree). The induction hypothesis
then implies that å æ - m ?´� T . When attempting to attach > to the
shortest path tree via node å æ - m , > would be assigned to set � T —
consistent with the previous assignment of > to � m . We conclude that
åbæ - mk��{ is a suitable candidate at which to attach > .

Once the shortest path tree ��ü of the augmented graph 5=ü has been
computed, we can obtain a subgraph �f6t��"�: Æ < of the original twinned
topos 5 simply by deleting ú together with the edges leading from it.�

We are now in a position to complete the proof of the main theorem,
by showing that � satisfies its conditions.

Proof of Theorem 1
1. For every >�?�� , exactly one shortest path êj�H>4� from] to > in 5 is
also contained in � .
This follows from the properties of the shortest path tree �(ü , and
Lemma 5. Note that every path in ��ü from ú to another node must
pass through a node of] .
2. � is the union of the paths ê9�H>4� taken over all >�?i� .
This also follows from the properties of the shortest path forest.
3. Every path ê9�H>4� is either consistent or 1-inconsistent.
Follows from Lemma 4.
4. There exists a set of cut edges resolving all 1-inconsistent paths
ê9�H>4� , such that no shortest path ê9�H>4� contains more than one cut edge.
By the construction of � ü , no node > can be assigned to � T if its pre-
decessor G in � ü has been assigned to � m . Since the root ú is assigned
to � T , there can therefore be only at most one alternation from � T to
� m along any path. As �HGD"�>4� can be a cut edge only if G�?v� T and
>�?i�`m , this condition is satisfied by � .
5. The cut edges define a partition of � into two disjoint node sets � T
and � m such thatc]�^�� T ,c � T and �=m are both consistent, andc edge �HGD"�>4� is a cut edge if and only if G�?i� T and >�?��=m .
The consistency of � T and � m follows from Lemma 5. The set of cut
edges satisfies the condition by construction.
To see that]�^A� T , consider the relationship of the nodes of] with ú in
5 ü . Root ú is connected to all nodes of] , and only the nodes of] . Each
node of] is strictly closer to ú than any other node of 7 ü � �H]��i/²ú[1Y� .
This implies that the nodes of] will be considered for insertion in � ü
before any of the other nodes.
Let ñ be a node of] . Since ñi|?�] , ñ must be considered for insertion
before ñ . Since ñ is considered by means of the edge �HúY";ñ²� , and since

ú�?z� T , therefore ñ is assigned to � T at Step 6e1. This shows that
]4V�� T as required. �

Provided that every pair of edges E and E satisfies sB�tEY�i� sB� E²� ,
Algorithm SP2 is guaranteed to produce a consistent partition of 7
into � T and �`m . However, the actual sets � T and �`m produced depend
greatly on the initial choice of edge weights. In the next section, we
will see how the freedom of choice of edge weights can be exploited
when attempting to generate partitions satisfying desired criteria.

D. Preserving Paths While Coaxing

Although the goal of weight adjustment is to produce a change in an
existing shortest path forest, it is important to be able to do so without
changing certain desirable paths or subtrees. We begin our investigation
by giving conditions in which a shortest path remains unchanged after
weight adjustment and a subsequent application of SP2.

When referring to shortest paths within the graph 5 ü , we will use
the notation 5 ü m 687 ü "�: üm < to refer to the graph before the weight ad-
justment, and 5 üo 687 ü "�: üo < after the adjustment. The partitions of 7 ü
produced for 5 ü m and 5 üo shall be denoted /²� mT "$�

mm 1 and /p� oT "��
o m 1 , re-

spectively. Let �=üm be the shortest path tree produced by an application
of SP2 on 5 ü m , and � üo be the shortest path tree produced by an appli-
cation of SP2 on 5 üo . For any edge E=?�: ü , its weight before and after
the adjustment shall be denoted s m �tEp� and s o �tEp� , respectively. We will
consider only adjustments for which seo¢�tEp�¦�,sbo¢� E²� for all E[" Eq?�:�ü .

Lemma 6: Let W be a collection of edge pairs whose weights are
to be increased between two applications of SP2 (the weights of all
other edges are left unchanged). Let X m �¼�Hä mm "�ä mo "n�n�§�n"$ä m� � be the
sequence of shortest paths to > in 5 ü m , in the order in which they emerge
from PQ at Step 6a of the first application of SP2. Similarly, let X o �
�Hä om "�ä oo "W�n�n�n"Iä o� � be the sequence of shortest paths to > in 5=üo , in the
order in which they emerge from PQ. Let ä�?HX(m be the shortest path
to > in � üm . If ä contains no edge of W , then X o is a subsequence of X m .
Furthermore, path ä is also in X o .
Proof Let Y be any path from ú to > in 5 ü m . Since no edge of : ü has
had its weight reduced, s o �ZY3�a¥,s m �ZY3� . As ä contains no edges of W ,
sDmW�ZY3�a¥vsDmW�HäB�k�wsboY�Hä©� , and therefore ä must also be a shortest path
in 5 üo .

Let us now assume that Y ø is also a shortest path of 5=üo . Path Y ø
must not contain any edge of W ; otherwise, we would have s m �ZY3�f�
s o �ZY3�`�Ls o �HäB�q��s m �Hä©� , contradicting the assumption that ä was a
shortest path in 5 ü m . Y ø must therefore be a shortest path of 5 ü m as well.
This implies that X
of^UX=m , and therefore that no path of X`o contains
an edge of W .

Two assumptions have been made on the use and operation of the
priority queue in Algorithm SP2: that entries are inserted into PQ in
some canonical order (at Step 6g), and that PQ is stable. Considering
only those nodes appearing on paths in Xqo , one can show by an induc-
tive argument that the relative order in which the nodes are inserted into
PQ is the same in both applications of SP2, as no weight adjustment has
been performed on any edges of these paths. The stability of PQ in turn
implies that the order in which the nodes emerge from PQ (at Step 6a)
is the also the same in both applications, and the result follows.

�

The previous lemma shows that the choice of a stable data structure
for the priority queue can help to maintain continuity in some parts of
the shortest path tree after a weight adjustment. The extent to which
portions of the tree are left unchanged is made clear by the following
lemma.

Lemma 7: Let W be a collection of edge pairs whose weights are to
be increased between two applications of SP2 (the weights of all other
edges are left unchanged). Let ä be the shortest path to a node > in the
tree � üm .

HOULE, MENZIES, POWELL: FAST SEARCH FOR TEMPORAL PROPERTIES; SUBMITTED TO IEEE TRANS. ON SE, February 25, 2002 12

1. If > is not reachable from ú and ä contains no edge of W , then ä also
belongs to the tree � üo . Moreover, all nodes of ä belonging to � oT and
� o m are exactly those belonging to � mT and � mm , respectively.
2. If > is reachable from ú , let äDø be the shortest path to > in � üm . If
both ä and ä ø contain no edge of W , then ä and ä ø belong to �=üo as well.
Moreover, all nodes of ä and ä ø belonging to � oT and � o m are exactly
those belonging to � mT and � mm , respectively.
Proof Note that it suffices to show that ä belongs to ��üo when the
conditions of the lemma are satisfied, due to the symmetry of the con-
ditions on ä and äDø in the case when both exist. Note that by Lemma 6,
ä must be considered for inclusion in � üo by the second application of
SP2.

The proof is by induction on the sequence of insertions of nodes
into � üm . If >i?ù] , the lemma clearly holds; we therefore may assume
that >z|?w] , that > and > satisfy one of the two sets of conditions of
the lemma, and that the lemma holds for all nodes already in � üm that
satisfy the conditions.

When the path ä is considered by the first application of SP2 at Step
6c (via the edge �HGB"�>4�), we have three cases:c ö� SFHG >JI .
In this case, SP2 attaches > to � üm using the first entry to emerge from
PQ. Since ä is considered first among all paths to > in the first applica-
tion of SP2, Lemma 6 implies that ä is the first path to > considered in
the second application as well. The assumption that no edges of W lie
on the shortest path to > imply that ö� RFHG >5I when ä is considered in
the second application, and therefore ä is inserted into � üo .
Since ö% [FHG >JI , > must already have been added to � üm , and is there-
fore reachable. Step 6d must have been executed, since ö%|�NFHG >5I . The
inductive hypothesis implies that the paths to G and > in ��üo are iden-
tical to those in � üm , and that the assignment of nodes G and > in the
second application of SP2 matches that of the first application. Node >
is therefore assigned to � oT if >�?i� mT , and to � o m if >�?�� mm . The lemma
follows for this case.c ö��SFHG >JI .
For reasons similar to those of the previous case, ä is inserted into � üo
in this case as well.
Since ö,�\FHG >5I , > must not yet have been added to �=üm ; it may or
may not be reachable. In any event, it cannot yet have been assigned to
� mT . Step 6d must have been executed, since ö@|��FHG >5I . The inductive
hypothesis implies that the path to G in � üo is identical to that in � üm , and
that the assignment of node G in the second application of SP2 matches
that of the first application. Since >¨|?¨� mT , > is therefore assigned to
the same set as G . Since > is assigned to the same set as G in the second
application of SP2 as well, > is assigned to � oT if >}?%� mT , and to � o m if
>�?i� mm .c ö(�NFHG >JI .
In this case, if >l|?r� mm when the first path to > emerges from PQ, then
this path is used to attach > to � üm — that is, ä . As in the previous
cases, Lemma 6 implies that ä is the first path to > considered in the
second application as well. The assumption that no edges of W lie on
the shortest path to > imply that at the moment when ä is considered
in the second application, > is in � oT if it is in � mT , and unassigned
otherwise. In either case, ä is inserted into � üo . Since G satisfies the
conditions of the lemma, the inductive hypothesis implies that G%?%� oT
if Gù?%� mT , and Gù?r� om if Gù?r� mm . Steps 6d to 6f then ensure that > is
assigned to the same sets as G in both applications of SP2.
If >�?ù� mm when the first path to > emerges from PQ, then the correct-
ness of SP2 implies that when > is attached via ä , that �HGB"$>4� and � GB" >4�
both appear in �=üm . Steps 6d to 6f ensure that G and > are assigned to
� mT , and G and > are assigned to � mm . Nodes G , G , and > all satisfy the
conditions of the lemma, and therefore by the inductive hypothesis we
have G�?)� mT , G)?)�

om , and >l?)� om . As a result, the only way > can
be attached to � üo is via G , assigned to � mT . This completes the proof of
this case, and the lemma. �

E. Heuristics for Coaxing

Lemma 7 provides us an important guarantee regarding the limita-
tions of the effect of edge weight adjustments upon the structure of the
shortest path tree. It tells us that the fewer the edges whose weights are
adjusted, the greater the portion of the tree whose structure is undis-
turbed. This is a particularly important consideration when attempting
to improve upon a shortest path tree which already has many desirable
characteristics.

Consider the effect of adjusting the weights sB�tEp� and sB�tEp� of edges
Eq�g�HGB"�>4� and Eq�½� GB" >4� by adding to them the amount]´ �& . If]
is chosen to be larger than the sum of the original edge weights of 5 , on
the next application of SP2, E will not be inserted into the shortest path
tree unless no other path of unadjusted edges exists to > . The following
three heuristics all adjust the weights of only a single pair of edges, by
a constant amount] .

1. Given G�?�� mm and >�?�� mT , we want G�?i� oT .
This situation can arise when > corresponds to an and-node in 5 , as
discussed earlier in

�
III-F. Interpreting � mT and � mm as temporal divi-

sions in which � mT events occur before � mm events, the and-node > from
the earlier division would appear to depend on another event occurring
at the later division. Moving G to � oT in a second application of SP2
would resolve this anomaly.
If the shortest path length to G is no more than that of G , and if the
parent M ^ of G in �=üm is not paired with that of G , G can be coaxed away
from � mT and into � o m by increasing the distance from G to M ^ . This
adjustment of the weights of � M ^ " Ge� and its paired edge � M ^ "�Ge� does
not affect the distance from ú to G , since M ^ is not the parent of G in
� üm .
On the other hand, if G is unreachable from ú , if the shortest path length
to G is already greater than that of G , or if the parent of G in � üm is
paired with that of G , the weight adjustment described above will be
ineffective. In the first two cases, G is attached to � üm before G , yet
nevertheless was assigned to � mm . Increasing the distance to G will not
alter this assignment of G . In the third case, increasing the distance to
G in this way increases the distance to G by the same amount. Instead,
one way in which G can be encouraged to join � oT is to increase the
weight of the unique cut edge �H�e"I�W� in the shortest path leading to G
in �=üm . By adding] to the weight of �H�b"I�n� , the second application of
SP2 is guaranteed to find a different, unadjusted path to G if such a path
exists. This path, if shorter than that to G , may allow G to be assigned
to � oT instead of G . Note that the weight of � ��" �§� must be adjusted by
the same amount.
Heuristic 1: Let �HGD"�>4� be an edge of : ü such that Gi?�� mm and >x?�� mT .
Let �H�b"I�W� be the unique cut edge on the path to G in � üm , and let M ^ andM ^ be the parents of G and G in � üm , respectively (let M ^ �O_ if G is
not reachable from ú). To encourage G to be assigned to � oT in the next
application of SP2, then:c If FHG G�IÔ'`FHG GaI and M ^ |� M ^ after the execution of SP2, adjust
weights s o ��� M ^ " Ge��� . s o ��� M ^ "�Gb��� . s m ��� M ^ " G��I���S] .c If FHG G�I= bFHG GaI or Mc^ � M ^ after the execution of SP2, adjust
weights sbo¢��� ��" �W��� . sbo¢���H�e"¾�W��� . sDm²���H�b"¾�W�����S] .
2. Given G�?�� mm and >�?�� mT , we want >�?�� om .
Another way of resolving the anomaly mentioned above is to coax >
into entering � o m .
If the shortest path length to > is no less than that of > (including the
case where > is unreachable from ú), and if the parent M Ü of > in � üm is
not paired with that of > , > can be coaxed away from � mT and into � o m by
increasing the distance from M Ü to > . This adjustment of the weights
of � M Ü "�>4� and its paired edge � M Ü " >4� does not affect the distance from
ú to > , since M Ü is not the parent of > in � üm .
On the other hand, if the shortest path length to > is already less than
that of > , or if the parent of > in � üm is paired with that of > , the weight
adjustment described above will be ineffective. In the former case, > is
attached to � üm before > , yet nevertheless was assigned to � mm . Increas-

HOULE, MENZIES, POWELL: FAST SEARCH FOR TEMPORAL PROPERTIES; SUBMITTED TO IEEE TRANS. ON SE, February 25, 2002 13

ing the distance to > will not alter this assignment of > . In the latter
case, increasing the distance to > in this way increases the distance to
> by the same amount. Instead, one way in which > can be encouraged
to join � o m is to increase the weight of the unique cut edge � �b" �W� in the
shortest path leading to > in ��üm . By adding] to the weight of � �b" �n� ,
the second application of SP2 is guaranteed to find a different, unad-
justed path to > if such a path exists. This path, if shorter than that to > ,
may allow > to be assigned to � oT instead of > . Note that the weight of
�H�b"��W� must be adjusted by the same amount.
Heuristic 2: Let �HGD"�>4� be an edge of :(ü such that Gi?�� mm and >x?�� mT .
Let � �b" �W� be the unique cut edge on the path to > in � üm , and let M Ü andM Ü be the parents of > and > in � üm , respectively (let M Ü �b_ if > is
not reachable from ú). To encourage > to be assigned to � o m in the next
application of SP2, then:c If FHG >5IP¥9FHG >JI and M Ü |� M Ü after the execution of SP2, adjust
weights s o ��� M Ü "I>4�I� . s o ��� M Ü " >4��� . s m ��� M Ü "�>4���e�S] .c If FHG >JI(�dFHG >JI or M Ü � M Ü after the execution of SP2, adjust
weights sbo¢��� ��" �W��� . sbo¢���H�e"¾�W��� . sDm²���H�b"¾�W�����S] .
3. Given �HGB"I>4�Q?��=üm , we want �HGB"$>4�P|?��=üo .
This situation can arise when G corresponds to an and-node in 5 . Al-
though G may have a valid interpretation within the graph, the paired
node G generally will not. If G were a leaf of the shortest path tree �(üo ,
no other node of �=üo would depend from G , relieving the need to inter-
pret G . The action to be taken here is straightforward: by increasing the
weight of �HGD"�>4� and its paired edge � GD" >4� , > will be connected to � üo
through some unadjusted path whenever such a path exists. Increasing
the weights of all children of G in ��üm would strongly encourage G to
become a leaf of � üo .
Heuristic 3: Let �HGD"$>4� be an edge of : ü . To discourage > from be-
ing the child of G in � o m after the next application of SP2, then adjust
weights sbo¢��� GB" >4��� . sbop���HGB"�>4��� . sDmW���HGB"I>4���D�e] .

Each of the heuristics outlined above adjusts the edge weights of
a single pair (call it �H{B"�ð3� and � {�" ð4��� . Lemma 7 implies that this
reweighting can affect only the portion of � üm below ð and ð . In par-
ticular, some of the nodes in these portions of ��üm may find themselves
migrating from � mm to � oT or from � mT to � o m . Although this migration
may resolve anomalies of the kind discussed here, one should be aware
that it has the potential to create them as well. For this reason, it is best
to minimize the number of edge weight adjustments.

HOULE, MENZIES, POWELL: FAST SEARCH FOR TEMPORAL PROPERTIES; SUBMITTED TO IEEE TRANS. ON SE, February 25, 2002 i

CHANGES SINCE THE ICSE 2001 VERSION

Here, we describe how this paper changed in light of the comments
of the ICSE 2001 reviewers.

The major changes are:c This paper is twice the length of the ICSE 2001 version and contains
a formal proof of correctness for our algorithmc The ICSE 2001 version of this work had a ”two time tick” restriction
on the temporal queries. This paper removes that restriction.c The ICSE 2001’s claim to generality was based on an analysis of
coverage of the Dwyer corpus of temporal logic patterns. The removal
of the ”two time tick” restriction makes that analysis redundant. Hence,
it was removed.

This paper incorporates many of the changes proposed by the ICSE
2001 reviewers: see below.
1. Reviewer 1: made many positive comments and made some editing
suggestions- which we applied.
2. Reviewer 2: “How much of a system’s requirements can be ex-
pressed in topoi diagrams (clearly some of the requirements can be)?”.
This is addressed in the introduction when we say:

Specifically, the systems model must be expressed as topos diagrams.
Topoi are not very expressive, and exclude statements such as first-
order assertions, iterations, sub-routine calls, and assignments. Due
to these language limitations, our approach is not suited to domains
that need the excluded statements, such as complex protocols seen in
concurrent processes.
These restrictions are not fatal to the modelling process, at least at the
requirements stage. We will show via an example that topos diagrams
are sufficient to represent a wide range of diagrams seen in certain ap-
proaches to requirements engineering and recording design rationales.
Hence, when we say that this approach is practical and useful, we really
mean practical and useful for early life cycle requirements discussions
only.
3. Reviewer 2: “What is the connection of this work to flow graph anal-
ysis?”. This connection was unknown to us in the earlier version and is
discussed in

�
IV-C.1.

4. Reviewer 3: This reviewer was concerned that the presentation of
our techniques was being over-sold, that we were claiming more than
we should regarding the power of our tools. We agree- the ICSE 2001
paper confused logical ‘proofs’ with ‘counter examples’. This draft
removes that confusion.
5. Reviewer 3: The ICSE 2001 version argued for the generality of this
technique via a review of the Dwyer corpus of temporal logic patterns.
Reviewer 3 doubted this analysis but this issue is now redundant. The
ICSE 2001’s claim to generality was based on an analysis of coverage
of the Dwyer corpus of temporal logic patterns. The removal of the
‘two time tick’ restriction makes that analysis redundant. Hence, it was
removed.
6. Reviewer 3: “Why would subroutine calls be of concern at the re-
quirements stage?” They should not- we only mention these to distin-
guish our topos approach from systems like SPIN which can handle
sub-routines.
7. Reviewer 3: “How is ‘rigorous requirements engineering’ related to
’formally checking a system by formal first-order query’?”. By rigor-
ous RE, we mean that formal testing is applied early in the lifecycle.
As to ‘formal first-order queries’:c Various researchers have explored lightweight formal methods us-
ing temporal logic model checkers.c Cost-benefit studies of these approaches include Lowrey, Boyd &
Kulkarni [34], who argue that a single test is like a ground proposi-
tional query while a formal query is like a first-order sentence with
non-ground variables that can range over a larger set of values.c Hence, a single formal query can substitute for many tests and can
increase our rigor in RE
8. Reviewer 3: “Why is the freezing of requirements (applying the de-

velopment brake) a result of costs? ” A full formal analysis is expen-
sive and, once completed, may be too costly to repeat. That is, any
changes in the requirements found after the formal analysis may be
ignored (since to do otherwise can be too expensive).
9. Reviewer 3: “these terms seem interchangeable: testing require-
ments, formal requirements analysis, rigorous requirements engineer-
ing” Yes. we have removed the repeated terms.
10. Reviewer 3: “A reference to topoi diagrams would be useful.”. The
reference [4] has been added to page one.
11. Reviewer 3: “It sounds as if the topoi diagrams are used for both the
properties and the systems model; and then later the two models seem
to be mixed up, used interchangeably.” Yes- the text now distinguishes
between compiling a system description into a topos and compiling a
temporal logic properties model into set memberships of parts of a time
series generated from that topos, see

�
III-C.

12. Reviewer 3: “is a query a property in the properties model”. No- a
query is a test for the entire properties model.
13. Reviewer 3: “The claims about topoi graphs being quickly gen-
erated and systems modelling costs being low is only justified based
on the authors’ experience. It would at least be help to state their ex-
perience doing what, especially since this claim underlies the entire
methods’ effectiveness.” Relevant references ([4] and Menzies [7]) are
offered in the introduction.
14. Reviewer 3: “Where in the topoi Figures are the strengths which
are continuous numbers.”. In all our topos examples, the strengths de-
fault to 1 for each edge. The repeated assignment of 1 to each edge is
not shown since this would confuse the reader.
15. Reviewer 3: “Figure 4 is totally unreadable”. Yes- and that is our
point. Real world topoi such as Figure 4 soon become too complicated
to read manually. Automatic tools are required to implement this pro-
cess.
16. Reviewer 3: “The authors had a pre-experimental concern that in-
formal topoi are so under-defined that anything could be inferred; they
state that this turns out not to always be the case therefore implying
that sometimes it is the case. How good is this?” The experience of
[7] is that, often, it is good enough. A similar belief that they are good
enough (that is, under-defined models can still be used to make interest-
ing conclusions) is the base premise of the qualitative reasoning com-
munity [12, 35–37]. A similar endorsement of under-defined theories
is offered by researchers discussing the merits of lightweight notations
for testing software (e.g. [38, chp 18] [3]).
17. Reviewer 3: “Are vertices equivalent to variables since they can be
assigned values?” No- if a variable can be assigned N distinct values,
then that would imply N vertices
18. Reviewer 3: “Who does the coaxing by applying edge weights to
a topoi? This seems extremely burdensome.” The appendix and the
source code of RAPTURE (in Figure 8) makes it clear that it is an
automatic process.
19. Reviewer 3: “It’s not clear what the plateau reached after 10 coaxes
barely changed in up to 100 coaxes means; isn’t a plateau usually set
and processing stops when it is reached?” That is the strategy that
should be applied at runtime. However, to test if coaxing is missing
anything, what we did here is to compare the goals found after a small
number of coaxes to the the goals found after a very very large number
of coaxes.
20. Reviewer 3: “Is it possible to tell in advance whether requirements
can be mapped into symmetric topoi?” Yes- if the model can be ab-
stracted to a propositional theory (that is, two assignments per vari-
able).
21. Reviewer 4: “Most of the technical meat of the paper is glossed
over. The SP2 algorithm is summarized, but relatively easy to follow.
The details are apparently presented in a technical report and another
seemingly unpublished report, rather than presented in this paper.” The
SP2 algorithm is presented in full in this paper.

HOULE, MENZIES, POWELL: FAST SEARCH FOR TEMPORAL PROPERTIES; SUBMITTED TO IEEE TRANS. ON SE, February 25, 2002 ii

22. Reviewer 4: “One has to question whether a topoi whose analysis
needs to be coaxed is cost effective. Automated analysis works best on
models that are difficult to reason about manually (e.g., model checking
a concurrent models, where it is difficult for a human to reason about
the global state of the system). Topos diagrams are a global model of
simple relations. While I can see the benefit of having an automated
analyzer push a flow through the graph, this benefit deteriorates if the
human analyzer has to play with assigning weights to edges in order
to force the analyzer to consider feasible paths. Wouldn’t it be easier,
more cost effective, and no less error-prone to have the human analyzer
inspect the Topoi?” Two comments here:c Coaxing is an automatic process- this was NOT clear in the
ICSE2001 paper but is herec As to manually inspecting the topos, we repeat our remarks at the
start of

�
II-C:

Topoi seem quite simple, but often defy manual analysis, possibly due
to their over-constrained and over-generalized nature. For example,
Menzies’ topos tester [7] found behaviors in very small topoi (Fig-
ure 2.iv) that had not been discovered even after days of manual analy-
sis. The difficulty in analyzing topoi worsens as the topoi become more
complex, as often happens when statements of gradual influence are
collected from more than one stakeholder.
23. Reviewer 4: “The paper should reference the work of Jim Corbett,
who models requirements as flow graphs (not unlike Topoi graphs),
but transforms the graph and the property into a set of equations and
inequalities and looks for an integer solution (if there is none, then the
system never violates the property).” Done- see

�
IV-C.1.

