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Abstract

Software engineering (SE) truisms capture broadly-
applicable principles of software construction. The trouble
with truisms is that such general principles may not apply
in specific cases. This paper tests the specificity of two SE
truisms: (a) increasing software process level is a desirable
goal; and (b) it is best to remove errors during the early
parts of a software lifecycle.

Our tests are based on two well-established SE models:
(1) Boehm et.al.’s COCOMO II cost estimation model; and
(2) Raffo’s discrete event software process model of a soft-
ware project life cycle. After extensive simulations of these
models, the TAR2 treatment learner was applied to find the
model parameters that most improved the potential perfor-
mance of the real-world systems being modelled.

The case studies presented here showed that these tru-
isms are clearly sub-optimal for certain projects since other
factors proved to be far more critical. Hence, we advise
against truism-based process improvement. This paper of-
fers a general alternative framework for model-based as-
sessment of methods to improve software quality: modelling
+ validation + simulation + sensitivity. That is, after record-
ing what is known in a model, that model should be vali-
dated, explored using simulations, then summarized to find
the key factors that most improve model behavior.

1 Introduction

What is the best method for improving software qual-
ity? Software engineering (SE) research has generated
a bewildering range of tools for improving quality. The
list of techniques is very, very long and includes model

0ASE, 2002, http://ase.cs.ucl.ac.uk/cfp.html

checking [9], static code analysis [21], runtime verifica-
tion [20], lightweight languages for requirements engineer-
ing [36], model-based methods for optimizing software pro-
cesses [24], just to mention a few.

How can an industrial practitioner hope to choose the
right tool from the bewildering set of available alternatives?
The SE literature contains many truisms that an industrial
practitioner might use to select the right tool. For example,

Truism 1: It is best to remove errors during the early parts
of a software lifecycle. [36].

Truism 2: Increasing an organization’s software process
level is a desirable goal [3].

If our practitioner believes in the first truism, then they
might investigate Menzies’ lightweight requirements engi-
neering languages [36]. Alternatively, if they believe in the
second truism, they might reject all automatic software en-
gineering methods and just explore software process im-
provement techniques such as CMMi [3].

The problem with truisms is that they may be misleading
for particular projects, or just plain wrong. The literature is
full of evidence that challenges many SE truisms. For exam-
ple, a dubious truism of visual programming is that “visual
representations are inherently superior to mere textual rep-
resentations”. A review by Menzies suggests that the avail-
able evidence for this claim is hardly conclusive [30]. Other
commonly cited truisms are just as dubious. For example,
despite claims that object-oriented (OO) encapsulation will
reduce error rates in software [37], empirical results suggest
that debugging an OO program is many times harder and
longer than debugging a standard procedural program [19].
In other work, Fenton & Neil [13, 14] offer a scathing cri-
tique of the truism that “pre-release fault rates for software
are a predictor for post-release failures” (as claimed by [10],
amongst others). For the systems described in [15], they



show that software modules that were highly fault-prone
prior to release revealed very few faults after release.

Given this history of failed truisms, do we have any guid-
ance to offer our practitioners trying to select which tool
to apply? One method is to study the inherent properties
of the tools. For example, Lowry et.al. [27] and Menzies
& Cukic [32] contrast the costs and defect detection decay
rates of formal methods, white box testing, and black box
testing. While such an analysis is useful, our belief is that
tool selection must be made on a project-specific basis. This
belief results from the experiments described in this paper.
Using model-based simulations of software processes, we
have identified the changes that most improve the quality of
particular software projects. These changes contradict Tru-
ism One and Truism Two (shown above).

It is neither novel nor interesting to say that particular
cases can contradict general principles. However, two as-
pects of our work are both very novel and very interest-
ing. Firstly, our counter-examples to Truisms One and
Truisms Two were found in the very first case studies we
explored. The ease with which we found these counter-
examples makes us very suspicious of these truisms. Sec-
ondly, when the truisms generated non-optimum advice, we
found we could identify a minimal set of changes that most
improved software projects. Further, using our method,
these minimal recommendations are highly specialized to
the specific software project being studied. Our method is
based on the TAR2 treatment learner, described below.

Given unlimited resources, a software project manager
may elect to implement TAR2’s minimal recommendations
as well as trying (e.g.) earlier detect removal or increas-
ing their software process. However, in the more usual
case of resource-bound software development, software
project managers may find it useful to restrict themselves
to just TAR2’s recommendations since these are the mini-
mum changes that most improve their projects.

The rest of this paper is structured as follows. Section
Two describes our general methods for testing truisms and
finding alternate key factors if the truisms fail. That ap-
proach can be summarized as follows:

decisions = modelling + validation +simulations + sensitivity

That is, after recording what is known in a model, that
model should be validated, explored using simulations, then
summarized to find the key factors that most improve model
behavior. Sections Three and Four apply this method to
Truism One and Truism Two. Methods for improving
software projects were found that were demonstrably better
than the advice offered by the truisms. Finally, in Section
Five, we discuss how this kind of analysis might be applied
to assessing the relative merits of (e.g.) runtime verification
vs model checking.

Before beginning, it is important to stress that it would
be a mistake to view our results as new truisms that replace

existing truisms. For example, Section Three is not an ar-
gument that there is never any value in software process
improvement. Similarly, Section Four is not an argument
that there is never any value in early lifecycle error removal.
Early lifecycle defect removal and increasing software pro-
cess levels can have significant impact on a project. How-
ever, what our results are saying is that, for the particular
projects studied here, other factors were more significant.
Further, these more significant factors could be found very
simply, using treatment learning.

2 Decisions Using Model-Based Simulations

This section discusses general principles for
modelling + validation + simulations + sensitivity.

Many general tools and methodologies exist for mod-
elling such as distributed agent-based simulations [8],
discrete-event simulation [18, 25, 26]1, continuous simu-
lation (also called system dynamics) [1, 45], state-based
simulation (which includes petri net and data flow ap-
proaches) [4, 17, 29], logic-based and qualitative-based
methods [5, chapter 20] [23], and rule-based simula-
tions [38]. Note that for software process programming,
elaborate new modelling paradigms may not be required.
For example, the Little-JIL process programming lan-
guage [6, 46] just uses standard programming constructs
such as pre-conditions, post-conditions, exception handlers,
and a top-down decomposition tree showing sub-tasks in-
side tasks.

Simulations can be based on nominal or off-nominal val-
ues. Nominal simulations draw their inputs from known
operational profiles of system inputs [39]. Off-nominal
monte-carlo (also called stochastic) simulations, where in-
puts are selected at random, can check for unanticipated
situations [16]. Stochastic simulation has been extensively
applied to models of software process [42]. It is strange to
report, but examples of execution of Little-JIL are rare (an
interpreter exists for Little-JIL models but examples of its
execution are not mentioned (i.e. in [6, 46]).

In a sensitivity analysis, the key factors that most influ-
ence a model are isolated. Also, recommended settings for
those key factors are generated. We take care to distinguish
sensitivity analysis from traditional optimization methods.
In our experience, the real systems we deal with are so com-
plex that they do not always fit into (e.g.) a linear opti-
mization framework. Studying data grown from simulators
lets us investigate complex, non-linear systems using a va-
riety of data driven distributions. These models can capture
complex feedback and rework loops which are not possible
for traditional optimization methods. Our experience is that
simulation models can look at processes in detail as well as

1See also the http://www.imaginethatinc.com web site.

2



at a high level of abstraction which is where the more an-
alytic models must reside. Finally, simulation models can
capture multiple performance measures not able to be ex-
plored using these optimization formulations. This is not
to say that traditional optimization models are not useful.
For certain questions, traditional optimization formulations
provide the best fit for the question that is trying to be an-
swered. However, for many questions, the standard opti-
mization models are not the best choice and something like
treatment learning may be more useful.

2.1 Treatment Learning

Treatment learning is our preferred general method for
multi-dimensional sensitivity analysis [12, 22, 31, 33–35].
Treatment learners find the fewest factors that most influ-
ence a simulation model. In the case of simulations gener-
ated from models of software process, these summaries can
read as advice on how to best optimize a software process.

The TAR2 treatment learning has been successfully ap-
plied either in a single batch mode [22, 33–35], or incre-
mentally in order to encourage a system towards some de-
sired goal [12, 31]. The algorithm makes no assumption
about continuity of variables and hence may succeed where
standard regression and linear optimization may fail. Con-
ceptually, given a set of input attributes and output classi-
fications, the algorithm searches through all combinations
of attribute ranges that are under consideration to find those
which lead to the most desired outputs and the least undesir-
able outputs. This search is clearly intractable since a com-
plete search of all subsets of the input attribute ranges would
take exponential time. TAR2 only works since a linear-
time heuristic scoring mechanism can quickly find which
attribute ranges can be ignored.

As explained in [35], the algorithm is a minimal contrast
set association rule learner with weighted classes. That is,
while standard machine learners find possibly complex de-
scriptions of the classes within a domain, TAR2 finds the
minimal difference between classes (the contrast set). The
algorithm uses a heuristic class weight in order to report the
least change that selects for the most preferred classes.

The standard introductory example for TAR2 (e.g. as
shown in [31]) is the log of golf playing behavior of Fig-
ure 1. This log contains four attributes and 3 classes. TAR2
accesses a score for each class. For a golfer, the classes in
Figure 1 could be scored as none=2 (i.e. worst), some=4,
lots=8 (i.e. best). TAR2 seeks outstanding attribute ranges;
i.e. those that occur far more frequently in the highly scored
classes than in the lower scored classes.

Treatments are formed from subsets of the outstanding
attribute ranges and applied to the example data. Exam-
ples that contradict the proposed treatment are rejected. The
worth of a treatment is assessed by comparing the baseline

outlook temp(oF) humidity windy? class
sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

Figure 1. A log of some golf-playing behavior.

baseline outlook = overcast humidity ≥ 90

0
2
4
6

5 3 6
0
2
4
6

0 0 4
0
2
4
6

3 1 1

LEGEND: none some lots

Figure 2. Treatments that can change golf
playing behavior from the baseline.

class distribution to the treated distribution. For example,
Figure 2 shows TAR2’s analysis of the golf data. The left-
hand-side histogram of Figure 2 shows the baseline class
frequency in Figure 1. Note that in the baseline, we only
play golf lots of times in 6

5+3+6
= 43% of cases. The mid-

dle histogram of Figure 2 shows the best action found by
TAR2: with the restriction that outlook=overcast, then we
play golf lots of times in 100% of cases. The right-hand-
side histogram of Figure 2 shows the worst action found by
TAR2. Such a worst-case scenario can be generated by re-
versing the class scores. This reversal makes TAR2 seek the
worst possible treatment. In the case of our golf example,
with the restriction that humidity ≥ 90 then we play lots of
golf in 1

3+1+1
= 20% of cases. In summary, to maximize

golf playing behavior, we should select a holiday location
with an overcast outlook. While on holidays, we need only
monitor the humidity (not temperature or outlook or wind)
and become alarmed if the humidity increases over 90%.

TAR2’s treatments should be assessed on examples not
seen during training. There are two standard methods for
doing so: n-way cross validation and re-simulation. In the
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former, the training set is divided into N buckets. For each
bucket in turn, a treatment is learned on the other N − 1
buckets then tested on the bucket put aside. A treatment
is deemed stable if it works in the majority of all N turns.
The results of our first case study will be assessed via N-
way cross validation. In a re-simulation study, the treat-
ments recommended by TAR2 are imposed on the simula-
tor. The simulator is then run again. A treatment is deemed
predictive if the predicted distribution is realized in output
of a simulator constrained to TAR2’s proposed treatment.
The results of our second case study will be assessed via
re-simulation.

3 Case Study 1: “Increasing an organizations
software process level is a desirable goal”

In this section, we apply our modelling + validation+
simulation+sensitivity approach to the truism: “increas-
ing software process level is desirable”.

The Software Engineering Institute’s (SEI) capability
maturity model (CMM [40]) categorizes software organi-
zations into one of five process levels. Below CMM5, there
is no use of measurements to optimize a company’s soft-
ware process. Also, below CMM4, there is no systematic
data collection. Lastly, below CMM3, a company’s soft-
ware process is not even written down.

The CMM5 movement has many leaders (e.g. [3]) but
few followers. In 1996, less than 12% of one sample of
certain software organizations were above level 32. Further,
the current industry average seems to be less than CMM23.

In order to assess the merits of increasing software pro-
cess, we applied the formula modelling + validation +
simulation + sensitivity to one NASA project. Eleven
changes to that project were considered, including an in-
crease to the software process level. Counter to the truism
of this section, TAR2 found that the best action included a
low software process level. The rest of this section describes
that study.

3.1 Modelling

Figure 3 shows a NASA software project scored on the
22 parameters of the COCOMO-II software cost estimation
model [2]4. The core intuition of COCOMO-II is that the
effort required to develop software increases exponentially
as that software grows in size; i.e.:

2http://www.telcordia.com/newsroom/mediaclips/
telossource/telesrcanalyst.html

3Personal communication with SEI researchers.
4For a precise definition of these parameters, see http:

//sunset.usc.edu/research/COCOMOII/expert_cocomo/
drivers.html

KC-1
ranges now changes

prec = 0..5 precedentness 0, 1
flex = 0..5 development flexibility 1,

2,
3, 4

1

Scale
drivers

resl = 0..5 architectural analysis or
risk resolution

0,
1, 2

2

team = 0..5 team cohesion 1, 2 2
pmat = 0..5 process maturity 0,

1,
2, 3

3

rely = 0..4 required reliability 4
Product data = 1..4 database size 2
attributes cplx = 0..5 product complexity 4, 5

ruse = 1..5 level of reuse 1,
2, 3

3

docu = 0..4 documentation require-
ments

1,
2, 3

3

time = 2..5 execution time con-
straints

?

Platform
attributes

stor = 2..5 main memory storage 2,
3, 4

2

pvol = 1..4 platform volatility 1
acap = 0..4 analyst capability 1, 2 2
pcap = 0..4 programmer capability 2

Personnel
attributes

pcon = 0..4 programmer continuity 1, 2 2

aexp = 0..4 analyst experience 1, 2
pexp = 0..4 platform experience 2
ltex = 0..4 experience with lan-

guage and tools
1,
2, 3

3

Project tool = 0..4 use of software tools 1, 2
attributes site = 0..5 multi-site development 2

sced = 0..4 time before delivery 0,
1, 2

2

Figure 3. COCOMO-II parameters. Scale
drivers are listed first. The cost drivers are
union of the product, platform, personnel,
and project attributes. Last two columns
show values known within one NASA soft-
ware project.

a ∗

(

KSLOC(1.01+
∑

5

i=1
SFi)

)

∗





17
∏

j=1

EMj





This expression computes person months for a project; i.e.
152 hours of effort (and includes development and manage-
ment hours). In this expression, a is a domain-specific pa-
rameter; KSLOC is estimated directly or computed from
a function point analysis; SFi are the scale drivers (e.g.
drivers such as “have we built this kind of system before?”);
and EMj are the cost drivers (e.g. required level of reliabil-
ity). Figure 3 lists the COCOMO-II scale drivers and cost
drivers. COCOMO-II also defines a similar equation for the
recommended number of person months for the project. We
elected to report the COCOMO-II output expressed as the
number of staff required to get person months of work done
in the recommended number of months:

staff =
person months

months
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rely= rely= rely= rely= rely=
very low nominal high very
low high

sced= very low 0 0 0 1 2
sced= low 0 0 0 0 1
sced= nominal 0 0 0 0 0
sced= high 0 0 0 0 0
sced= very high 0 0 0 0 0

Figure 4. A Madachy table. From [28]. This
table reads as follows. In the exceptional
case of high reliability systems and very tight
schedule pressure (i.e. sced=low or very low
and rely= high or very high), add some incre-
ments to the built-in parameters (increments
shown top-right). Otherwise, in the non-
exceptional case, add nothing to the built-in
parameters.

The column labelled now in Figure 3 shows the current
situation of a particular NASA project. The analysts in-
terviewed for this case study knew some uncertainties ex-
isted in their understanding of this project. Where some-
what uncertain, they used ranges; e.g. it was unclear if
developers had never seen this kind of application before
so prec = {0, 1}. When totally uncertain, they just used
a question mark; e.g. no knowledge about execution time
constraints was available so time =? = {2, 3, 4, 5} where
{2, 3, 4, 5} is the complete range of possible values for
time.

In this study, inputs such as Figure 3 are processed by
the COCOMO-II model as well as the Madachy model
of software project management issues [28]. While the
COCOMO-II model estimates development effort, the
Madachy model outputs a numeric index representing how
concerned an experienced analyst might be about a particu-
lar software project. The model contains 94 tables that im-
plement a context-dependent modification to internal CO-
COMO parameters. Figure 4 operationalizes one of the 94
Madachy heuristics: i.e. software that must be highly re-
liable should not be developed under excessive schedule
pressure. While Madachy calls his work a “risk” model,
his definition is so different to the standard definition of
risk = severity ∗ frequency that we rename it to a “wor-
ries” model.

COCOMO-II assesses process maturity, or pmat, via an
18-point questionnaire that explores the key process areas of
a project. Since most projects score very low on the CMM
scale, COCOMO-II divides CMM1 into two zones. Hence,
the COCOMO-II’s pmat range is {0,1,2,3,4,5} where 0,1
denote the lower and upper half of CMM1 (respectively).
Observe the values for process maturity in Figure 3. Our
analysts said that pmat = {0, 1, 2, 3}; i.e. this particular

project’s process level was less than CMM3.
The column labelled changes in Figure 3 shows eleven

proposed changes to the current situation. Note that it
is proposed to change process level up to COCOMO-II
pmat = 3. The goal of our sensitivity study will be to as-
sess if pmat = 3 is the preferred process level.

3.2 Validation

Before trusting decisions from modelling +
validation + simulation + sensitivity, it is impor-
tant to validate the model. The COCOMO team has
published numerous validation studies of COCOMO
models. For example, in ten trials with data not used during
model tuning, the COCOMO-II effort prediction came
within 25% of the actual effort in 69% (on average) of
cases (this is denoted as PRED(25) = 69) [7]. In other
validation work from the COCOMO team, Madachy has
reported studies [28] with his model and the COCOMO-I
project database. Those studies showed a good correlation
between the Madachy “worries” index and months

KDSI
(where

KDSI is thousands of delivered source lines of code). That
is, the Madachy model’s output is a measure of the danger
that a project will take longer than planned to build.

3.3 Simulation

COCOMO models require an internal table of numeric
values that map (e.g.) pmat = 2 into the effort and schedule
equations. This study used the latest published COCOMO-
II table as shown in [7].

Model inputs were selected at random, 10,000 times,
from the parameter ranges shown in Figure 3’s now column.
In this study, some uncertainty existed in the size estimates
and so the SLOC (source lines of code) estimate was taken
to be 75K, 100K, 125K. Hence, the model was run 30,000
times (10,000 times for each SLOC value).

Model outputs for staff and worries were computed using
COCOMO-II and the Madachy model (respectively). Fig-
ure 5 shows the results as a percentile matrix; i.e. it shows
what percentage of the 30,000 runs falls into a particular
range. The percentiles matrix is color-coded: the darker the
cell, the large the percentage of the runs in that cell. As
might be expected from the large range of possible input
values shown in Figure 3, there is a large variance in the
results.

3.4 Sensitivity

TAR2 was used to find which subset of the proposed
changes had the most impact on the project; i.e. most de-
creased staff levels and the “worries” index. Treatments that
did not include ranges outside of the changes column of
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Worries
Staff 0 7 14 21 28 35 Totals
200
180
160
140
120 1 1 2

100 1 4 1 6

80 1 9 5 1 16

60 14 15 3 32

40 5 29 5 39

20 2 3 5

Totals 7 56 30 13 3 100

Figure 5. Simulation outputs using inputs
specified in Figure 3. Each cell shows the
percentage of the runs that fall into a certain
range.

Worries
Staff 0 7 14 21 28 35 Totals
200
180
160
140
120
100
80
60 23 23

40 11 45 56

20 14 7 21

Totals 25 75 100

Figure 6. Sensitivity results for Figure 5.

Figure 3 were rejected. After exploring all subsets of the
proposed changes, TAR2 found the following treatment:

pmat = 1 ∧ acap = 2 ∧ sced = 2

Further experimentation showed that no other treatment
had a better impact. That is, the best treatment is this case
was a combination of (i) increasing the time to delivery to
100% of the time proposed by the project- i.e. no pres-
sure for an early delivery; (ii) using analysts with a middle-
range of ability (fall between the 45th to 65th percentile);
and (iii) ensuring that the project was at least in the upper-
half of CMM1, but don’t go to CMM process level 2.

This treatment was tested via re-simulation. The input
ranges for pmat,acap,sced were set as above, and the rest of
the inputs were left as before; i.e. able to range over all the
values of Figure 3. The results are shown in Figure 6. When
compared to Figure 5, it can be seen that the proposed treat-
ments greatly reduced the variance in the model’s behavior
while improving the mean values (decreased staffing level
and“worries”).

Note that, contrary to the truism that process level im-

provement is an invaluable method of improving software
development, this particular project needed only a very min-
imal level of CMM process (upper half of CMM1).

4 Case Study 2: “It is best to remove errors
during the early software lifecycle”

In this section, we apply our modelling + validation+
simulation + sensitivity approach to the truism: “It is
best to focus on error removal during early lifecycle”.

Many researchers have predicated their work on the tru-
ism that catching errors during early software lifecycle is
very important. For example, the first author has writ-
ten [36]:

The case for more formality in (early lifecycle)
is overwhelming. Many errors in software can be
traced back to errors in the requirements [43]. Of-
ten, the conception of a system is improved as a
direct result of the discovery of inadequacies in
the current conception. The earlier such inade-
quacies are found, the better, since the cost of re-
moving errors at the earlier stage can be orders
of magnitude cheaper than the cost of removing
errors in the final system [44].

However, as we shall see in the following study, removing
early lifecycle errors for a particular project was not nearly
as important as selection of the inspection methods

4.1 Modelling

In this section we will describe a particular simulation
model tuned to a particular company, as well as the project
and development context of that model. A high-level block
diagram of this model is shown in Figure 7. The model is far
more complex that suggested by Figure 7 since each block
references many variables shared by all other blocks.

This model was originally developed in 1995 [41] and
was subsequently tailored to a specific large-scale develop-
ment project at a leading software development firm with
the following properties:

• A large company with a number of development sites
throughout the world.

• Between 10 and 20 major projects being conducted at
one time at the study site.

• Work scope included world-wide system support of
most of the products being developed at the site (in-
cluding the one being studied). Support professionals
are actually experienced developers who have been as-
signed to correct field detected defects. When these
support professionals have time available, they carry
out limited development tasks.

6



projects
approved

functional
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high-level
design FS inspection

low-level
design
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inspection
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inspection

code
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unit
test

development
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functional
test

unit test
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system
test

field
 support and
maintenance

release to
customers

Figure 7. High-level block diagram of a dis-
crete event model of one company’s software
process.

• The site achieved ISO certification and was assessed at
a Level 2 using a CMM-SPA during the study period.

• The product studied had completed 5 successive major
releases when the study began.

• In each release, major new functionality was added and
substantial revisions of existing functionality occurred.

• At peak development periods the project involved over
70 people.

The software process studied at this company essen-
tially followed a waterfall process model including the ma-
jor phases of functional specification (FS), high-level design
(HLD), low-level design (LLD), coding (CODE), unit test
(UT), functional verification test (FVT), and system veri-
fication test (SVT). Inspections of the functional specifica-
tion, high-level design, low-level design, and code were also
conducted. After SVT and FVT were completed the prod-

uct was released to the public. These phases, as well as a
period devoted to field support and maintenance are cap-
tured by this model. In addition, the process segments for
developing test plans and writing test cases for functional
test and system test were also included.

We developed two models of this process - a state-based
simulation model using the Statemate Magnum tool by i-
Logix 5 and a discrete event model using the Extend simu-
lation language 6. The discrete event model contained 30+
process steps with two levels of hierarchy. The main perfor-
mance measures of development cost, product quality and
project schedule were computed by the model. These per-
formance measures could also be recorded for any individ-
ual process step as desired. Some of the inputs to the sim-
ulation model included productivity rates for various pro-
cesses; the volume of work (i.e. KSLOC); defect detection
and injection rates for all phases; effort allocation percent-
ages across all phases of the project; rework costs across all
phases; parameters for process overlap; the amount / effect
of training provided; and resource constraints.

Actual data were used for model parameters where pos-
sible. For example, inspection data was collected from in-
dividual inspection forms for the two past releases of the
product. Distributions for defect detection rates and inspec-
tion effectiveness where developed from these individual
inspection reports. Also, effort and schedule data were col-
lected from the corporate project management tracking sys-
tem. Lastly, senior developers and project managers were
surveyed and interviewed to obtain values for other project
parameters when hard data were not available.

Models were developed from this data using multiple re-
gression to predict defect rates and task effort. The result
was a model that predicted the three main performance mea-
sures of cost, quality, and schedule. A list of all of the pro-
cess modification supported by the model are too numerous
to list here. Suffice to say that small to medium scope pro-
cess changes could be easily incorporated and tested using
the model.

4.1.1 Inspection Types

For each phase of the modelled process, there was a choice
of either having one of four inspection types; e.g. none,
or a full fagan, or a baseline inspection, or a walk through.
These terms are explained below.

A full fagan inspection [11] is a well-researched manual
inspection method. Such inspections are precisely defined,
including a seven step process plus pre-determined roles for
inspection participants. Fagan inspections can find many

5Statemate and I-Logix are registered trademarks r of I-Logix Inc. (3
Riverside Drive; Andover, Massachusetts 01810 USA).

6Extend and Imagine That are registered trademarks r of Imagine
That, Inc. (6830 Via Del Oro, Suite 230, San Jose, California, 95119
USA).
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errors in a software product. For example, for the company
studied here, the defect detection capability7 of their full
Fagan inspections was TR(0.35, 0.50, 0.65)8. In this study,
a full Fagan inspection used between 4 and 6 staff, plus the
author of the artifact being inspected.

A baseline inspection was a continuation of current prac-
tice at the company under study. The baseline inspection
at this company was essentially a poorly performed Fagan
inspection, The distinction between a proper Fagan inspec-
tion and the baseline is that staff would receive new train-
ing, checklists and support in order to significantly improve
the effectiveness of the inspections. The data showed that
baseline inspections had varying defect detection capabili-
ties ranging from a minimum of 0.13, a maximum of 0.30
and an average of 0.21 (these figures were obtained from
actual inspection records).

Walk through inspections were conducted by one by the
author of the artifact being inspected in a relatively informal
atmosphere. Process experts estimated the amount of time
and defect detection capability for this type of inspection.
Those estimates were TR(0.07, 0.15, 0.23).

4.1.2 Summarizing Model Output

The outputs of the model are assessed via a multi-attribute
utility function

utility = 40 ∗ (14 − quality) +

320 ∗ (70 − expense) +

640 ∗ (24 − duration) (1)

where quality, expense and duration are defined as follows.
Quality is the number of major defects (i.e. severity 1 and
2) estimated to remain in the product when released to cus-
tomers. Expense is the number of person-months of effort
used to perform the work on the project and to implement
the changes to the process that were studied. Duration is
the number of calendar months for the project from the be-
ginning of functional specification until the product was re-
leased to customers.

The justification for this style of utility function is dis-
cussed in detail in [41]. In summary, this function was
created after extensive debriefing of the business users who
funded the development of this model.

4.2 Validation

The baseline simulation model of the lifecycle develop-
ment process seen in Figure 7 was validated in a number
of ways. The most important of which were as follows. In

7Defect detection capability is the percentage of defects that are latent
in the artifact that is being inspected that are detected.

8TR(a, b, c) denotes a triangular distribution with minimum, mode,
mean of a, b, c respectively.
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Figure 8. Sorted utilities generated in case
study 2.

face validity studies, process diagrams, model inputs, model
parameters and outputs were reviewed by members of the
software engineering process group as well as senior devel-
opers and managers for their fidelity to the actual. In output
validity studies, the model was used to accurately predict
the performance of several past releases of the project. Fi-
nally, in special case studies, the model was used to pre-
dict unanticipated special cases. Specifically, when predict-
ing the impact of developing overly complex functionality,
the model predicted that development would take approxi-
mately double the normal development schedule. This re-
sult was not accepted initially by management as it was too
long, however, upon further investigation it was found that
the model predictions corresponded quite accurately with
this company’s actual experience.

4.3 Simulation

The simulation model described above contains four
phases of development and four inspection types at each
phase. The four phases were functional specification (FS);
high level design (HLD); low level design (LLD); and cod-
ing (CODE). The four inspection types were full Fagan,
baseline, walk through, and none. This results in 44 dif-
ferent configurations. Each configuration was executed 50
times, resulting in 50∗44 = 12800 runs. Each run was sum-
marized using Equation 1. The utilities generated by this
method are shown sorted as the baseline plot of Figure 8.
Note the huge range of output values: 5,000 to 15,000.

4.4 Sensitivity

TAR2 was used to explore the simulation data. The best
treatment found was to use the following configuration:
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• No functional specifications inspections;
• Baseline inspections for high level design; i.e. no

change from current practice;
• Full Fagan for low level design and code reviews.

Further experimentation showed that no larger treatment
had a greater impact. That is, other factors in the Figure 7
model were not as influential as the selection of inspection
type. Given this configuration, TAR2 predicted the distribu-
tion of utility values seen as the best plot of Figure 8. When
compared to the baseline plot, we see that this treatment re-
sults in a significant improvement in model behavior. Also,
the variance in the utilities has been greatly reduced.

This treatment was assessed via 10-way cross validation.
The best plot of Figure 8 was observed to be the average
improvement seen under cross validation.

Note that contrary to the truism that early lifecycle de-
tection and error removal is valuable, this particular project
was most impacted by spending less effort on early lifecycle
inspections and more effort on late lifecycle inspections.

5 Discussion

Opponents of our approach might argue that it is not as
simple as it appears. For example, our approach needs a
model of the software project and building such models can
be a non-trivial task. There are two replies to this objec-
tion. Firstly, our approach does not always require elaborate
modelling. For example, the model used in Section Three
was an off-the-shelf open-source model; i.e. it did not re-
quire any effort to develop. Hence, our recommendation
is that if resources permit, then detailed models should be
built. Otherwise, public domain models can suffice- at least
for an initial study. Secondly, this work shows that truism-
based changes to software processes may not achieve the
benefits they promise. The extra modelling cost required by
our method must be compared to the cost of designing and
implementing useless process changes that do not deliver
the promised benefits.

Our paradigm of decisions = modelling +
validation+simulations+sensitivity gives us the abil-
ity to examine the conditions under which the performance
of a given system may be dramatically improved. Moreover,
this approach provides prescriptive guidance by identifying
the ranges to which various input parameters (such as in-
spection efficiency and the like) much be moved in order
to achieve these desired levels of performance. Ideally, we
would like to extend the current study to assessing standard
automated software engineering methods.

For example, in the following scenario we would be
able to assess methods such as runtime verification, model
checking, or static analysis:

• In a particular project, it is determined that a particular

range of defect detection in source code is essential for
most improving overall software quality.

• It is determined that range is too high for manual meth-
ods such as Fagan inspections.

• Using historical data, it is possible to select the au-
tomated software engineering method(s) that achieves
the target defect detection range.

• The selected automated software engineering methods
are assessed by checking which is cheapest to deploy
in the current project.

Note that this study would require information on the
detect detection capability of the different automatic soft-
ware engineering tools. To the best of our knowledge, such
information is unavailable. Hence, at this time, the above
scenario can’t yet be performed.
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