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Abstract. A “stranger agent” is an agent you did not build but may need to work
with. Such strangers may come with a certificate saying “I have been tested, trust
me”. In the special case of nondeterministic agents built via FSMs, the level to
which we can trust this certificate can be determined via a simple summary of
topological features of the agent.

1 Introduction

A stranger is someone that you don’t know.
Most strangers will not try to harm you,
but some strangers are dangerous,
even if they dress nice or look friendly.
Never take rides, candy, gifts, or money from strangers.
It's okay to say “NO THANK YOU!
— “Stranger Danger™
Two major trends in software engineering is the increased used of COTS (commercial-
off-the-shelf) products and decentralized processing. In the near future, applications that
work via the coordinated effort of many components, most of which we don'’t build our-
selves but buy (or hire) from others. Can we trust ssithnger agentso deliver the
functionality we require?
To make this analysis interesting, we make five assumptions:

Nondeterminacy: The stranger agents may be nondeterministic. For example, agents
conduct searches of complicated spaces may use heuristics to direct their process-
ing. These heuristics may use random choice to (e.g.) break ties within the reason-
ing.

Safety: Somewhere within our collection of collaborating agents is a safety critical
agent we are very concerned about. This assumption motivates us to make as de-
tailed an analysis as possible of stranger agents.

Certified: Each new agent in our community arrives with a certificate saying “I have
been thoroughly tested” (imagine the firm handshake of the smiling used-car sales-
man). If we believe that certificate, then we might test other agents in our commu-
nity before testing this agent.
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Benevolence:The agents we are assessing are not deliberately malicious agents. Our
goal in assessing stranger agents is to check that the benevolent author of some
other agent did not inadvertently miss something during their testing.

Need lightweight assessmentlf the agents are COTS products, we must assume that
they are true strangers; i.e. we can't examine them in great detail since such an
examination may violate corporate confidentiality. Hence, any assessment we make
of agent must be Bghtweightassessment that does not require or reveal specifics
of the internal of an agent.

How suspicious should we be of nondeterministic certified benevolent agents which we
can’'t examine in detail and which are participating in an community of agents contain-
ing a safety critical agent? Can we assess our level of doubt? Is possible to assess how
hard or easy it is to test a nondeterministic agent and, therefore, how much or little
we should believe in those certificates? And can all the above be dorghtvaeight
manner so as to not intrude on the privacy of our agents?

While in the general case this assessment is difficult, for one definition of “testa-
bility” and for nondeterministic agents constructed from communicating finite state
machines FSMs, we show here that that the assessment is simple. Further, since the
assessment just relies on high-level summaries of FSM topologyightsveightin the
above sense of the term.

The interesting point of this analysis is that, according to classical software reliabil-
ity theory, it is impossible. For example Nancy Leveson says that “nondeterminism is
the enemy of reliability” [5]. We must disagree. Like it or not, future software systems
will be based on collaborations of distributed units, each with their own style of reason-
ing which may include nondeterministic inference. We demonstrate in this paper that
we need not necessarily fear this future since nondeterministic agents can be tested and
the probability that those tests will reveal errors can be determined from the topology
of the agents.

The rest of this paper is structured as follows. After defining FSMs, we describe
LURCH1, ournondeterministic simulatofT his is followed by a definition afestability
used for our study. We next describenadel mutatothat can generate many FSMs and
the TAR2treatment learnethat found the topological features of the FSMs that makes
them more or less testable.

2 FSMs

Our analysis assumes agents are implemented or can be modelled as FSMs. We there-
fore start by defining an FSM.
An FSM has the following features:
— Each FSMM € S'is a3-tuple(Q, X, 6).
— @ is afinite set of states.
— Y is afinite set of input/output symbols.
—60:Q x B — @ x B,whereB is a set of zero or more symbols frol is the
transition function.



S = {Ma, M5}
Ma =

B2/- Al/- 4 =(Qa, %a,04)
Qa = {Al, A2}

Y4 = {m, B2}, etc.

Fig. 1. A system of communicating FSMs (“m” is a message passed between the machines).

Figure 1 shows a very simple communicating FSM model. States are indicated by

labelled ovals, and edges represent transitions that are triggered by input and that re-
sult in output. Edges are labelleidput / output An important distinction in Figure 1

is ebtweenconsumablegnd non-consumablesA transition triggered by a message
consumeshe message, so that it is no longer able to trigger another. But states are un-
affected by transitions they trigger; they are good for an arbitrary number of transitions.

1.
2.

3

FSMs can be characterized via the following parameters:

The number of individual finite-state machines in the system. Figure 1 has two.
The number of states per finite-state machine. Figure 1 has two states per mission
(true and false).

. The number of transitions per machine. Figure 1 has two transitions per machine.
. The number of inputs per transition that are states in other machines. Figure 1 has

two such inputs: A2, B2).

. The number of uniqueonsumablenessages that can be passed between machines.

Figure 1 has one such message:

. The number of inputs per transition that are consumable messages. Figure 1 uses

mas input in one transition.

. The number of outputs per transition that are consumable messages. In Figure 1,

appears as an output in one transition.

Nondeterminism

To model nondeterminism in this approach, we will assume that the LURCH1 inference
engine is being used to process the FSMs. To use LURCH1, models in different repre-
sentations are partially evaluated into variant of a directed and-or graph. Conceptually,
this graph is copied folN time ticks and the outputs generated at tiime 1 become
inputs for timei. At runtime, LURCH1 maintains Bontier for the search. When a node

is popped off the frontier, it is discarded if it contradicts an assertion made at the same
time. Otherwise, the node is added to the list of assertions.

LURCHZ1'’s nondeterministic nature arises from how the search proceeds after a new

assertion is made. If all the pre-conditions of the descendants of the new assertions have



been asserted then these descendants are added to the &batiandom positionAs

a result, what is asserted at each run of LURCHL1 can differ. For example, if the node
for x and—x are both reachable from inputs, they will be added to the frontier in some
random order. Ifc gets popped first, then the nodewill be asserted and the node:

will be blocked. But if the nodex gets popped first, then the node will be believed
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Fig. 2.Random search of AND-OR graphs representing FSM models is effective in finding errors.
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and the node: will be blocked.

The random search of LURCHL1 is theoretically incomplete but, in practice, it is
surprisingly effective. For example, Figure 2 (from Menzies et.al. [8]) shows ten trials
with a LURCHZ1 search over a model of Dekker’s solution to the two-process mutual ex-
clusion problem (the original model comes from Holzmann [4]). The dots represent an
error added to the model and found quickly by random search in all ten trials. LURCH1
is very simple, yet can handle searches much larger than many model checkers. For
example, Figure 3 shows random search results for a very large FSM model. The com-
posite FSM representing all interleavings of the individual machines in the Figure 3
model would require at mo&t65 x 10'7® states. This is well beyond the capability of
model checking technology (*2° states according to [3]).

4 Testability

The claim of this paper is that it is possible to identify agent properties that predict for
“testability”. This section describes our definition of “testability”.

Note theplateaushape of Figure 2 and Figure 3. If some method can increase the
height of that plateau, then that method would have increased the chances the odds of
finding a defect.

This definition of increased “testability” is a reasonable model-based extension of
standard testability definitions. According to the IEEE Glossary of Software Engineer-
ing Terminology [1], testability is defined as “the degree to which a system of compo-
nents facilitates the establishment of test criteria and the performance of tests to deter-
mine whether those criteria have been met”. Voas and Miller [9], and later Bertolino
and Stringini [2] clarify this definitions, arguing that testability is “the probability that
the program will fail under test if it contains at least one fault”. If LURCH1 quickly
reveals many unique reachable nodes in the model quickly and if some of these nodes
contain faulty logic, then those faults must be exposed.

Note that when the search reaches a plateau, there are no guarantees provided about
failure free field operation. But, unvisited nodes in the system model are difficult to
reach in the operational environment too, hence the operational failure probability due
to testable design of the model does not increase.

5 Model Mutator

In the study shown below, a nondeterministic inference process (LURCH1) was run
over 15,000 FSMs generated semi-randomly. The testability of each run was assessed
via the percentage of FSM nodes reached in each run. This section describes how the
15,000 FSMs were generated.

Each FSM had parameter values drawn at random from the following ranges:

1. 2-20 individual FSMs.

2. 4-486 states (states within all within machines).

3. 0-272 transitions per machine.

4. 0-737 transition inputs that are states in other machines.



5. 0—-20 unique consumable messages.
6. 0—647 transition inputs that are consumable messages.
7. 0—719 transition outputs that are consumable messages.
These parameters where selected to ensure that FSMs from real-world specifications
fell within the above ranges (for details of those real-world models, see [8]).
The FSM generation process not truly random. Seaaity checksvere imposed
to block the generation of bizarre FSMs:
— Thecurrent stateandnext statanust come from the machine in which the transition
is defined and must not match.
— Inputs that are states must come frother machines, and none may be mutually
exclusive (the transition could never occur if it required mutually exclusive inputs).
— The set of inputs that are messages from other machines contains no duplicates.
— The set of outputs that are messages to other machines contains no duplicates.

6 Data Mining

Having generated 15,000 outputs, some data mining technology is required to extract
the essential features of all those runs. The data miner used in this paper was the TAR2
treatment learnef6]. This is a non-standard data miner, so we take care to fully intro-
duce it here.

The premise of treatment learning, and the reason why we use it, is that the learnt
theory must beninimal TAR2 was an experiment in generating the essential minimal
differences between classes. To understand the algorithm, consider the log of golf play-
ing behavior seen in Figure 4. In that log, we only platg of golf in ﬁ = 43% of
cases. To improve our game, we might search for conditions that increases our golfing
frequency. Two such conditions are shown in WelEREest of the select statements
in Figure 4. In the case afutlook=overcast , we playlots of golf all the time. In
the case ohumidity < 90, we only playlots of golf in 20% of cases. So one way
to play lots of golf would be to select a vacation location where it was always overcast.
While on holidays, one thing to watch for is the humidity: if it rises over 90%, then our
frequent golf games are threatened.

The tests in th&VHERElause of the select statements in Figure 4 ieeatment
Classes in treatment learning get a score and the learner uses this to assess the class
frequencies resulting frorapplying a treatmen(i.e. using them in AVHERElause).

In normal mode, TAR2 doesontroller learningthat finds a treatment which selects

for better classes and reject worse classes By reversing the scoring function, treatment
learning can also select for the worse classes and reject the better classes. This mode
is calledmonitor learningsince it finds the thing we should most watch for. In the golf
exampleputlook = 'overcast'was the controller antlumidity > 90 was the monitor.

TAR2 automatically explores a very large space of possible treatments. TAR2’s con-
figuration file lets an analyst specify a search for the best treatment using conjunctions
of size 1,2,3,4, etc. Since TAR2's search is elaborate, an analyst can automatically find
thebestandworstpossible situation within a data set. For example, in the golf example,
TAR2 explored all the attribute ranges of Figure 4 to learn thab#ssituation was
outlook =’'overcast'and worst possible situation wasmidity > 90.



TAR2 also comes with &-way cross validatioriool that checks the validity of
a select statement. In this process, a training set is dividedNntmckets. For each
bucket in turn, a treatment is learned on the otNer 1 buckets then tested on the
bucket put aside. A treatment is preferred if istable i.e. works in the majority of all
N turns.

Theoretically, TARZ2 is intractable since there are an exponential number of possible
attribute ranges to explore. TAR2 culls the space of possible attribute ranges using a
heuristicconfidenceImeasure that selects attribute ranges that are more frequent in

outlook temp{F) humidity windy? class

sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none
rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some
sunny 69 70 false lots
sunny 75 70 true lots
overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 920 true lots
overcast 81 75 false lots
input:
SELECT class SELECT class SELECT class
FROM golf FROM golf FROM golf
WHERE WHERE
outlook = 'overcast’ humidity >= 90
output:
none none none lots lots lots none none none
none none some lots some lots
some some lots
lots lots lots
lots lots
6 6 6
4 4 4
distributions: 2 EE_I 2 h 2 h@_-
0 5 3 6 0 0 0 4 0 3 1 1

IegendC] none% som- lots

Fig. 4. Class distributions selected by different conditions.



good classes than in poorer classes (for full details, see [7]). The gsafidencehas
been quite successful: TAR2's theoretically intractable nature has yet to be of practical
concern.

7 Experiments

We now have all the pieces required for our study. The model mutator can generate
many FSMs, LURCHL1 can nondeterministically execute them, and TAR2 can find the
FSM features that change testability (plateau height).

Figure 5 shows a summary of LURCH1 executing over 15,000 semi-randomly gen-
erated models. The top histogram summaritieee-to-plateauresults, e.g.time-to-
plateaufor approximately 375 models was & (1x graph size). The average value
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was about08x graph size. The right side of the plot shows that, for a few models,
nearly 2,500x the size of the graph was processed before a plateau was reached. This
may seem like a lot, but compared to the exponential size of the composite FSM ex-
haustively searched by a model checker, a factor of 2,500 is insignificant. The bot-
tom part of Figure 5 is a histogram summarizing segulelteau heighfor our 15,000
semi-randomly generated models. The average value was @idgutvith a significant
number of models showing much lower plateaus.

The top part of Figure 5 indicates that plateaus were reached quickly for nearly all
models, whether high or low plateaus. So the key distinction, in terms of testability, is
plateau height. We would like to how FSM models yielding high search plateaus are
different from FSM models yielding low search plateaus. Specifically, what ranges of
the attributes listed above (number of machines, number of states, etc.) characterize
the models with high plateaus represented by the right side of the bottom histogram in
Figure 5?

In our first simple experiment we used TAR2 to determine what single attribute,
and what range of that attribute, could most significantly constrain our models to high
plateaus (just like the very simple TAR2 golf example in the previous section, where
we found that restrictingutlookto overcastled to lots of golf). TAR2 suggested the
following treatment: restricstate inputgo its highest range (590-737). To understand
what that means, consider Figure 6, which shows the numistatef inputws. plateau
height (with a dot for each model). On the left, where there arestewe inputswe see
plateau height distributed all the way from ab&0§ to 100%. But further to the right,
where the number dftate inputss high, we see only high plateaus—orstate inputs
exceeds 1,000 we see only plateaus ®@8%. So TAR2's suggested treatment, that we
restrictstate inputgo the highest range, makes sense.

The real power of the TAR2 treatment learning approach is in more complex treat-
ments, which suggest restrictions on multiple attributes. Figure 7 shows a summary of
results from a series of experiments, in which we tried to determine which combinations
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of attribute ranges (each treatment considesgdtributes) are favorable for testability
and which give us very untestable graphs. Surprisingly, the three top parameters are
low for not only highly testable graphs, but also for graphs that are very difficult to test
(the number of finite-state machines and the total number of states are more significant
than the total number of transitions). So if we restrict our sample to simpler models
(fewer machines, fewer states, fewer transitions) the testability results are polarized.
The bottom half of Figure 7 shows which attributes have the greatest affect on testa-
bility, given that the top three are held low. The most significant attribwgtaie inputs,
followed by message inputsndmessage output3o verify the result from TAR2, we
need to make sure that the treatments learned apply generally, not just to the data from
the original experiment. Figure 8 shows a comparison of plateau height (our indicator
of testability) for the original data (left) and a new 10,000 input models (right) gener-
ated using TAR2's recommendation of what treatment most improves plateau height;
ie.

«—— Better Treatments

Machines lowest lowest lowest
(2-4)
States lowest lowest lowest
(4-49)
Transitions low low low
(0-109)
State Inputs high
(443-737)
Messages (not significant)
Message Inputs high
(389-647)
Message Outputs high
(432-719
Worse Treatments—
Machines lowest lowest lowest
(2-4)
States lowest lowest lowest
(4-49)
Transitions lowest lowest lowest
(0-54)
State Inputs lowest
(0-147)
Messages (not significant)
Message Inputs lowest
(0-129)

Message Outputs  lowest
(0-143)

Fig. 7. Best and worst treatments learned by TAR2.
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justed scale that matches the new search d&earch data for input models generated according
plot shown immediately below)—average plateato TAR2's suggestions—average plateau height =
height = 69.39%. 91.34%.

Fig. 8. Comparison of plateau height for original search data (top) and new data based on TAR2's
suggested treatments.

. 2-5 FSMs.
. 4-49 states.
. 0-43 transitions.
. 0—247 transition inputs that are states from other machines.
. 0-10 unique consumable messages.
. 0-229 transition inputs that are consumable messages.
. 0—241 transition outputs that are consumable messages.
Figure 8 shows that we can meet the goal specified in the introduction. It is possible
to learn parameters of an FSM that significantly improve FSM testability. In this case
the improvement was a change in the average plateau height from 69% to 91%.

NO O~ WNPE

8 Discussion

In the case of FSMs via a nondeterministic algorithm and assessed via plateau height,
we have applied our analysis method to automatically learn the features that most effect
FSM testability via model mutators and TAR2.

We believe that this method would generalize to other representations and other def-
initions of testability. The only essential requirement for such a study is the availability
of an automatic oracle of success. With such an oracle available, then mutation plus
treatment learning can find model features that select for successful runs.

Another possibility that arises from this work is that we can identify design pa-
rameters that make our nondeterministic FSM-based ageotsor lesstestable. For
example, given two implementations of the same requirement, we could favor the im-
plementation that results in a more testable system. That is, wees#gn for testability
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even for nondeterministic agents.
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