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Abstract

Traditional methods of generating quality code indica-
tors (e.g. linear regression, decision tree induction) can
be demonstrated to be inappropriate for IV&V purposes.
IV&V is a unique aspect of the software lifecycle, and dif-
ferent methods are necessary to produce quick and accu-
rate results. If quality code indicators could be produced
on a per-project basis, then IV&V could proceed in a more
straight-forward fashion, saving time and money. This arti-
cle presents one case study on just such a project, showing
that by using the proper metrics and machine learning algo-
rithms, quality indicators can be found as early as 3 months
into the IV&V process.

1 Introduction

IV&V refers to an external entity which is responsible
for the verification and validation of software. Often, IV&V
is something which developers scorn; they ask “Why can’t
testing be done in house? We developed the code, can’t
we test it?”. Despite these objections to the IV&V pro-
cess, the available evidence suggests that an independent
review of software can find more errors than developers [1].
It allows a fresh set of eyes to go over a piece of software,
looking for possible bugs and/or logical errors. One of the
great problems with IV&V, however, is its’ resource drain,
in both time and money. By the time a product gets sent to
an IV&V facility, the budget is fixed, and IV&V practition-
ers must struggle to add value to a project within tight bud-
getary constraints. To facilitate this procedure, some gen-
eral guidelines have evolved which dictate how to quickly
identify problematic parts of a system. We are concerned in
this paper with the rapid generation of effective identifiers
using static code metrics.

Static code metricsare measurements of the features of
source code. That is, they are ways of summarizing a seg-
ment of code by certain identifying characteristics. Fig-
ure 1 is a short list of some of the most commonly col-

Metric Type Metric Definiton
McCabe v(G) Cyclomatic Complexity

ev(G) Essential Complexity
iv(G) Design Complexity
LOC Lines of Code

Halstead N Length
V Volume
L Level
D Difficulty
I Intelligent Content
E Effort
B Error Estimate
T Programming Time

Line Count LOCode Lines of Code
LOComment Lines of Comment
LOBlank Lines of Blank
LOCodeAndComment Lines of Code and Comment

Operator/Operand UniqOp Unique Operators
UniqOpnd Unique Operands
TotalOp Total Operators
TotalOpnd Total Operands

Branch BranchCount Total Branch Count
Object-Oriented sum v(G) Sum of Cyclomatic Complexities

avg v(G) Average of Cyclomatic Complexities
max v(G) Maximum Cyclomatic Complexity
max ev(G) Maximum Essential Complexity
NOC Number of Children
Depth Depth within class heirarchy
RFC Response for a Class
WMC Weighted Methods per Class
CBO Coupling Between Objects
LOCM Lack of Cohesion in Methods
Fan-In Number of derivation classes
Dep on Child (Boolean) Dependence on Child

Figure 1. Metric Groups.

lected metrics1. There are many different views on which
metrics actually perform well as error-predictors; some say
that a cyclomatic complexity over 10 is a good indicator,
while others will argue that essential complexity over 4 is
better [14, 9]. Still others insist that the best overall met-
ric is the simplistic LOC (Lines of Code) [18]. Whatever
the argument, though, everyone freely admits that these are
merely guidelines, which may or may not apply to a par-
ticular project. In the ideal case, we would seek indicators
that are specifically applicable to our particular project; a
tailor-made flag for error-prone (or error-free) code.

1For a more complete discussion of some of the various metrics used,
please refer to Appendix A



However, there’s a catch; if indicators are to be tailored
to a particular project, then data must first be collected from
that project. When software arrives at IV&V, it often arrives
without any accompanying error data2; IV&V facilitators
must start from scratch in their search for errors. Therefore,
it is important that the appropriate error indicator be iden-
tified as early as possible. This problem, rapid and early
identification of effective error indicators based on source
code metrics, is what we will study here.

In the course of our investigation, we hypothesized that
two things would occur:

• Procedural metrics will outperform object oriented
metrics (because procedural metrics provide more data
than their object-oriented counterparts; more proce-
dures than classes)

• Less complex learners will stabilize earlier than their
more complex counterparts (simpler learners are less
distracted by irrelevant details)

The remainder of this paper is structured as follows:§2 is
a general overview of the NASA IV&V facility and mission.
§3 is a description of the project which was used during
this study, and§4 is a summary of the various learners that
were used.§5 is a summary of the results of our tests,§6
is a discussion of those results, and§7 are the conclusions
drawn from them.

2 Background Of NASA IV&V

The NASA Independent Verification and Validation
(IV&V) Facility in Fairmont, West Virginia is responsible
for verifying that software developed or acquired to sup-
port NASA missions complies with the stated requirements.
Additionally, the Facility validates that the software is suit-
able for its intended use. In short, the Facility ensures that
the software is being developed properly, and that the right
software is being developed or acquired.

Due to cost constraints, IV&V is generally applied to
software modules which are determined to be most critical
to mission success. While the Facility must always fully
address those mission critical modules, there is a need for a
quick and easy way to identify other modules which are not
as critical, but may be more (or equally) error prone.

As the sole entity with the responsibility for IV&V of all
NASA mission software, the IV&V Facility is in a unique
position to create and maintain a master repository of soft-
ware metrics (the MDP repository). Under this charter, the
IV&V Facility reviews requirements, code, and test results
from NASA’s most critical projects; hence, many of the re-
quired metrics are collected as a matter of course. No other

2The NASA experience is that error data is often only systematically
collected as a result of the IV&V effort
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Figure 2. Distribution of errors: Most modules
have no errors.
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Figure 3. Distribution of LOC: Most modules
are very short.

organization has insight into such a broad range of NASA
projects. This affords the IV&V Facility an unequalled op-
portunity to research not only the early life cycle indicators
of software quality, but other topics as well. Many large cor-
porations have similar software metrics repositories; how-
ever, it is not always in their best interest to release data or
results to the public. In the case of the IV&V Facility, the
objective is to improve NASA’s mission software regard-
less of the source. Sanitized data would be made available
to NASA, industry, and academia to support software devel-
opment and research by other organizations. This is consis-
tent with the IV&V Facilities research vision of ”See more,
learn more, tell more.”

3 The Project

The rest of this paper is dedicated to a case study on one
NASA project (drawn from the MDP respository), which
will be referred to using the moniker KC2. The goal of the
case study is to determine how early in the IV&V process
effective error indicators can be learnt from source code.

KC2 is a C++ program which contains over 3000 mod-
ules.3 521 modules are of interest to us since these modules

3A module, for the purposes of our tests, is the equivalent of a C func-
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were built by NASA developers. The remaining 2500 or so
modules are COTS4 software.

Of those 521 modules, 106 were found to have various
numbers of errors, ranging from 1 to 13. A graphical rep-
resentation of the errors per module and lines of code per
module are presented in Figure 2 and Figure 3, respectively.

The KC2 project arrived at IV&V after 4 years of work
by the developers. Since the project was being integrated
into a larger, active system, IV&V work has continued on it
since its’ arrival. During the course of debugging and test-
ing, various stages of error-data were accumulated. For this
study, we chose to look at error data from 3, 6, 9, and 12
months into the IV&V process. In addition, we also eval-
uated the absolute latest set of error data, entered into the
system in June 2002. Both procedural and object oriented
metrics were collected on the KC2 data set, and both have
been used in the analysis.

4 Methods for learning error indicators

The strengths of the various metrics as error indicators
are assessed by passing the collected data through ama-
chine learner; a piece of software that attempts to linkat-
tribute rangeswith classes. An attribute range is a range
of input values, for instance,v(G) > 10. A class is the
specific instance with which an attribute range is linked; for
instance, in this study, the two classes were “Error” or “No
Error”. For example, a typical machine leaner might reveal
that the object oriented metric (attribute) “Dep on Child =
TRUE” is always associated with an error (class); this, then,
would be a very good indicator to use when checking for
error-prone code. More likely, however, a range of values
will be associated with a specific class, i.e.v(G) > 10 leads
to errors.

The typical method of assessing the value of a discov-
ered relationship (i.e.,v(G) > 10 yields error), is a method
called 10-way cross validation [6, 2]. In this process, the
data is divided up into 10 evenly distributed buckets, and
the machine learner is trained on 9 of the buckets. After
training, the learner is then tested on the remaining bucket.
This process is repeated 9 more times, changing the bucket
which is left out each time. This ensures that the results of
the learner are valid.

In addition to the standard 10-way cross validation test,
we added another assessment criteria that is vital to our
study; specifically, that ofearly stability. Early stability
is the ability of a learner to quickly find an attribute range
which will continue to be useful throughout the IV&V life
of a project. For example, if 3 months of error data has been
collected, and a machine learner predicts thatv(G) > 10 is
a worthwhile indicator, then this conclusion will bestable

tion.
4COTS is an acronym for Commercial Off The Shelf

if this learner continues to find this a useful predictor after
more error data is added. In these particular tests, we will
only define a learner as having reached a stable conclusion
if it predicts thesamemetric as being useful during every
succeeding time increment of testing.

The following learners were the ones used during our
tests.

4.1 Linear Regression & M5Prime

M5Prime is a linear regression, numerical prediction de-
cision tree learner; it requires that the class attribute of a
data set be a number, instead of a nominal value. It then per-
forms a piecewise linear regression analysis, learning one
linear equation for each piece, and produces a decision tree
to pick which piece is relevant.

Linear regression has been used for learning software de-
velopment estimators by Jeffries, et.al. [7]. We believe that
this is the first application of M5Prime to learning software
quality indicators.

4.2 OneR

OneR is a classification learner, which means that it at-
tempts toclassifyexamples according to a known classi-
fication scheme (i.e., error or no-error). OneR is an ex-
tremely simplistic classification leaner; it attempts to find
the one attribute which can most successfully predict for
the class [5]. To the best of our knowledge, OneR has not
been used previously for learning software quality indica-
tors. The pseudo-code for OneR is provided below.

For each attribute,
For each value of the attribute, make a rule as follows:

count how often each class appears
find the most frequent class
make the rule assign that class to this attribute-value

Calculate the error rate of the rules
Choose the rules with the smallest error rate

An example of the output from OneR follows:

V:
< 523.905 => zero
< 609.865 => nonzero
< 937.885 => zero
>= 937.885 => nonzero

In order to read this tree correctly, first look at the top line; it
tells you which attribute the tree refers to, in this caseV(the
halstead volume metric). Next, read each subsequent line
with reference to the attribute, i.e. the second line means:
If V is less than 523.905 in your example, then classify it as
“zero” .
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ORIGINAL:

outlook temp(oF) humidity windy? class
sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

SELECT class FROM original
WHERE outlook = ’overcast’

lots
lots
lots
lots

SELECT class FROM original
WHERE humidity >= 90

none
none
none
some
lots

Figure 4. Attributes that select for golf playing
behavior.

4.3 TAR2

TAR2 assumes thesmall treatment effect: that within a
model, a very small number of variables control most of
the other variables. This small treatment effect has been
reported in many domains, albeit under different names. So
much so that Menzies and Cukic [12, 11] and Menzies and
Singh [13] speculated that small treatments are an emergent
property that will appear in most models.

In models with small treatment sizes, a very fast and
simple sensitivity analysis can be performed by TAR2 as
follows. Firstly, use whatever data is available5 and score
each run (via some automatic oracle). Secondly, rank each
attribute value by comparing their frequency in high scor-
ing runs to their frequency in low scoring runs. In models
with small treatments, a small number of attribute values
should get outstandingly large rankings in this step. Thirdly,
build treatments by combining a small number of attribute
ranges with outstandingly large rankings (a “treatment” is
a conjunction of restrictions on the input values that are
intended to improve the results of subsequent model out-
puts). Fourthly, test those treatments by applying them as
fresh constraints to a new run of a simulator. The treat-
ments “work” if these constraints do improve the output of
simulator. TAR2 automates steps one, two, and three.

It is worth noting that TAR2 does not restrict the analyzer
to predicting for just one class outcome; by modifying the

5If none is available, use monte carlo methods to generate it

baseline outlook = overcast humidity ≥ 90

0
2
4
6

5 3 6
0
2
4
6

0 0 4
0
2
4
6

3 1 1

LEGEND: none some lots

Figure 5. Changes to golf playing behavior
from the baseline.

command line, or a configuration file, you can use TAR2
to select for any possible class. As an example of TAR2
in action, Figure 4 is a log of golf playing behavior, and
Figure 5 are the learnt treatments for predicting for playing
both lots of golf andnone. An example output from TAR2
is show below:

Worth=1.600000
Granularity=4 Promising=1.000000 Useful=1.200000 nChanges=1
Treatment:[outlook=overcast]

none: [ 0 - 0%]
some: [ 0 - 0%]
lots:˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ [ 4 - 100%]

Given this example, which is a selection from a larger
output, you can see that the learnt treatment isout-
look=overcast, and that it selects for4 cases in whichlots
of golf was played.

The newest increment of TAR2 (TAR2.2) contains two
different discretization policies; where the results of these
policies differ, two different treatments can be garnered.
TAR2 has been used to compare Halstead & McCabe met-
rics in predicting for error-prone code before; see [14].

4.4 J4.8

Decision tree learners attempt to find paths which arrive
at a specific class instance. J4.8, specifically, uses a method
called decision tree induction, which is used by many re-
searchers for generating quality code indicators. Figure 6 is
one such decision tree.

In decision tree induction, data is split using a stan-
dard recursive splitting technique, which produces a deci-
sion tree whose leaf nodes contain training examples of one
class [4]. This means that the output of the J4.8 algorithm
is a “decision tree”, garnered from the provided data, which
suggests a path that can be taken in order to arrive at a spe-
cific class instance, i.e. “zero”. J4.8 is a java port of the
C4.5 algorithm [16].

C4.5 uses a heuristicentropy measure of information
content to build its trees. The attribute that offers the largest
information gainis selected as the root of a decision tree.
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what we learnt from old projects

interface errors=yes

interface errors=nodesign
revisions

[0..3]

data
bindings

[4..8]

module
function

>= 9

>= 15

[0..7]

[8..14]

file
manage-

ment

user
interface

process
control

a new
project

Figure 6. This decision tree was automatically learnt using ma-

chine learning techniques [15].

The example set is then divided up according to which ex-
amples do/do not satisfy the test in the root. For each di-
vided example set, the process is then repeated recursively.

The information gain of each attribute is calculated as
follows. A treeC containsp examples of some class andn
examples of other classes. Theinformation requiredfor the
treeC is as follows:

I(p, n) = −
(

p

p + n

)
log2

(
p

p + n

)
−

(
n

p + n

)
log2

(
n

p + n

)

Say that some attributeA has valuesA1, A2, ...Av. If we
selectAi as the root of a new sub-tree withinC, this will
add a sub-treeCi containing those objects inC that haveAi.
We can then define the expected value of the information
required for that tree as the weighted average:

E(A) =
v∑

i=1

(
pi + ni

p + n

)
I(pi, ni)

The information gain of branching onA is therefore:

gain(A) = I(p, n)− E(A)

An example output from J4.8 is shown below:

LOBlank <= 7
| v(G) <= 6 => zero
| v(G) > 6 => nonzero
LOBlank >7 => nonzero

Given an example, you would classify it by following the
tree. For example, if your particular function has attribute
rangesLOBlank = 5 andv(G) = 7, then you would pro-
ceed down theLOBlank <= 7 sub-section of the tree (as
indicated by the leading vertical bar) until you reached the
v(G) > 6 segment; there, you find that you should classify
your example as nonzero (error-prone).

5 Study & Results

Prior to conducting our study, we hypothesized that sev-
eral things would happen:

• Procedural metrics will outperform object oriented
metrics (because procedural metrics provide more data
than their object-oriented counterparts; more proce-
dures than classes)

• Less complex learners, such as OneR and TAR2, will
stabilize earlier than their more complex counterparts
(simpler learners are less distracted by irrelevant de-
tails)

We shall see if these hypothesis held up under light of
our results. The next couple of subsections present the re-
sults of our study, in order of increasingly complex learners.
The column headings are fairly self-explanatory; one that
may need elucidating issuccess rate. With the exception of
TAR2, success rate refers to theaveragesuccess rate of a
10-way cross validation experiment. In the case of TAR2,
success rate isjust the success rate of TAR2 when run on
all the data; the success rate under 10-way cross validation
is provided in a separate column.

We classified our data with a binary classification; if the
example had any errors whatsoever, then it was classified as
nonzero; otherwise, its’ classification would be zero.

5.1 OneR Results

Figure 7 and Figure 8 summarize the results of the OneR
tests. Although OneR was unable to stabilize on the pro-
cedural metrics, itdid produce a stable conclusion for the
object-oriented ones, stabilizing in just 3 months from the
projects inception at IV&V.

5.2 TAR2

Early in this article, we noted that TAR2 can predict
for any of the provided classes; in this particular test, two
classes existed: error, or no error. In addition, we also men-
tioned that TAR2 contains two different discretization poli-
cies. Where the results of these policies differed, one chart
is shown for each result. Figure 9 through Figure 14 sum-
marize the results of the TAR2 tests.
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Sucess
Period Tree Rate
Nov V: 84%
1998 < 523.905 => zero

< 609.865 => nonzero
< 937.885 => zero
≥ 937.885 => nonzero

Feb V: 81%
1999 < 545.345 => zero

< 609.865 => nonzero
< 739.745 => zero
< 929.6 => nonzero
< 1009.1 => zero
≥ 1009.1 => nonzero

May V: 84%
1999 < 545.345 => zero

< 609.865 => nonzero
< 710.45 => zero
< 912.6600000000001 => nonzero
< 983.26 => zero
≥ 983.26 => nonzero

Aug V: 82%
1999 < 545.345 => zero

< 609.865 => nonzero
< 721.165 => zero
< 912.6600000000001 => nonzero
< 983.26 => zero
≥ 983.26 => nonzero

Jun Total Opnd: 86%
2002 < 49.5 => zero

< 54.5 => nonzero
< 73.5 => zero
< 81.0 => nonzero
< 112.0 => zero
≥ 112.0 => nonzero

Figure 7. OneR Procedural Results
Conclusion: Not Stable

Success
Period Tree Rate
Nov sum vg: 74%
1998 not ? => nonzero
Feb sum vg: 58%
1999 < 41.5 => zero

≥ 41.5 => nonzero
May sum vg: 58%
1999 < 41.5 => zero

≥ 41.5 => nonzero
Aug sum vg: 58%
1999 < 41.5 => zero

≥ 41.5 => nonzero
Jun sum vg: 75%
2002 < 23.5 => zero

≥ 23.5 => nonzero

Figure 8. OneR Object Oriented Results
Conclusion: Stable after 3 months

Success 10-way
Period Treatments Rate Cross
Nov 34 ≤ vG < 154 100% 50%
1998
Feb 5 ≤ LOCodeandComment < 13 100% 80%
1999
May 100 ≤ LOC < 1141 90% 90%
1999
Aug 99 ≤ LOC < 1150 88% 100%
1999
Jun 118 ≤ LOC < 1276 83% 70%
2002

Figure 9. Tar2 Procedural Results
(Predicting for Errors)
Conclusion: Stable after 9 months

Success 10-way
Period Treatments Rate Cross
Nov 7 ≤ evG ≤ 101 82% 80%
1998
Feb 7 ≤ evG ≤ 103 82% 80%
1999
May 6 ≤ evG ≤ 104 79% 90%
1999
Aug 6 ≤ evG ≤ 104 79% 80%
1999
Jun 7 ≤ evG ≤ 125 79% 100%
2002

Figure 10. Tar2 Procedural Results
(Predicting for Errors)
Conclusion: Stable after 3 months

TAR2 was able to achieveseveralstable conclusions for
the procedural metrics, most of them within 3 months of the
projects inception at IV&V. In addition, TAR2 was also ca-
pable of locating a stable conclusion for the object-oriented
metrics.

5.3 J4.8

Figure 15 and Figure 16 summarize the results of the J4.8
tests. J4.8 was unable to stabilize oneither the procedural
or object-oriented metrics; in fact, it lacked even a basic
root-node stabilization, producing theories which were for
the most part widely diverse for each time period.

5.4 M5Prime

The M5Prime resultant trees were very large and added
considerable bulk to this article. In addition, M5Prime
failed to stabilize at any time during our tests, offering re-
sults that were just as scattered and diverse as those pro-
duced by J4.8. For these reasons, the M5Prime results have
been omitted.
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Success 10-way
Period Treatments Rate Cross
Nov 0.86 ≤ L < 3 100% 40%
1998
Feb 0.43 ≤ L < 3 96% 100%
1999
May 0.43 ≤ L < 3 96% 100%
1999
Aug 0.43 ≤ L < 3 96% 100%
1999
Jun 0.35 ≤ L < 3 97% 90%
2002

Figure 11. Tar2 Procedural Results
(Predicting for No Errors)
Conclusion: Stable after 3 months

Success 10-way
Period Treatments Rate Cross
Nov 0 ≤ LOBLank ≤ 1 96% 90%
1998
Feb 0 ≤ LOBlank ≤ 1 96% 100%
1999
May 5 ≤ LOC ≤ 8 98% 90%
1999
Aug 4 ≤ LOC ≤ 8 96% 60%
1999
Jun 0 ≤ T ≤ 4.9 97% 80%
2002

Figure 12. Tar2 Procedural Results
(Predicting for No Errors)
Conclusion: Not Stable

Success 10-way
Period Treatments Rate Cross
Nov 56 ≤ sumvG ≤ 496 100% 70%
1998
Feb 8 ≤ maxevG ≤ 103 100% 50%
1999
May 12 ≤ maxevG ≤ 104 100% 70%
1999
Aug 12 ≤ maxevG ≤ 104 100% 70%
1999
Jun 8 ≤ maxevG ≤ 125 100% 80%
2002

Figure 13. Tar2 Object Oriented Results
(Predicting for Errors)
Conclusion: Stable after 6 months

Success 10-way
Period Treatments Rate Cross
Nov 1 ≤ max evG ≤ 8 45% 70%
1998
Feb 2 ≤ max vG ≤ 12 63% 70%
1999
May 2 ≤ max vG ≤ 12 63% 70%
1999
Aug 2 ≤ max vG ≤ 12 63% 70%
1999
Jun 1 ≤ max evG ≤ 5 78% 50%
2002

Figure 14. Tar2 Object Oriented Results
(Predicting for No Errors)
Conclusion: Not Stable

Success
Period Tree Rate
Nov LOBlank ≤ 7 => zero 83%
1998 LOBlank > 7 => nonzero
Feb V ≤ 543.7 => zero 83%
1999 V > 543.7

| LOComment ≤ 10
| | ivg ≤ 6
| | | evg ≤ 1 => nonzero
| | | evg > 1 => zero
| | ivg > 6 => nonzero
| LOComment > 10 => nonzero

May vg ≤ 6 => zero 84%
1999 vg > 6 => nonzero
Aug LOBlank ≤ 7 85%
1999 | vg ≤ 6 => zero

| vg > 6 => nonzero
LOBlank > 7 => nonzero

Jun TotalOpnd ≤ 49 => zero 84%
2002 TotalOpnd > 49

| ev(G) ≤ 4
| | iv(G) ≤ 4 => nonzero
| | iv(G) > 4 => zero
| ev(G) > 4 => nonzero

Figure 15. J4.8 Procedural Results
Conclusion: Not Stable

Success
Period Tree Rate
Nov RFC ≤ 8 => zero 74%
1998 RFC > 8 => nonzero
Feb sumvg ≤ 40 => zero 67%
1999 sumvg > 40 => nonzero
May RFC ≤ 8 => zero 61%
1999 RFC > 8

|maxvg ≤ 6 => zero
|maxvg > 6 => nonzero

Aug RFC ≤ 8 => zero 62.5%
1999 RFC > 8

|maxvg ≤ 6 => zero
|maxvg > 6 => nonzero

Jun maxvg ≤ 6 => zero 75%
2002 maxvg > 6

|WMC ≤ 7 => zero
|WMC > 7 => nonzero

Figure 16. J4.8 Object Oriented Results
Conclusion: Not Stable
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6 Discussion

Figure 17 and Figure 18 display the successful results of
our tests; that is, they display the learners for which stabil-
ity was reached. The nomenclature for the TAR2 results is
TAR2(E) refers to TAR2 when predicting for Errors, and
TAR2(NE) refers to TAR2 when predicting for No Errors.
In addition, theTime Elapsedfield refers to the amount of
time from the beginning of the IV&V process.

Learner Time Elapsed Metric
TAR2(E) 3 months evG

9 months LOC
TAR2(NE) 3 months L

Figure 17. Procedural Stabilization Results

Learner Time Elapsed Metric
OneR 3 months sum vg

TAR2(E) 6 months max evG

Figure 18. Object Oriented Stabilization Re-
sults

Earlier in this paper, we presented two hypotheses about
this data. The first hypothesis was that the procedural met-
rics would outperform the object oriented ones; this hypoth-
esis is not borne out by the results of the tests. Our second
hypothesis was that the simpler learners would perform bet-
ter than the more complex ones. This hypothesisis borne
out by the results of the tests. The only two learners which
stabilized were OneR and TAR2, our two simplest learners.
It is interesting to note that TAR2 was able to stabilize in
both tests, whereas OneR only stabilized for the object ori-
ented segment. It would seem that when presented with a
large mass of data, OneR, like its’ more complex counter-
parts, still has trouble stabilizing over long time periods.

We found it extremely intriguing that both J4.8 (C4.5)
and M5Prime failed to produce any stability over the vari-
ous time periods. Both of these learning schemes are stan-
dard in most data mining approaches, and yet both proved
to be unrevealing in these tests. This casts doubt on the
error indicator generation methods proposed by other re-
searchers, such as Selby[17] and Taghi[8], since simple
learners can and, in this case, do outperform more com-
plex and robust ones. We suggest that these complex learn-
ers, while excellent as data summary tools, are not as good
at producing generalized conclusions as their less complex
counterparts.

7 Conclusion

In conclusion, we have demonstrated several things:

• Stability can be found early in a project lifecycle

• Simpler learners are better for producing stable results

• Scarcity of data during early IV&V lifecycle doesnot
necessarilypresent a large problem

In addition, we are able to present a recommended method-
ology for finding the most important metric for your project:

1. Gather metric data and error reports as early as possi-
ble

2. Use simple learners (i.e., OneR and TAR2) to analyze
this data

3. Apply the results of those learners during the next cy-
cle of debugging and testing

4. Check for stability at each cycle to ensure you are us-
ing the proper metric

5. Goto 1

Our conclusionsmustbe taken with the proverbial grain
of salt; while we recommend the methodology given above,
we are not suggesting that you drop your other forms of
error-prediction. It is extremely difficult to gather time se-
ries dumps of error data and metric collection, in addition to
the success of these tests being a function of each project in-
dividually. Therefore, we suggest that you try our method-
ology in addition to your normal methods, and see which
bring greater success toyour projects.
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Appendix A: Metrics

This section gives a brief overview of some of the soft-
ware metrics which were collected in the course of this
study. Inclusion in this section does not imply endorsement
in any way by either NASA IV&V or WVU.

In order to facilitate the collection of various code met-
rics, many tools have evolved over the past few years. One
of the most popular ones (and the one being used exten-
sively at NASA IV&V) is the McCabe IQc© package. This
package can evaluate Ada, C and C++ source code, and pro-
vides many different types of software metrics.

McCabe

Figure 19. Example program flowgraph

The McCabe metrics are a collection of four software
metrics: Essential Complexity, Cyclomatic Complexity,
Design Complexity and LOC. Of these four, all but LOC
are metrics which were developed by T. J. McCabe. Mc-
Cabe & Associates claim that these complexity measure-
ments provide insight into the reliability and maintainability
of a module. For example, around NASA IV&V, a cyclo-
matic complexity of over 10 or an essential complexity of
over 4 is flagged as a module that will be difficult to main-
tain and/or debug.

The following paragraphs present a short overview of the
three complexity metrics mentioned previously.

Cyclomatic Complexity, orv(G), actually measures the
number oflinearly independent paths6 through a program’s
flowgraph7. v(G) is calculated by:

v(G) = e− n + 2
6A set of paths is linearly independent if no path in the set is a linear

combination of any other paths in the set
7A flowgraph is a directed graph where each node corresponds to a

program statement, and each arc indicates the flow of control from one
statement to another
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whereG is a program’s flowgraph,e is the number of arcs
in the flowgraph, andn is the number of nodes in the flow-
graph [3]. For example, Figure 19 is a simple flowgraph;
it’s cyclomatic complexity is 3, since the graph has 6 arcs
and 5 nodes (v(G) = 6− 5 + 2 = 3).

Essential Complexity, orev(G), is the extent to which
a flowgraph can be “reduced” by decomposing all the sub-
flowgraphs ofG that are D-structured primes8. ev(G) is
calculated by:

ev(G) = v(G)−m

wherem is the number of subflowgraphs ofG that are D-
structured primes. [3]

Design Complexity, oriv(G), is the cyclomatic com-
plexity of a module’s reduced flowgraph. The flowgraph,
G, of a module is reduced to eliminate any complexity
which does not influence the interrelationship between de-
sign modules. This complexity measurement reflects the
modules calling patterns to its immediate subordinate mod-
ules [10].

Halstead

Another commonly used collection of software metrics
are the Halstead Metrics. They are named after their creator,
Maurice H. Halstead. Halstead felt that software (or the
writing of software) could be related to the themes which
were being advanced at that time in the psychology litera-
ture. He created several metrics which are meant to encap-
sulate these properties; these metrics can be extracted by
use of the McCabe IQ tool mentioned previously, and are
discussed in detail below.

Halstead began by defining some basic measurements
(these measurements are collected on a per module basis):

µ1 = number of unique operators
µ2 = number of unique operands

N1 = total occurrences of operators
N2 = total occurrences of operands

µ∗1 = potential operator count
µ∗2 = potential operand count

Using these measurements, he then defined thelengthof a
programP as:

N = N1 + N2

The vocabulary ofP is:

8D-structured primes are also sometimes referred to as “proper one-
entry one-exit subflowgraphs”. For a more thorough discussion of D-
primes, see [3]

µ = µ1 + µ2

The volumeof P , akin to the number of mental compar-
isons needed to write a program of length N, is:

V = N ∗ log2µ

V ∗ is the potential volume - the volume of the minimal size
implementation of P.

V ∗ = (2 + µ2
∗)log2(2 + µ2

∗)

Theprogram levelof a programP with volumeV is:

L = V ∗/V

The inverse of level isdifficulty:

D = 1/L

According to Halstead’s theory, we can calculate an
estimateL̂ of L as:

L̂ = 1/D = 2
µ1
∗ µ2

N2

The intelligence content of a program,I, is:

I = L̂ ∗ V

The effort required to generateP is given by:

E = V
L̂

= µ1N2Nlog2µ
2µ2

where the unit of measurementE is elementary mental
discriminations needed to understandP .

The required programming timeT for a program of
effort E is:

T = E/18seconds
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