
memo6@.ai.wvu.2003. Available from http://tim.menzies.com/pdf/03lib.pdf

LIB: Commonly used predicates

Tim Menzies

Lane Department of Computer Science, West Virginia University, PO Box 6109, Morgantown, WV, 26506-6109, USA;
http://tim.menzies.us; tim@menzies.us

Wp ref: ˜menzies/src/pl/prod/lib.pl, January 30, 2003.

Abstract Commonly used Prolog predicates.

Contents

1 Installation . 1
2 Pre-load actions . 1

2.1 Operators . 1
2.2 Flags . 1
2.3 Hooks . 2

3 Predicates . 2
3.1 Code to demonstrate predicates 2
3.2 List stuff . 2
3.3 Maths stuff . 3
3.4 Lookup tables 3
3.5 Random numbers 3
3.6 String Stuff . 4
3.7 Predicates for Pairs 5
3.8 Input/output stuff 7
3.9 Meta-level predicates 8

4 Start-up commands 9
5 Bugs . 9
A License . 9

A.1 nowarranty.txt 9
A.2 warranty.txt . 9
A.3 conditions.txt 9

List of Figures

1 egwrites.spy 2
2 egdeletes.spy 3
3 eglookup.spy 3
4 egrands.spy 3
5 egbeta.spy 4
6 egnormal.spy 4
7 eggamma.spy 4
8 egformat.spy 5
9 eginc.spy 5
10 egdist.spy 5
11 egbarsNormal.spy 6
12 egbarsBeta.spy 6
13 egbarsGamma1.spy 6

14 egbarsGamma2.spy 6
15 egbarsGamma3.spy 7
16 egnormalize.spy 7
17 nowarranty.txt 8
18 egchars.spy 8
19 egtidy.spy 8
20 egdemand.spy 8
21 egtimes.spy 8
22 Find out more about PROD. 10

1 Installation

1 :- load_files([lib0 % pre-load actions
2 ,lib1 % predicates
3 ,lib2 % start-up commands
4],[silent(yes),if(changed)]).

2 Pre-load actions

2.1 Operators

Define an operator to handle numberic ranges Min to Max.

5 :- op(1,xfx, to).

2.2 Flags

Define an infinity function.

6 :- arithmetic_function(inf/0).

Define a random function.

7 :- arithmetic_function(rand/0).

Define a rand(Min,Max) function.

8 :- arithmetic_function(rand/2).

Define a rand(Min,Max,Mean) function.

9 :- arithmetic_function(rand/3).

Define a normal function.

10 :- arithmetic_function(normal/2).

Define a beta function.

11 :- arithmetic_function(beta/1).

Define a gamma function.
12 :- arithmetic_function(gamma/2).

Add a “left-justify” command to format.
13 :- format_predicate(’>’,padChars(_,_)).

Add a “right-justify” command to format.
14 :- format_predicate(’<’,charsPad(_,_)).

Add a “print squiggles” command to format.
15 :- format_predicate(’S’,squiggle(_,_)).

Define a predicate for the lookup tables.
16 :- discontiguous lookUp1/4.
17 :- multifile lookUp1/4.
18 :- index(lookUp1(1,1,1,0)).

2.3 Hooks

A hook for lookup tables.
19 term_expansion(Table = ColsRows , Out) :-
20 nonvar(ColsRows),
21 ColsRows = (Cols+Rows),
22 lookUpTable(Table=Cols+Rows,Out).

3 Predicates

3.1 Code to demonstrate predicates

3.1.1 Define demos
23 eglib :-
24 forall(member(G,[
25 egwrites, egdeletes, egmaths, eglookup,
26 eginc,
27 egrands, egbeta, egnormal, eggamma,
28 egformat, eginc, egdist,
29 egbarsNormal, egbarsBeta,
30 egbarsGamma1, egbarsGamma2, egbarsGamma3,
31 egnormalize, egchars, egtidy,
32 egdemand, egtimes
33]),
34 demos(G)).

3.1.2 Processing demos To demo our code, we need to:

– Write a demo predicate that shows off our code in ac-
tion. In PROD, these predicates are named egXXX/0.
Include with this predicate, a pointer to the output; e.g.

egXXX :- % See \fig{egXXX.spy}
...

– Trap the output to a file. This is accomplished using the
demos/1 predicate shown below. The goal demos(egXXX)
generates a file egXXX.spy.

– Include that file. This is accomplished using the follow-
ing LATEX magic:

\SRC{egXXX.spy}{From \tion{egXXX/1}.}

Note the call to \tion{egXXX/1}. Sections can be refer-
enced symbolically when (e.g.)\label{sec:egXXXX/1)
is added on the first line after a heading definition. Once this
has been done, then \tion{egXXX/1}will be typset as a
reference to the relevant section.

After all that, then:

– The output of the demo will be shown in the document,
– The demo predicate will include a pointer to the figure,
– The caption of the figure will include a pointer to the

section in the text that generated it.

Most of the demonstrations in this file use this approach.

egwrites.spy
% output from ’:- demos(egwrites).’

aa
bb
cc
dd

% runtime = 0 sec(s)

Fig. 1 From
�
3.2.1.

3.1.3 demos(+Goal) Demos/1 runs a goal G and
catches the output to the file G.spy. Also, just so you know
what is going on, it runs the goal G a second time and sends
the output to the screen.

35 demos(G) :-
36 sformat(Out,’˜w.spy’,G),
37 freshFile(Out),
38 tell(Out),
39 format(’% output from ’’:- demos(˜w).’’ � n � n’,G),
40 T1 is cputime,
41 ignore(forall(G,true)),
42 T2 is (cputime - T1),
43 format(’ � n% runtime = ˜w sec(s) � n’,[T2]),
44 told,
45 nl,write(’ � n%------------------------------- � n’),
46 format(’% output from ’’:- demos(˜w).’’ � n’,G),
47 ignore(forall(G,true)),
48 format(’ � n% runtime = ˜w sec(s)’,[T2]).

Demos/1 needs a helper predicate.FreshFile/1makes
sure that no one else has scribbled, or is currently scribbling,
on our output file.

49 freshFile(X) :-
50 (current_stream(X,_,S) -> close(S) ; true),
51 (exists_file(X) -> delete_file(X) ; true).

3.1.4 Using Demos/1. Next, we need to run the demo
code as follows:
?- demos(egXXX).

Once that is done, then when this document will include the
output in the figure with the label egXXX.spy.

3.2 List stuff

3.2.1 writes(+List): print a list
52 writes([H|T]) :-
53 forall(member(One,[H|T]),(print(One),nl)).

Demonstration code:
62 egwrites :- % see Figure 1
63 writes([aa,bb,cc,dd]).

3.2.2 deletes(+List1,+List2,-List3): delete items
from a list

64 deletes([],_,[]).
65 deletes([Doomed|T],Doomeds,Rest) :-
66 member(Doomed,Doomeds),!,
67 deletes(T,Doomeds,Rest).
68 deletes([Saved|T],Doomeds,[Saved|Rest]) :-
69 deletes(T,Doomeds,Rest).

Demonstration code:
77 egdeletes :- % see Figure 2
78 List = [a,b,r,a,c,a,d,a,b,r,a],
79 Doomed=[b,c],
80 deletes(List,Doomed,Out),
81 format(’If we take ˜w from � n˜w we get � n˜w. � n’,
82 [Doomed,List,Out]).

2

egdeletes.spy
% output from ’:- demos(egdeletes).’

If we take [b, c] from
[a, b, r, a, c, a, d, a, b, r, a] we get
[a, r, a, a, d, a, r, a].

% runtime = 0 sec(s)

Fig. 2 From
�
3.2.2.

eglookup.spy
% output from ’:- demos(eglookup).’

[age(30),weight(40)]= avg

% runtime = 0 sec(s)

Fig. 3 From
�
3.4.

3.3 Maths stuff

3.3.1 sum(+List,-Num): sum a list of numbers

83 sum([H|T],S) :-
84 sum(T,H,S).
85

86 sum([],S,S).
87 sum([H|T],In,Out) :- Temp is H + In, sum(T,Temp,Out).

3.3.2 average(+List,-Num): average a list of numbers

88 average(L,Av) :- average(L,_,Av).
89 average([H|T],N,Av) :- average1(T,1,N,H,Sum), Av is Sum/N.
90

91 average1([],N,N,Out,Out).
92 average1([H|T],N0,N,In,Out) :-
93 Temp is H+In,
94 N1 is N0 + 1,
95 average1(T,N1,N,Temp,Out).

Demonstration code:

96 egmaths :- % See Figure ??
97 Nums = [2,3,5,2,4,6,3,4,2,4],
98 average(Nums,Av),
99 sum(Nums,Sum),

100 format(’The sum and average of � n˜w � n are ˜w and ˜w � n.’,
101 [Nums,Sum,Av]).

3.4 Lookup tables

Convert a list of tabular data to one fact for each cell.

102 lookUpTable(X,Out) :-
103 bagof(Y,Xˆlist2Relation1(X,Y),Out).
104

105 list2Relation1(Table=Cols+Rows, lookUp1(Table,R,C,X)):-
106 nth1(Pos,Cols,C),
107 member([R|Cells],Rows),
108 nth1(Pos,Cells,X),
109 nonvar(X).

Access the cells

110 lookUp(T,X,Y,Out) :-
111 lookUp1(T,R,C,Out), gt(X,R), gt(Y,C), !.

Cell access can be via an exact match or via a range query:

112 gt(Value,X to Y) :- !,X =< Value, Value =< Y.
113 gt(Value,Value).

Demonstration code:

egrands.spy
% output from ’:- demos(egrands).’

0.279609 is a random number between 0 and 1.
18.9953 is a random number between 10 and 20.

% runtime = 0 sec(s)

Fig. 4 From
�
3.5.1.

119 egLookUpDemo =
120 % age weight
121 % ---------- -------------------------------
122 [1 to 19, 20 to 50, 51 to inf]+
123 [[0 to 20, low, low, avg]
124 ,[21 to 40, low, avg, high]
125 ,[41 to inf, avg, high, high]
126].
127

128 eglookup :- % see Figure 3
129 Age=30,
130 Weight=40,
131 lookUp(egLookUpDemo,Age,Weight,X),
132 format(’[age(˜w),weight(˜w)]= ˜w � n’,
133 [Age,Weight,X]).

3.5 Random numbers

3.5.1 Basic randoms Generate a number ��������� .
134 rand(X) :-
135 X is random(inf+1)/inf.

Generate a number � between some �
	�� and ��
�� value.
136 rand(Min,Max,X) :-
137 X is Min + (Max-Min)*rand.

Demonstration code:
144 egrands :- % see Figure 4
145 Rand1 is rand,
146 format(’˜w is a random number between 0 and 1. � n’,
147 [Rand1]),
148 Rand2 is rand(10,20),
149 format(’˜w is a random number between 10 and 20. � n’,
150 [Rand2]).

3.5.2 Beta distributions Generate a number � whose
mean is � % between �
	�� and ��
�� . Technically, this is
an application of a ������
 function. Here, I use a very simplis-
tic method that only works for certain values of � : (���
������� ���"!#� ��� $��%�����&� ��� '��%�).

151 rand(Min,Max,B,X) :-
152 X is Min + (Max-Min)*beta(B).
153

154 beta(B,X) :- beta1(B,X),!.
155 beta(B,X) :- B1 is 1 - B, beta1(B1,Y),X is 1 - Y.
156

157 beta1(0.50,X) :- X is rand.
158 beta1(0.60,X) :- X is randˆ0.67.
159 beta1(0.67,X) :- X is randˆ0.5.
160 beta1(0.75,X) :- X is randˆ0.33.
161 beta1(0.80,X) :- X is randˆ0.25.
162 beta1(0.9,X) :- X is randˆ(1/9).
163 beta1(1,1).

Demonstration code:
170 egbeta :- % see Figure 5
171 R1 is rand(10,20,0.2),
172 R2 is rand(10,20,0.2),
173 R3 is rand(10,20,0.2),
174 R4 is rand(10,20,0.2),
175 R5 is rand(10,20,0.2),
176 Nums=[R1,R2,R3,R4,R5],
177 format(’˜w � n are random numbers 20% between 10 and 20. � n’,
178 [Nums]).

3

egbeta.spy
% output from ’:- demos(egbeta).’

[11.2313, 14.5453, 11.2714, 13.4645, 10.2245]
are random numbers 20% between 10 and 20.

% runtime = 0 sec(s)

Fig. 5 From
�
3.5.2.

egnormal.spy
% output from ’:- demos(egnormal).’

[10.479, 11.2775, 7.82854, 9.13898, 5.80684]
are random numbers from normal(10,2).

% runtime = 0 sec(s)

Fig. 6 From
�
3.5.3.

Note that the numbers in Figure 5 may not look like they
are, on average, 20% between 10 and 20. Later, we run this
code 10,000 times and the true average results can be seen.

3.5.3 Normal distributions Generate a random number
from a normal distribution with mean � and standard de-
viation � . This number is generated using the Box-Muller
method (no, I don’t understand it either).

179 normal(M,S,N) :-
180 box_muller(M,S,N).
181

182 box_muller(M,S,N) :-
183 wloop(W0,X),
184 W is sqrt((-2.0 * log(W0))/W0),
185 Y1 is X * W,
186 N is M + Y1*S.
187

188 wloop(W,X) :-
189 X1 is 2.0 * rand - 1,
190 X2 is 2.0 * rand - 1,
191 W0 is X1*X1 + X2*X2,
192 (W0 >= 1.0 -> wloop(W,X) ; W0=W, X = X1).

Demonstration code:

198 egnormal :- % see Figure 6
199 R1 is normal(10,2),
200 R2 is normal(10,2),
201 R3 is normal(10,2),
202 R4 is normal(10,2),
203 R5 is normal(10,2),
204 Nums=[R1,R2,R3,R4,R5],
205 format(’˜w � n are random numbers from normal(10,2).’,
206 [Nums]).

3.5.4 Gamma distributions Generate random numbers
from zero to infinity.

207 gamma(Mean,Alpha,Out) :-
208 Beta is Mean/Alpha,
209 (Alpha > 20
210 -> Mean is Alpha * Beta,
211 Sd is sqrt(Alpha*Beta*Beta),
212 Out is normal(Mean,Sd)
213 ; gamma(Alpha,Beta,0,Out)).
214

215 gamma(0,_,X,X) :- !.
216 gamma(Alpha,Beta, In, Gamma) :-
217 Temp is In + (-1 * Beta * log(1-rand)),
218 Alpha1 is Alpha - 1,
219 gamma(Alpha1,Beta,Temp,Gamma).

Technically, this is gamma distribution. A standard random
gamma distribution has the mean ��� ����� ��
	�� � . The
�
����
 value

eggamma.spy
% output from ’:- demos(eggamma).’

[19.7148, 7.15347, 4.25717, 8.11787, 16.355]
are random numbers from gamma(10,2).

% runtime = 0 sec(s)

Fig. 7 From
�
3.5.4.

is the “spread” of the distribution and controls the cluster-
ing of the distribution around the mean. As
�
����
 increases,
the �#
����
 distribution flattens out to become more evenly-
distributed about the mean. That is, for large
�
����
 (i.e.

�
����
�� ! �), �#
����
 can be modeled as a noraml function.
The standard
�
����
 � ������
 terminology can be confusing to
some audiences. Hence, I define a (slightly) more-intuitive�#
����
 distribution where:

�����
����
� !� �
 � �
�
����
�" �#�#
����

$

�
����
 �
�
����
� �
��&%

Demonstration code:
225 eggamma :- % see Figure 7
226 R1 is gamma(10,2),
227 R2 is gamma(10,2),
228 R3 is gamma(10,2),
229 R4 is gamma(10,2),
230 R5 is gamma(10,2),
231 Nums=[R1,R2,R3,R4,R5],
232 format(’˜w � n are random numbers from gamma(10,2).’,
233 [Nums]).

3.6 String Stuff

3.6.1 Right-justify a string. Right-justifies a string A in a
space S:

234 right_justify(S,A) :-
235 writeThing(A,Thing,N),
236 Pad is S - N,
237 forall(between(1,Pad,_),put(32)),
238 write(Thing).
239

240 writeThing(X,S,L) :-
241 sformat(S,’˜w’,[X]),
242 string_length(S,L).

Map right justify into the format predicate.
243 padChars(default,A) :- right_justify(5,A).
244 padChars(S, A) :- right_justify(S,A).

3.6.2 Left-justify a string
245 left_justify(S,A) :-
246 writeThing(A,Thing,N),
247 atom_length(A,N),
248 Pad is S - N,
249 write(Thing),
250 forall(between(1,Pad,_),put(32)).
251

252 charsPad(default,A) :- left_justify(5,A).
253 charsPad(S,A) :- left_justify(S,A).

3.6.3 Print some squiggles Generates N squiggles in a
space normalized to a screen with maximum width W.

254 squiggles(W,N) :-
255 N1 is round(N/W),
256 forall(between(1,N1,_),put(126)).
257

258 squiggle(default,A) :- squiggles(25,A).
259 squiggle(W,N) :- squiggles(W,N).

4

egformat.spy
% output from ’:- demos(egformat).’

[tim]
[tim]
[tim]
[tim]
[˜˜˜˜]
[˜˜]

% runtime = 0 sec(s)

Fig. 8 From
�
3.6.

eginc.spy
% output from ’:- demos(eginc).’

The keys in
[a, b, r, a, c, a, d, a, b, r, a]
occur with frequencies

[a=5, b=2, c=1, d=1, r=2].
% runtime = 0 sec(s)

Fig. 9 From
�
3.7.3.

Demonstration code.
270 egformat :- % Figure 8
271 format(’[˜>] � n’,tim), % right-justify
272 format(’[˜12>] � n’,tim), %
273 format(’[˜<] � n’,tim), % left-justify
274 format(’[˜12<] � n’,tim), %
275 format(’[˜S] � n’,100), % print some twiddles
276 format(’[˜50S] � n’,100), %

3.7 Predicates for Pairs

3.7.1 pairs(?Keys,?Values,?Pairs): key-value pairs

277 pairs([],[],[]).
278 pairs([X|Xs],[Y|Ys],[X=Y|T]) :- pairs(Xs,Ys,T).

3.7.2 key(+Pairs,?Key,?Value,?Pairs): a key-in-front
working memory Acccess values in a list of key=value
pairs. As a side-effect of accessing, move the accessed pair
to the front of the list.

279 key(L0,K,V0,V,[K=V|L]) :-
280 less1(L0,K=V0,L).
281

282 less1([H|T],H,T).
283 less1([H|T],Out,[H|Rest]) :-
284 less1(T,Out,Rest).

3.7.3 inc(+Pairs,+Key,?Pairs): a lists of counters
Maintain a list of keys. Incrementing a key add one to its
value.

285 inc([], A, [A=1]).
286 inc([A=B|C],D,E) :-
287 compare(F,A,D),inc(F,A=B,C,D,E).
288

289 inc(<, A, B, C, [A|D]) :- inc(B, C, D).
290 inc(=, A=B, C, A, [A=D|C]) :- D is B+1.
291 inc(>, A, B, C, [C=1, A|B]).

Demonstration code:
299 eginc :- % see Figure 9
300 List = [a,b,r,a,c,a,d,a,b,r,a],
301 eginc1(List,[],Incs),
302 format(’The keys in � n˜w � n occur with frequencies � n˜w. ’,
303 [List,Incs]).
304

305 eginc1([],W,W).
306 eginc1([H|T],W0,W) :- inc(W0,H,W1), eginc1(T,W1,W).

egdist.spy
% output from ’:- demos(egdist).’

The distribution of symbols
[a, b, r, a, c, a, d, a, b, r, a] is
[r=2, d=1, c=1, b=2, a=5].

% runtime = 0 sec(s)

Fig. 10 From
�
3.7.4.

3.7.4 dist(+List,-Pairs): Simple collection of histogram
data

307 dist(L0,L) :-
308 dist(L0,_,_,L).
309

310 dist(L0,Min,Max,L) :-
311 msort(L0,[Min|L1]), % � 311
312 dist([Min|L1],[],Min,Max,L).
313

314 dist([],X,Max,Max,X).
315 dist([H|T],[H=N0|Rest],_,Max,Out) :- !,
316 N is N0 + 1,
317 dist(T,[H=N|Rest],H,Max,Out).
318 dist([H|T],In,Min,Max,Out) :-
319 dist(T,[H=1|In],Min,Max,Out).

Demonstration code:

327 egdist :- % see Figure 10
328 List = [a,b,r,a,c,a,d,a,b,r,a],
329 dist(List,Dist),
330 format(’The distribution of symbols � n˜w is � n˜w. � n’,
331 [List,Dist]).

Note that dist/2 could be implemented using inc/3.
However, the call of msort at line 311 makes dist/2
faster for large lists.

3.7.5 bars(+Num1,+Num2,+Num3,+Pairs): print a bar
chart Display the pairs as a bar chart. Num1 is the width
of the first “item” column displaying the name of each bar;
Num2 is the width of the second “frequency” column show-
ing how many items fall into that bar; Num3 is the width of
the last column showing the population size.

332 bars(Num1,Num2,Num3,List) :-

Use sformat to builds a string that stores the widths and
scale factor for our columns. Note the use of ”¿” and ”S”
which are special format commands defined above.

333 sformat(S,’˜˜˜w> ˜˜˜w> ˜˜˜wS � n’,
334 [Num1,Num2,Num3]),
335 dist(List,Dist),
336 nl,
337 format(S,[item,frequency,0]),
338 forall(member(What=N,Dist),
339 format(S,[What,N,N])).

A useful default call.

340 bars(List) :-
341 bars(5, % the "item" column is 5 wide
342 5, % the "frequency" column is 5 wide
343 3, % the "scale factor" is 3
344 List % now, go display these pairs
345).

Demonstration code:

5

egbarsNormal.spy
% output from ’:- demos(egbarsNormal).’

---| 10000 * normal(20, 2) |-------
item frequency

29 1
27 7
26 32
25 92 ˜
24 249 ˜˜
23 668 ˜˜˜˜˜˜˜
22 1195 ˜˜˜˜˜˜˜˜˜˜˜˜
21 1760 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
20 1963 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
19 1767 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
18 1271 ˜˜˜˜˜˜˜˜˜˜˜˜˜
17 603 ˜˜˜˜˜˜
16 288 ˜˜˜
15 76 ˜
14 26
13 2

% runtime = 0.540778 sec(s)

Fig. 11 From
�
3.7.5.

egbarsBeta.spy
% output from ’:- demos(egbarsBeta).’

---| 10000 * rand(10, 20, 0.2) |-------
item frequency

19 4
18 30
17 109 ˜
16 244 ˜˜
15 499 ˜˜˜˜˜
14 860 ˜˜˜˜˜˜˜˜˜
13 1401 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜
12 2059 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
11 2961 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
10 1833 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

% runtime = 0.310446 sec(s)

Fig. 12 From
�
3.7.5.

520 egbarsNormal :- % see Figure 11
521 egbarDemos(10000,normal(20,2)).
522

523 egbarsBeta :- % see Figure 12
524 egbarDemos(10000,rand(10,20,0.2)).
525

526 egbarsGamma1 :- % see Figure 13
527 egbarDemos(10000,gamma(10,15)).
528

529 egbarsGamma2 :- % see Figure 14
530 egbarDemos(10000,gamma(10,5)).
531

532 egbarsGamma3 :- % see Figure 15
533 egbarDemos(10000,gamma(10,2)).

Support code for the demostration code:

534 egbarDemos(Repeats,F) :-
535 format(’ � n � n---| ˜w * ˜w |-------’,[Repeats,F]),
536 Size=1,
537 findall(X,(between(1,Repeats,_),X is F),L0),
538 cutDown2Sizes(Size,L0,L),
539 bars(5,5,100,L).
540

541 cutDown2Sizes(Size) --> maplist(cutDown2Size(Size)).
542 cutDown2Size(Size,X,Y) :- Y is round(X/Size).

3.7.6 normalize(+Pairs1,-Pairs2): normalize a list
of numbers Input list with values ��� � ��� �%�%� ��� with sum

egbarsGamma1.spy
% output from ’:- demos(egbarsGamma1).’

---| 10000 * gamma(10, 15) |-------
item frequency

22 3
21 4
20 10
19 11
18 34
17 76 ˜
16 144 ˜
15 241 ˜˜
14 451 ˜˜˜˜˜
13 665 ˜˜˜˜˜˜˜
12 942 ˜˜˜˜˜˜˜˜˜
11 1321 ˜˜˜˜˜˜˜˜˜˜˜˜˜
10 1548 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
9 1593 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
8 1378 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜
7 901 ˜˜˜˜˜˜˜˜˜
6 466 ˜˜˜˜˜
5 169 ˜˜
4 38
3 5

% runtime = 1.94279 sec(s)

Fig. 13 From
�
3.7.5.

egbarsGamma2.spy
% output from ’:- demos(egbarsGamma2).’

---| 10000 * gamma(10, 5) |-------
item frequency

36 1
34 1
33 1
32 3
31 2
30 5
29 2
28 10
27 17
26 7
25 12
24 26
23 31
22 52 ˜
21 61 ˜
20 86 ˜
19 139 ˜
18 184 ˜˜
17 236 ˜˜
16 293 ˜˜˜
15 348 ˜˜˜
14 433 ˜˜˜˜
13 578 ˜˜˜˜˜˜
12 662 ˜˜˜˜˜˜˜
11 783 ˜˜˜˜˜˜˜˜
10 900 ˜˜˜˜˜˜˜˜˜
9 949 ˜˜˜˜˜˜˜˜˜
8 947 ˜˜˜˜˜˜˜˜˜
7 906 ˜˜˜˜˜˜˜˜˜
6 824 ˜˜˜˜˜˜˜˜
5 709 ˜˜˜˜˜˜˜
4 463 ˜˜˜˜˜
3 244 ˜˜
2 77 ˜
1 8

% runtime = 0.761094 sec(s)

Fig. 14 From
�
3.7.5.

6

egbarsGamma3.spy
% output from ’:- demos(egbarsGamma3).’

---| 10000 * gamma(10, 2) |-------
item frequency

64 1
55 1
53 1
52 3
50 1
48 1
46 2
45 1
44 1
43 6
42 6
41 2
40 9
39 4
38 12
37 8
36 10
35 14
34 14
33 22
32 27
31 30
30 32
29 27
28 43
27 52 ˜
26 53 ˜
25 64 ˜
24 72 ˜
23 95 ˜
22 99 ˜
21 121 ˜
20 158 ˜˜
19 167 ˜˜
18 182 ˜˜
17 227 ˜˜
16 267 ˜˜˜
15 290 ˜˜˜
14 367 ˜˜˜˜
13 389 ˜˜˜˜
12 448 ˜˜˜˜
11 485 ˜˜˜˜˜
10 534 ˜˜˜˜˜
9 601 ˜˜˜˜˜˜
8 634 ˜˜˜˜˜˜
7 699 ˜˜˜˜˜˜˜
6 743 ˜˜˜˜˜˜˜
5 719 ˜˜˜˜˜˜˜
4 757 ˜˜˜˜˜˜˜˜
3 632 ˜˜˜˜˜˜
2 534 ˜˜˜˜˜
1 295 ˜˜˜
0 38

% runtime = 0.41059 sec(s)

Fig. 15 From
�
3.7.5.

� � � ��� � � �%� � ��� to a second list of numbers � � ��� ���%� �%�%��� �
where ����� � ��� and � � � � � � � �%� � � � � � .

egnormalize.spy
% output from ’:- demos(egnormalize).’

When [a=10, b=5, c=20, d=50, e=5, c=10]
is normalized it generates

[a=0.1, b=0.05, c=0.2, d=0.5, e=0.05, c=0.1].

% runtime = 0 sec(s)

Fig. 16 From
�
3.7.6.

543 normalize(L,N) :-
544 mostnormal(L,N,_).
545

546 mostnormal(L,N,Most) :-
547 sumpairs(L,Sum),
548 mostnormal1(L,Sum,junk= -1,N,Most).
549

550 mostnormal1([],_,Out,[],Out).
551 mostnormal1([X=V0|T],Sum,Y=N,[X=N1|Out],Most) :-
552 N1 is V0/Sum,
553 (N1 > N
554 -> mostnormal1(T,Sum,X=N1,Out,Most)
555 ; mostnormal1(T,Sum,Y=N,Out,Most)).
556

557 sumpairs([_H=V|T],S) :-
558 sumpairs(T,V,S).
559

560 sumpairs([],S,S).
561 sumpairs([_=V|T],In,Out) :-
562 Temp is V + In, sumpairs(T,Temp,Out).

Demonstration code:
570 egnormalize :- % see Figure 16
571 L=[a=10,b=5,c=20,d=50,e=5,c=10],
572 normalize(L,Normals),
573 format(’When ˜w � n is normalized it generates � n˜w. � n’,
574 [L,Normals]).

3.8 Input/output stuff

Demonstrations are offered for only some of the predicates
in this section. I/O code can makes explicit calls to input/output
streams which mucks up our demonstration system.

3.8.1 sneak(+List): load files. Don’t bother loading
the files if they haven’t changed. But if you do load them,
don’t print anything to the screen.

575 sneak(X) :-
576 load_files(X,[silent(true),if(changed)]).

3.8.2 spit(+Num1,+Num2,+Term): Print something, some-
times. Useful for tracking a long process since it, some-
times, spits out a marker.

577 spit(N1,N2,X) :-
578 (0 is N1 mod N2 -> blurt(X) ; true).

3.8.3 blurt(+Term): print, then flush.
579 blurt(X) :-
580 write(user,X),flush_output(user).

3.8.4 chars(+String): copy a file to the screen.
587 chars(File) :-
588 see(File), get_byte(X), ignore(chars1(X)), seen.
589

590 chars1(-1) :- !.
591 chars1(X) :- put(X), get_byte(Y), chars1(Y).

Demonstration code:
601 egchars :- % see Figure 18.
602 chars(’nowarranty.txt’).

7

nowarranty.txt
comes with ABSOLUTELY NO WARRANTY:
for more details type ’warranty’.

This is free software, and you are welcome to
redistribute it under certain conditions: for
more details, type ’conditions’.

Fig. 17 A text file.

egchars.spy
% output from ’:- demos(egchars).’

comes with ABSOLUTELY NO WARRANTY:
for more details type ’warranty’.

This is free software, and you are welcome to
redistribute it under certain conditions: for
more details, type ’conditions’.
% runtime = 0 sec(s)

Fig. 18 The code in
�
3.8.4 displays the contents of Figure 17 to

the screen.

3.8.5 barph(+Term): print a warning, then fail. A stan-
dard barph:

603 barph(X) :- format(’%W> ˜p � n’,X),fail.

A barph that also prints line numbers showing the origin of
the barph.

604 barphln(X) :-
605 here(File,Line),
606 format(’%W> ˜p@˜p : ˜p � n’,[File,Line,X]),
607 fail.
608

609 here(File,Line) :-
610 source_location(Path,Line),
611 file_base_name(Path,File).

3.9 Meta-level predicates

3.9.1 tidy(+Rule0,-Rule1: remove stray “trues” from
a rule body.

612 tidy(A,C) :-
613 tidy1(A,B),
614 (B = (Head :- true) -> C=Head ; C=B).
615

616 tidy1(A,C) :- once(tidy2(A,C)).
617

618 tidy2(A, A) :- var(A).
619 tidy2((A,B), (A,TB)) :- var(A), tidy1(B,TB).
620 tidy2((A,B), (TA,B)) :- var(B), tidy1(A,TA).
621 tidy2(((A,B),C), R) :- tidy1((A,B,C), R).
622 tidy2((true,A), R) :- tidy1(A,R).
623 tidy2((A,true), R) :- tidy1(A,R).
624 tidy2((A;true), R) :- tidy1(A,R).
625 tidy2((true;A), R) :- tidy1(A,R).
626 tidy2((A;B), (TA;TB)) :- tidy1(A,TA), tidy1(B,TB).
627 tidy2((A->B), (TA->TB)) :- tidy1(A,TA), tidy1(B,TB).
628 tidy2(not(A), not(TA)) :- tidy1(A,TA).
629 tidy2((A :- B), R) :-
630 tidy1(B,TB),(TB=true-> R=A; R=(A:-TB)).
631 tidy2((A,B), R) :-
632 tidy1(A,TA), tidy1(B,TB),(TB=true -> R=TA; R=(TA,TB)).
633 tidy2(A,A).

Demonstration code:
646 egtidy :- % see Figure 19
647 In1= (a :- b, true,c, (d->true;e)),
648 In2= (f :- true,(true;true;true),true),
649 tidy(In1,Out1),
650 portray_clause(Out1),
651 tidy(In2,Out2),
652 portray_clause(Out2).

egtidy.spy
% output from ’:- demos(egtidy).’

a :-
b,
c,
(d
-> true
; e
).

f.

% runtime = 0 sec(s)

Fig. 19 From
�
3.9.1.

egdemand.spy
% output from ’:- demos(egdemand).’

%W> failed(10>20)

% runtime = 0 sec(s)

Fig. 20 From
�
3.9.2.

egtimes.spy
% output from ’:- demos(egtimes).’

In 10000 repeats, each run took 8.01152e-006 seconds.

% runtime = 0.100144 sec(s)

Fig. 21 From
�
3.9.4.

3.9.2 demand(+Goal): warn if a goal fails.

653 demand(X) :- X,!.
654 demand(X) :- numbervars(X,0,_),barph(failed(X)).

Demonstration code:

660 egdemand :- % see Figure 20
661 demand(3 > 2),
662 demand(10 > 20).

3.9.3 repeats(+Num,+Goal): run a goal � times

663 repeats(N0,G) :-
664 N is N0,
665 forall(between(1,N,_),G).

3.9.4 times(+Num,+Goal,-Time): time an execution

666 times(N,G,Out) :-
667 T1 is cputime, repeats(N,true),
668 T2 is cputime, repeats(N,G),
669 T3 is cputime, Out is (T3-T2-(T2-T1))/N.

Demonstration code:

675 egtimes :- % see Figure 21
676 N=10000,
677 List = [a,b,r,a,c,a,d,a,b,r,a,s],
678 times(N,member(s,List),T),
679 format(’In ˜w repeats, each run took ˜w seconds. � n’,
680 [N,T]).

3.9.5 Lists/ conjuctions conversions. Convert a conjunc-
tion to a list:

681 c2l((X,Y),[X|Z]) :- !,c2l(Y,Z).
682 c2l(X,[X]).

Convert everything but the last item of a conjunction to a
list:

8

683 mostC2l((X,Y),[X|Z]) :- !,mostC2l(Y,Z).
684 mostC2l(_,[]).

Convert a list to a conjunction:
685 l2c([W,X|Y],(W,Z)) :- l2c([X|Y],Z).
686 l2c([X],X).

Convert disjunctions to a list.
687 d2l((X;Y),[X|Z]) :- !,d2l(Y,Z).
688 d2l(X,[X]).

3.9.6 clause1(?Head,?Body): does a goal match only
one clause?

689 clause1(X,Y) :-
690 singleton(X), clause(X,Y).
691

692 singleton(X) :-
693 Sym=’$singleton_’,
694 flag(Sym,_,0),
695 � + singleton1(Sym,X),
696 flag(Sym,1,1).
697

698 singleton1(Sym,X) :-
699 clause(X,_),flag(Sym,N,N+1),N > 1,!.

3.9.7 only(?Goal): can a goal only succeed once?
700 only(X) :-
701 Sym=’$only_’,
702 flag(Sym,_,0),
703 � + only1(Sym,X),
704 flag(Sym,1,1).
705

706 only1(Sym,X) :-
707 X, flag(Sym,N,N+1),N > 1,!.
708

709 solo(X) :-
710 only(X), X.

4 Start-up commands

711 :- current_prolog_flag(max_integer,X),
712 X1 is X - 1,
713 retractall(inf(_)),
714 assert(inf(X1)).

5 Bugs

None known but many suspected.

Acknowledgements This research was conducted at West Virginia
University under NASA contract NCC2-0979. The work was spon-
sored by the NASA Office of Safety and Mission Assurance under
the Software Assurance Research Program led by the NASA IV&V
Facility. Reference herein to any specific commercial product, pro-
cess, or service by trade name, trademark, manufacturer, or other-
wise, does not constitute or imply its endorsement by the United
States Government.

References

A License

This software is distributed under the GNU General Public Li-
cense.

A.1 nowarranty.txt

LIB comes with ABSOLUTELY NO WARRANTY: for more details type ’warranty’.
This is free software, and you are welcome to redistribute it under certain condi-

tions: for more details, type ’conditions’.

A.2 warranty.txt

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
version 2 (see http://www.gnu.org/copyleft/gpl.html or type ’conditions’).

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place -
Suite 330, Boston, MA 02111-1307, US.

A.3 conditions.txt

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICA-
TION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this
General Public License. The ’Program’, below, refers to any such program or work,
and a ’work based on the Program’ means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another language. (Here-
inafter, translation is included without limitation in the term ’modification’.) Each
licensee is addressed as ’you’.

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is not re-
stricted, and the output from the Program is covered only if its contents constitute a
work based on the Program (independent of having been made by running the Pro-
gram). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty; and
give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty) and
that users may redistribute the program under these conditions, and telling the user
how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is
not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sec-
tions of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you dis-
tribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Sec-
tion 2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium cus-
tomarily used for software interchange; or,

9

1. prod1.pl : “An example of the PROD Prolog delivery and documentation system.”
Available from http://tim.menzies.com/pdf/03prod1.pdf.

2. prod.pl : “A PROlog Documentation, and Delivery Tool”.
Available from http://tim.menzies.com/pdf/03prod.pdf.

3. prod0.pl : “TITLE”: a bare-bones minimal example of PROD.
Available from http://tim.menzies.com/pdf/03prod0.pdf.

4. prodabout.pl : “Motivations”: the why and who of PROD.
Available from Available from http://tim.menzies.com/pdf/03prodabout.pdf.

5. family.pl : “A family database”: documentation of a very simple Prolog family database.
Available from http://tim.menzies.com/pdf/03family.pdf.

6. lib.pl : “Commonly used predicates”:
Available from http://tim.menzies.com/pdf/03lib.pdf.

7. cfg.pl : “Handler for config files and command line options”:
Available from http://tim.menzies.com/pdf/03cfg.pdf.

8. gpl.pl : “Including GPL-2 in Prod”:
Available from http://tim.menzies.com/pdf/03gpl.pdf.

9. omo.pl : “Software cost estimation”:
Available from http://tim.menzies.com/pdf/03gpl.pdf.

Fig. 22 This document is part of the PROD delivery and documentation tool for Prolog applications. To find out more about PROD, the best
place to start is memo #2.

b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing source dis-
tribution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for mak-
ing modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the executable. How-
ever, as a special exception, the source code distributed need not include anything that
is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code from
the same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify, subli-
cense or distribute the Program is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you un-
der this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Program or
its derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based on
the Program), you indicate your acceptance of this License to do so, and all its terms
and conditions for copying, distributing or modifying the Program or works based on
it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to copy, dis-
tribute or modify the Program subject to these terms and conditions. You may not
impose any further restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of
the Program by all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this section has
the sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a con-
sequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright holder who
places the Program under this License may add an explicit geographical distribution
limitation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation as
if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and ’any later version’, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the
Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE

IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
’AS IS’ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PRO-
GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMIT-
TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-

10

ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

11

