
Lurch: a Lightweight Alternative to Model Checking

David Owen, Tim Menzies
Lane Department of Computer Science

West Virginia University
PO Box 6109 Morgantown, WV 26506-6109, USA

drobo75@hotmail.com, tim@menzies.us

Abstract

Formal methods, including model checking, is pow-
erful but can be costly, in terms of memory, time, and
modeling effort. Difficult problems, similar to the veri-
fication problem addressed by model checking, have been
shown to exhibit a phase transition, suggesting that an
easy range of problem instances might be solved much
faster and with much less memory using a new type of
model checker based on partial, random search.

Here we compare the performance of Lurch, our pro-
totype random search model checker, to the popular
tools SMV and SPIN. The tools’ performance is com-
pared for a range of randomly generated models based
on a simple tic-tac-toe game. Our results suggest that
Lurch might be used in place of existing tools for sys-
tems too large or too difficult to model small enough
for conventional model checking.

1 Introduction

As software projects grow large and complex, as cor-
rectness grows more critical, and as more people are in-
volved in the project, it becomes extremely important
and extremely difficult to find and correct errors [7].

Complex systems can be modeled in the formal
mathematical language of finite-state machines, and
properties of these models can be automatically ver-
ified using formal methods—here we deal specifically
with a subset of formal methods called model check-
ing [8]. Model checking is a powerful tool, but it can
be costly:

1. There is a state-space explosion problem: the in-
put model is a system of interacting local finite-
state machines; the single global finite-state ma-
chine constructed to represent all possible inter-
actions of the local machines requires exponential

(i.e., too much) memory, compared to the size of
the input [4].

2. In order to minimize the global state space, the
size and features of input models is restricted; in
practice much time and effort goes into writing
(and rewriting) input models, in part due to these
restrictions [11].

During the last twenty years much progress has been
made toward addressing these two issues. The two per-
haps most significant state-space reduction techniques
are symbolic model checking and partial order reduc-
tion. SMV, the symbolic model verifier, uses binary
decision diagrams, or BDD’s, to symbolically represent
the global state space. This approach has been very
successful in verifying models of synchronous (often
hardware) systems [4]. SPIN [5], another very pop-
ular model checking tool, uses partial order reduction
and specifically targets asynchronous (often software)
models.

Still, the general problem remains, and various
strategies—strategies that tend to increase the time,
effort and expertise required to write input models—
must be used to keep models as small as possible [1,4]:

1. Compositional Reasoning: the modular struc-
ture of some systems may be exploited; for exam-
ple, we make certain assumptions about one part
of the model in order to verify a property for an-
other part; then we try to guarantee that the as-
sumptions hold for the first part at any time the
property must hold for the other.

2. Abstraction: we may be able to map the actual
data values to a small set of abstract data values,
for example.

3. Symmetry: we may be able to infer global prop-
erties from local properties in a model where many
identical components interact with each other.



4. Induction: if we have an invariant process that
represents the behavior of a family of processes,
we can use induction to argue that any member
process has some desired property already proven
for the invariant.

Increasing Problem Size -

T
im

e
to

S
o
lv

e
(o

r
G

iv
e

U
p
) Phase Transition

?

Easy Range

(high probability

of solving)

Too-Hard Range

(practically

impossible)

Figure 1. Hard problems (worst-case in-
tractable) exhibit a phase transition.

Hard problems (worst-case intractable) like program
verification exhibit a phase transition (figure 1): there
is an easy range of problem instances and a range for
which it is practically impossible to find a solution—
but just a narrow band, the phase transition separaties
these two regions [1]. We are working on an alternative
to model checking, a tool that exploits the hypothetical
easy range (figure 1), so that models can be verified
quickly without using so much memory, and as a side
benefit makes possible features that greatly simplify
the modeling task.

How is it possible to exploit the easy range? We
do this by using a partial, random search—partial,
because unlike other model checking tools, the whole
space of possible behaviors is not explored; random,
because the choice of which behavior to explore is non-
deterministic. For input models in the easy range, a
random sample of possible behaviors will tell us nearly
everything we could learn from an exhaustive search
(for these models exhaustive search is simply overkill).
And for models in the too hard range, where the par-
tial, random search is not effective, exhaustive search
is intractable.

Or, as stated by Knuth in more general terms, “No
matter what complicated thing you have, . . . there’s a
fairly good chance that random sampling will give in-
sight. Of course if you start with purely random data
[e.g., the worst-case end of the the too hard range], then
random sampling is going to tell you that it is purely
random data” [3].

Elsewhere similar ideas about how program struc-
ture determines whether a verification problem falls
into the easy range are expressed in terms of funnels or
small backbones [12]. A funnel is a small set of key vari-
ables that largely determine the behavior of the entire
system; if an execution path stumbles into the funnel,
it will nearly always be directed to the same behavior.
Easy range models are easier to verify (and arguably
more testable [1, 2]) because they contain funnels. In
these models a comparatively small amount of explo-
ration is likely to quickly find the key variables and
therefore everything its possible to find.

In this paper we describe a simple random search
model checking tool, a tool which, if the phase transi-
tion and funnel ideas apply, should work nearly as well
as more sophisticated tools like SMV and SPIN.

Section 2 describes Lurch, which is the current C
implementation of our random search model checking
tool. Section 2.1 explains Lurch is able to represent
large systems without exponential memory, and sec-
tion 2.2 how we are able to find solutions without ex-
ponential time. Section 3 describes the experiment pre-
sented in this paper. In section 3.1 we describe how to
model a simple problem based on tic-tac-toe games us-
ing finite-state machines (the formal basis for model
checking input languages). In section 3.2 we compare
Lurch’s performance, on tic-tac-toe problems, to two
widely used model checkers, SPIN and SMV. The con-
cluding section discusses our results and describes our
continuing work on Lurch.

2 Lurch

2.1 Efficient AND-OR Graph Representa-
tion

The state-space explosion encountered by model
checking tools is due to the exponential size of the
global finite-state machine used to represent all pos-
sible interactions of the local machines in the input
model [4]. Figure 2 shows how it is possible to con-
struct a more efficient AND-OR graph representation
of the global state space. The translation procedure
assumes that finite-state machines have transitions de-
fined as follows: each transition begins in the current
state, and takes place if all inputs are true. If a tran-
sition takes place, all outputs are set true and the ma-
chine moves to the next state. Figure 3 shows a very
simple example. For more on the AND-OR graph rep-
resentation, see [1, 10,11].

In an AND-OR graph, an AND-node is considered
true if all of its parent nodes are true; an OR-node
is considered true if any one of its parents is true. We

2



1: for (each local machine) do
2: for (each state) do
3: Make an OR-node; connect it with a NO-edge

to each OR-node representing another of this
machine’s states.

4: for (each transition in this local machine) do
5: Make an AND-node; connect it with a NO-edge

to each AND-node representing another of this
machine’s transitions.

6: Make current state a YES-edge parent of the
AND-node;

7: Make input(s) (a) YES-edge parent(s) of the
AND-node;

8: Make next state a YES-edge child of the
AND-node;

9: Make output(s) (a) YES-edge child(ren) of the
AND-node.

Figure 2. Constructing an AND-OR graph to
represent the global state space.

add NO-edges to indicate which nodes may not be true
at the same time. For example, since a local machine
may not be in two states at once, NO-edges connect
all OR-nodes representing states in the same local ma-
chine (figure 2, line 3). Also, since two transitions in
a local machine may not occur simultaneously, NO-
edges connect all AND-nodes representing transitions
in the same local machine (figure 2, line 6). The result-
ing AND-OR graph has O(n) nodes and O(n2) edges,
where n is the size of the input [1].

2.2 A Fast Random Search Algorithm

Unfortunately, complete search of our AND-OR
graphs requires exponential time [1]. Figure 4 shows
the fast partial, random search procedure Lurch uses
to search AND-OR graphs. As stated briefly in the in-
troduction, the search procedure is partial in that there
is no guarantee that the entire AND-OR graph will be
explored. Each iteration (of the search function, begin-
ning on line 20 in figure 4) finds one global state path.
With many iterations it becomes likely that nearly all
of the reachable state space is explored. The procedure
is random in that, when two or more paths may be ex-
plored, the choice is made based on the order nodes
are popped from the queue (line 7). Since nodes are
always pushed at a random index (lines 19, 24, 29, 34),
the choice of which path to explore is nondeterministic.

For each node (Figure 4, line 1), kids and NO-kids
(line 2) are lists of children via normal and NO-edges.
The disqualified, frontier, and reached fields (line 3)
mark at what time during the search a node is disqual-

A

B

D/C      

C

D

          B/A

Finite-state machines: each has two states
and a single transtion, labeled input/output.

A

AND

B

            NO

D

C

NO       

AND

AND-OR graph: OR-nodes are labeled according
to the local state each represents; there is an
AND-node for each local transition above.
NO-edges join mutually exclusive nodes.

Figure 3. An AND-OR graph representing the
interaction of two finite-state machines.

ified, part of the frontier, or reached; wait (line 4) is
an integer indicating how may parents still need to be
reached before the node is reached—wait is initialized
to 1 for an OR-node and, for an AND-node, to the
number of parents it has.

Output from the search procedure is a series of
global state paths. For each path, there is a time value
associated with each global state in the path. Each
global state has a value for all local states in the input
model. The search is used to tell us which local states
were reached, and what time each was reached. So it is
possible to include temporal logic relationships as part
of the model, and to prove that local states represent-
ing the satisfaction or violation of temporal logic prop-
erties are reachable, even without exploring the entire
global state space. In this way our technique should
be able to provide nearly the same functionality as a
model checking tool—provided that the partial search
is nearly complete. The experimental results presented
in section 3.2 show that Lurch performs very well in
practice.

3



1: node {
2: kids, NO-kids;
3: disqualified, frontier, reached;
4: wait; }
5: process-queue(time) {
6: while (Q 6= ∅) do
7: n ← pop(Q);
8: if (n.disqualified 6= time) then
9: if (n is an OR-node) then

10: n.reached = time;
11: for (∀ nodes n′ ∈ n.NO-kids) do
12: n′.disqualified = time;
13: for (∀ nodes n′ ∈ n.kids) do
14: n′.wait ← n′.wait − 1;
15: if (n′.wait = 0) then
16: if (n′ is an OR-node) then
17: n′.frontier = time;
18: else if (n′ is an AND-node) then
19: Q ← n′ at random index; }
20: search() {
21: time = 0;
22: while (NOT(path-end or cycle)) do
23: for (∀ nodes n : n.frontier = time − 1) do
24: Q ← n at random index;
25: for (∀ nodes n′ ∈ n.NO-kids) do
26: n′.disqualified = time;
27: for (∀ nodes n : n.reached = time − 1) do
28: if (n.disqualified 6= time) then
29: Q ← n at random index;
30: process-queue(time);
31: time ← time + 1; }
32: main() {
33: for (i = 1 to MAX-PATHS) do
34: for (∀ nodes n) do
35: n.disqualified ← n.frontier ← n.reached

← UNDEF;
36: reset n.wait to initial value;
37: for (∀ nodes n : n is true initially) do
38: Q ← n at random index;
39: search(); }

Figure 4. Partial, random search procedure
for AND-OR graphs.

2.3 When to Stop (saturation)

Lurch is implemented as a Monte Carlo algorithm;
that is, the basic procedure is repeated and, the longer
it runs, the more accurate the result will be. But when
are the results accurate enough? When is it okay to
stop?

Figure 5 shows typical output from Lurch running
on a large finite-state machine input model. As Lurch

0

20

40

60

80

100

0 5 10 15 20 25 30 35

%
 N

ew
 In

fo
rm

at
io

n

Time (seconds)

Figure 5. Typical Lurch output for a large
model—quick saturation.

runs, it explores the reachable state space, at first find-
ing nearly all new information, but after a little while
most of Lurch’s findings are redundant; figure 5 il-
lustrates this: the percentage of information which is
new (vs. redundant) starts out at 100 %, but very
quickly decreases to near zero. We use this quick satu-
ration effect in Lurch output (see [11]) to tell when to
stop: when some set saturation point (close to 0 %) is
reached, we assume that Lurch is unlikely to find any
more interesting information.

In order to determine, while running, what percent-
age of its results are new, Lurch stores a hash value
for each global state it finds. When Lurch attempts
to store a value, if the value is not already stored, the
global state associated with it is considered new infor-
mation; otherwise it is considered redundant. In order
to save memory the user can limit the number of global
states stored. Because of this hashing scheme, some of
what Lurch considers redundant is actually new infor-
mation. So the user may manipulate how much mem-
ory Lurch uses and how accurate the search results are
by adjusting parameters at the command line. For the
experiments presented in this paper, Lurch was run at
or very close to its default settings, resulting in maxi-
mum run times of about one minute, close to the same
amount of time required by SMV and SPIN.

2.4 A Convenient Input Language

Lurch’s time and memory saving innovations make
it possible to add a convenient extenstion to our finite-
state machine input models: transitions may call func-
tions written in ordinary C code (a new feature added
since earlier work reported in [1, 11]). We expect this

4



will significantly reduce the modeling effort required
for many verification tasks. Also, the fact that func-
tions called by finite-state machines are written in C
(and not some other language) is simply because lurch
is implemented in C; that is, an Ada, C++, or Java im-
plementation of lurch would allow Ada, C++, or Java
functions.

This addition requires just slight changes to the
search procedure in figure 4. Before processing a node’s
children (line 13), if that node is an AND-node, the C
function associated with the input for the transition
represented by the AND-node is called. Only if it re-
turns TRUE are the AND-node’s children processed.
Also, in addition to processing the children, the C func-
tion associated with the output of the transition rep-
resented by the AND-node is called.

3 Tic-Tac-Toe

3.1 The Problem

(O turn) / (X turn)
O

blank

X
(X turn) / (O turn)

Figure 6. Finite-state machine representing
one space on a tic-tac-toe board (edges,
which represent transitions, are labeled in-
put / output).

Here we use a range of finite-state machine models
to compare the performance of Lurch to the popular
model checking tools SMV [6] and SPIN [5]. The prob-
lem is set up as follows: for an n × n board size tic-
tac-toe game already in progress, is it still possible for
either player to win (complete a row of n X’s or O’s)?

Why tic-tac-toe? Because it’s easy for a person to
look at the board for a game in progress and determine
whether it’s still possible for one of the players to win.
You would just check that all of the horizontal, vertical,
and two diagonal rows contain both X’s and O’s; if so,
obviously neither player can win. But for lurch (or
SMV or SPIN) there is no easy solution oracle. The
tools must actually simulate possible sequences of play
until they find a winner.

Figure 7 shows a very simple 2 × 2 tic-tac-toe board
for a game already in progress. Figure 8 shows the
Lurch input model for the board shown in figure 7.

X O

Figure 7. A 2 × 2 tic-tac-toe game in progress
(obviously it’s still possible for someone to
win—in fact it must always be possible for 2
× 2 boards).

The Lurch input model (figure 8) is divided into two
parts. As mentioned in section 2.4, the Lurch input
begins with ordinary C code, declaring global variables
and defining functions. After the double percent (%%),
finite-state machines are defined, each separated by one
or more blank lines. There is one four-column line for
each transition (columns are separated by semicolons).
The first column is the current state, the second a list
of inputs, the third a list of outputs (side effects of the
transition), and the fourth the state that the machine
goes to after the transition occurs. The first state listed
in each machine is considered true initially. A partic-
ular state can be explicitly declared true initially by
putting it on a line alone at the beginning of a new
finite-state machine definition.

In figure 8, the first four finite-state machines rep-
resent the four spaces on the tic-tac-toe board from
figure 7. Spaces (1,2) and (2,2) are initially X and O,
so the second and fourth finite-state machines begin
by explicitly listing these as initial states. The fifth
finite-state machine represents the property: it is still
possible for one of the players to win. Its initial state
is no-win, but if any combination of other machines’
states indicates that a player has won the game, this
machine transitions into the state win.

3.2 Comparison of Lurch, SMV, and
SPIN

To compare the performance of Lurch to SMV and
SPIN, we generated 20 random boards of each size,
from 2 × 2 up to 15 × 15 spaces. Figure 9 shows the
SMV input model for the tic-tac-toe problem show in
figure 7; figure 10 shows the same problem written in
Promela, the input language for SPIN. Models are writ-
ten a little bit differently for each of the three tools, but
are of approximately the same length and complexity.
For more on the SMV input language, see [6]; for more
on Promela, the input language for SPIN, see [9].

Figures 11, 12, and 13 compare Lurch to SMV and
SPIN (in two different modes), showing the time and
memory required, and the accuracy achieved by, each
tool. Each value plotted represents the average value

5



enum { UNDEF, X, O } turn = X;

int x_turn() {
if (t != X) return FALSE;
t = UNDEF; return TRUE;

}

int o_turn() {
if (t != O) return FALSE;
t = UNDEF; return TRUE;

}

%%

s1_1-blank; (x_turn()); {t = O;}; s1_1-X;
s1_1-blank; (o_turn()); {t = X;}; s1_1-O;

s1_2-X;
s1_2-blank; (x_turn()); {t = O;}; s1_2-X;
s1_2-blank; (o_turn()); {t = X;}; s1_2-O;

s2_1-blank; (x_turn()); {t = O;}; s2_1-X;
s2_1-blank; (o_turn()); {t = X;}; s2_1-O;

s2_2-O;
s2_2-blank; (x_turn()); {t = O;}; s2_2-X;
s2_2-blank; (o_turn()); {t = X;}; s2_2-O;

no-win; s1_1-X,s1_2-X; -; win;
no-win; s2_1-X,s2_2-X; -; win;
no-win; s1_1-X,s2_1-X; -; win;
no-win; s1_2-X,s2_2-X; -; win;
no-win; s1_1-X,s2_2-X; -; win;
no-win; s1_2-X,s2_1-X; -; win;
no-win; s1_1-O,s1_2-O; -; win;
no-win; s2_1-O,s2_2-O; -; win;
no-win; s1_1-O,s2_1-O; -; win;
no-win; s1_2-O,s2_2-O; -; win;
no-win; s1_1-O,s2_2-O; -; win;
no-win; s1_2-O,s2_1-O; -; win;

Figure 8. Figure 7 as a Lurch input model.

for 20 randomly-generated tic-tac-toe games already
in progress. For these plots Lurch was run at or near
the default parameters for stopping criteria (see section
2.3). SMV was run in its normal complete search mode,
but restricted to only the reachable state space (the
-f option). SPIN was run first in normal complete
search mode and then in its supertrace approximation
mode, which uses much less memory and, at least for
our experiments, produces at least as accurate results.
Tools were used on input models of increasing board
size until they ran out of memory (SMV plots only go
to 9 × 9; SPIN in normal mode only to 12 × 12). The
experiments were done on a DELL Inspiron with a 1.8
GHz processor and 512 MB of RAM, running Windows
XP Professional.

In figure 11, time for SMV spikes over one minute for
9 × 9 boards, SPIN (in normal complete search mode)
reaches about 20 seconds for 8 × 8 boards and remains
there up to 12 × 12. SPIN in supertrace approximation
mode requires about the same amount of time as SPIN
in normal mode, up to 9× 9 boards, and then continues
to increase, reaching nearly 90 seconds for 15 × 15

MODULE space(turn, init_val)
VAR

val : {blank, X, O};
ASSIGN

next(turn) := case
(val = blank & turn = X) : O;
(val = blank & turn = O) : X;
1 : turn;
esac;

init(val) := init_val;
next(val) := case

(val = blank & turn = X) : X;
(val = blank & turn = O) : O;
1 : val;
esac;

MODULE main
VAR

s1_1 : process space(turn, blank);
s1_2 : process space(turn, X);
s2_1 : process space(turn, blank);
s2_2 : process space(turn, O);
turn : {X, O};

ASSIGN
init(turn) := X;

SPEC
AG(!((s1_1.val = X & s1_2.val = X) |

(s2_1.val = X & s2_2.val = X) |
(s1_1.val = X & s2_1.val = X) |
(s1_2.val = X & s2_2.val = X) |
(s1_1.val = X & s2_2.val = X) |
(s1_2.val = X & s2_1.val = X) |
(s1_1.val = O & s1_2.val = O) |
(s2_1.val = O & s2_2.val = O) |
(s1_1.val = O & s2_1.val = O) |
(s1_2.val = O & s2_2.val = O) |
(s1_1.val = O & s2_2.val = O) |
(s1_2.val = O & s1_2.val = O)))

Figure 9. Figure 7 as an SMV input model.

boards. Lurch, using default (or near default) settings
for stopping criteria, remains very fast for boards up
to 10 × 10, and then reaches about one minute for 15
× 15 boards. Although it may be difficult to see on the
graph, Lurch is fastest for all runs in which any tool
took more than 5 seconds.

Figure 12 compares the amount of memory used by
Lurch, SMV and SPIN. To get fair memory informa-
tion, Windows XP resource use utilities were used to
log Working Set Peak for each tool. Logs were updated
only once per second, so memory use is not plotted for
board sizes so low that the tool ran too quickly to get
good memory data.

In figure 12, SPIN (running in normal mode) reaches
past 250 megabytes for 8 × 8 boards, and continues
at around 260 megabytes through board size 12 × 12.
One convenient feature of SPIN is that it runs out of
memory gracefully—there is an error message and the
program terminates. So in figure 12, from board size
8 × 8 to 12 × 12, the SPIN plot is actually showing:
how much memory was used before SPIN gave up; like-
wise, in figure 11, for board size 8 × 8 to 12 × 12, the
SPIN plot shows how much time it took SPIN to run
out of memory. SMV, at least in the close-to-default

6



mtype = {blank, X, O};
mtype s1_1 = blank, s1_2 = X;
mtype s2_1 = blank, s2_2 = O;

init {
mtype turn = X;
end : do

:: (s1_1 == blank && turn == X) ->
atomic { turn = O; s1_1 = X }

:: (s1_1 == blank && turn == O) ->
atomic { turn = X; s1_1 = O }

:: (s1_2 == blank && turn == X) ->
atomic { turn = O; s1_2 = X }

:: (s1_2 == blank && turn == O) ->
atomic { turn = X; s1_2 = O }

:: (s2_1 == blank && turn == X) ->
atomic { turn = O; s2_1 = X }

:: (s2_1 == blank && turn == O) ->
atomic { turn = X; s2_1 = O }

:: (s2_2 == blank && turn == X) ->
atomic { turn = O; s2_2 = X }

:: (s2_2 == blank && turn == O) ->
atomic { turn = X; s2_2 = O }

od;
}

never {
T0_init: if

:: (s1_1 == X && s1_2 == X) ||
(s2_1 == X && s2_2 == X) ||
(s1_1 == X && s2_1 == X) ||
(s1_2 == X && s2_2 == X) ||
(s1_1 == X && s2_2 == X) ||
(s1_2 == X && s2_1 == X) ||
(s1_1 == O && s1_2 == O) ||
(s2_1 == O && s2_2 == O) ||
(s1_1 == O && s2_1 == O) ||
(s1_2 == O && s2_2 == O) ||
(s1_1 == O && s2_2 == O) ||
(s1_2 == O && s2_1 == O) ->

goto accept_all
:: (1) -> goto T0_init
fi;

accept_all: skip
}

Figure 10. Figure 7 as a Promela model (input
for SPIN).

mode we used for this experiment, did not run out of
memory so gracefully. Figure 12 shows a spike around
260 megabytes for 9 × 9 boards. For any larger boards,
SMV required a lot of virtual memory and therefore ran
so slowly it was not practical to continue. Figure 12
shows (bottom right) that Lurch uses about the same
amount of memory as SPIN running in its supertrace
approximation mode, between 10 and 20 megabytes for
boards up to 15 × 15.

Figure 13 compares the accuracy (in terms of % er-
ror) of Lurch, SMV and SPIN in this experiment. Al-
though it is difficult to see, SMV is accurate (0 % error)
from board size 2 × 2 through 9 × 9, at which point
it was no longer used because it ran out of memory for
larger boards. When SPIN (in normal mode) reaches
7 × 7 and begins to run out of memory for some of the
runs, its % error quickly rises, so that for boards from
8 × 8 through 12 × 12, it is not very reliable. SPIN

0

10

20

30

40

50

60

70

80

90

2 4 6 8 10 12 14

T
im

e 
(s

ec
on

ds
)

Board Size (2 x 2, 3 x 3 ... 15 x 15)

Lurch
SMV
SPIN (normal)
SPIN (supertrace)

Figure 11. Time comparison for Lurch, SMV,
and SPIN (2 modes) running on tic-tac-toe
boards of increasing size.

0

50

100

150

200

250

300

2 4 6 8 10 12 14

M
em

or
y 

(m
eg

ab
yt

es
)

Board Size (2 x 2, 3 x 3 ... 15 x 15)

Lurch
SMV
SPIN (normal)
SPIN (supertrace)

Figure 12. Memory comparison for tic-tac-toe
experiment.

in supertrace mode behaves similarly, but is somewhat
reliable up to boards of size 10 × 10.

Only Lurch continues to be reliable through 15 × 15
boards, at which point we get the first false positive—
that is, Lurch’s partial search reached the predefined
saturation point without detecting the error, that it
was indeed possible for a player to win the game.

4 Conclusion

In comparison to SMV and SPIN, Lurch performed
very well for these experiments. Currently the only
drawback to using Lurch is the possibility, however un-
likely, of a false positive result. When SMV must be
terminated early because it runs out of memory, it is

7



0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14

%
 E

rr
or

Board Size (2 x 2, 3 x 3 ... 15 x 15)

Lurch
SMV
SPIN (normal)
SPIN (supertrace)

Figure 13. Accuracy comparison for tic-tac-
toe experiment.

obvious to the user that the verification has failed. And
SPIN, in both normal and supertrace modes, when it
runs low on memory, warns the user that the result can-
not be trusted. But Lurch, because it is based on a par-
tial search, can not provide the same level of certainty.
Because of this we do not suggest Lurch’s strategy as
a replacement for complete model checking methods,
where they succeed, i.e., boards up to around 8 × 8.
But for problems where model checking would require
too much memory or too much modeling effort, i.e.,
boards over 9 × 9, we believe Lurch will prove to be
a valuable addition to current model-based verification
tools.

We are now working on a new experiment to com-
pare Lurch and SMV’s performance on formal models
of a large flight guidance system. We hope to see the
same level of accuracy, and the same minimal time and
memory requirements seen in these tic-tac-toe experi-
ments.

References

[1] David Owen. Random Search of AND-OR Graphs
Representing Finite–State Models. Master’s thesis,
Lane Department of Computer Science and Electrical
Engineering, West Virginia University, 2002.

[2] David Owen, Tim Menzies, and Bojan Cukic. What
Makes Finite-State Machines More (or less) Testable?
In Proceedings of IEEE International Conference on
Automated Software Engineering (ASE), 2002.

[3] Donald Knuth. Things a Computer Scientist Rarely
Talks About. Stanford Center for the Study of Lan-
guage and Information, 2001.

[4] Edmund A. Clarke, Orna Grumberg, and Doron
A. Peled. Model Checking. MIT Press, Cambridge,
MA, 1999.

[5] Gerard J. Holzmann. The Model Checker SPIN. IEEE
Transactions on Software Engineering, 23(5), 1997.

[6] K. L. McMillan. The SMV System, 2000. Available at
http://www-cad.eecs.berkeley.edu/~kenmcmil/.

[7] Michael A. Friedman and Jeffrey M. Voas. Software
Assessment: Reliability, Safety, Testability. John Wi-
ley & Sons, 1995.

[8] Michael R. A. Huth and Mark D. Ryan. Logic in Com-
puter Science: Modelling and Reasoning About Sys-
tems. Cambridge University Press, 2000.

[9] Rob Gerth. Concise Promela Reference, 1997. Avail-
able at http://spinroot.com/spinMan/Quick.html.

[10] Tim Menzies, Bojan Cukic, Harhsinder Singh, and
John Powell. Testing Nondeterminate Systems. In
ISSRE 2000, San Jose, CA, 2000.

[11] Tim Menzies, David Owen, and Bojan Cukic. Satura-
tion Effects in Formal Verification. In Proceedings of
the International Symposium on Software Reliability
Engineering (ISSRE), 2002.

[12] Tim Menzies and Harhsinder Singh. Many Maybes
Mean (Mostly) the Same Thing. In 2nd International
Workshop on Soft Computing Applied to Software En-
gineering, Netherlands, 2001.

8


