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Abstract

As software grows more complex, automated verifi-

cation tools become increasingly important. Unfortu-

nately many systems are still too large for complete

verification. Here we describe LURCH, our prototype

approximate verification tool, and then present exper-

iments comparing LURCH to the popular SMV and

SPIN model checkers. First, we show that for artifi-

cially generated models LURCH is able to find errors in

very large state spaces using a relatively small amount

of memory. Next we show that LURCH can produce

surprisingly complete results, even when compared to

SMV, on a large, real-world model of a flight guidance

system. The cost of our technique is a slight reduction

in the accuracy of our verification. However, the ben-

efit of LURCH is scalability: this technique can find

errors in models that are too big for standard model

checkers.

1 Introduction

As software grows increasingly complex, verification
becomes more and more challenging. Automatic veri-
fication by model checking has been effective in many
domains including computer hardware design, network-
ing, security and telecommunications protocols, auto-
mated control systems and others [2, 4, 8]. Many real-
world software models, however, are too large for the
available tools. The difficulty—how to verify large
systems—is fundamentally a search issue: the global
state space representing all possible behaviors of a com-
plex software system is exponential in size. This state

space explosion problem has yet to be solved, even after
many decades of work [4].

We have been exploring LURCH, an approximate
(not necessarily complete) alternative to traditional
model checking based on a randomized search algo-
rithm. Randomized algorithms like LURCH have been
known to outperform their deterministic counterparts
for search problems representing a wide range of appli-
cations [9].

The cost of randomized algorithms are their inac-
curacies. If complete algorithms terminate, they find
all the features they are searching for. On the other
hand, by their very nature, randomized algorithms can
miss important features. Our experiments suggest that
this inaccuracy problem is not too serious. In the case
studies presented here, LURCH’s random search usu-
ally found the correct results. Also, these case studies
strongly suggest that LURCH can scale to much larger
models than standard model checkers like SMV and
SPIN.

While we prefer the complete search of SMV and
SPIN, some models are too large to be processed by
these standard methods. If the choice is random search
versus nothing at all (because the model is too big),
our results suggest that random search methods like
LURCH can still be a useful analysis tool.

In section 2, we discuss the idea of a phase transition,
which suggests one reason why simple, efficient strate-
gies may be effective for many potentially very diffi-
cult problems. Section 3 describes LURCH. The fol-
lowing three sections compare LURCH’s performance
with the complete verification tools SMV and SPIN,
running first on randomly generated models and then
on a large, real-world flight guidance system model.
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Figure 1. Hard problems exhibit a phase tran-
sition.

2 The Phase Transition

Difficult search problems, e.g., NP-hard problems,
have been shown to exhibit a phase transition (figure
1) [1, 7, 13]. In some cases the problem turns out to
be very easy to solve; other cases are impossible. For
these impossible cases, however, it usual easy and fast
to show that they can not be solved.
So there are easy cases and cases that can easily

be shown to be unsolvable. Are there cases that are
very hard but solvable? Or, for unsolvable cases, are
there any that are very hard to determine that they
are not solvable? Yes, these pathological cases exist,
but they are rare: there is just a narrow transition
region where a lot of effort is required to either solve
or determine that no solution is possible. This, in the
words of Cheeseman et.al., is “where the really hard
problems are” [1].
Figure 2 shows how a simple solution strategy can

be used to exploit easy problems but avoid wasting ef-
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Figure 2. The power of a simple solution strat-
egy.

fort on problems that are very hard or unsolvable [17].
We put a relatively small amount of effort into solv-
ing the problem with our simple strategy (effort could
be time, memory, or some other limited resource). If
the problem is easy, we solve it easily. If we do not
solve the problem, we know it is either very difficult
or impossible. Of course there is nothing revolutionary
about this approach. The key point is that the phase
transition region is narrow. A very simple strategy is
therefore capable of solving very nearly everything that
could be solved by much more sophisticated strategies,
but with much less effort.
One very simple search method are random search

methods that use (1) a fast partial search, (2) a ran-
dom selection amongst options, and (3) the occasional
reset/restart. For example, the GSAT family of al-
gorithms uses hill-climbing in order to test for CNF
satisfiability. Given a set of propositional clauses like

(A ∨ B ∨ C) ∧ (D ∨ E ∨ F ) ∧ . . .

GSAT starts by assigning a truth-value to every vari-
able. At every iteration GSAT picks a variable and
”flips” its value from true to false or vice versa. With
good heuristics for selecting the variable to be flipped,
these algorithms work amazingly well and scale to the-
ories much larger than what can be processed by com-
plete search [10].
This rest of this paper describes experiments with

the LURCH random search algorithm. Which GSAT
executes over CNF models, LURCH is designed for
statecharts modelled as transition functions. An alter-
native to building a new algorithm like LURCH would
be to add (e.g.) GSAT to a standard model checker.
We did not use that option for theoretical, pragmatic,
historical, and empirical reasons. Theoretically, we
have some analytical results offering us some confi-
dence in the generality of LURCH-style inference [15].
Pragmatically, the standard modelling tool used in the
software verification community are the statecharts ex-
pressible in LURCH, not the CNF formulae required for
GSAT. Historically, we have more experience with the
AND-OR graph search used in LURCH (described in
the next section) than the GSAT-style inference that
uses conjunctive normal forms. Hence, we found that
LURCH-style inference was very simple to implement.
For example, our current version of LURCH is less than
1000 lines long. By way of contrast, other researchers
report that augmenting standard model checkers with
heuristic search is quite difficult1. Finally, empiri-
cally, we have results that LURCH can perform as well,

1For example,Edelkamp et. al. [5], report that the internals
of SPIN are so complex, that it took nearly a year and the advice
of a hard-to-reach expert before they could add in a simple A*
search
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1: next-global-state(state) {
2: Execute a transition for every machine in which there is

at least one whose input conditions are satis£ed; if more
than one transition is possible for a machine, choose one
at random. }

3: path(state) {
4: while (¬(path-end OR cycle)) do
5: state← next-global-state(state); }

6: main() {
7: repeat
8: path(initial-global-state);
9: until (user-de£ned maximum reached) }

Figure 3. LURCH’s partial, random search
procedure.

or even better, than standard model checkers such as
SPIN or SMV (see below).

3 Approximate Verification

Model checking is used to verify that finite-state con-
current systems satisfy specified temporal logic prop-
erties [3, 8]. The amount of memory required to store
all possible behaviors of a finite-state concurrent sys-
tem is, in the worst case, an exponential function of the
size of the original model—this is the so-called state-

space explosion [4]. For many systems, model checking
requires a prohibitively large amount of memory and
time.

The full model checking technique may be overkill,
however, for problems which turn out to be in the
easily solvable range (recall figure 1). We have hence
been experimenting with a simple, efficient alternative
to model checking in a tool called LURCH. The algo-
rithm is described in brief in figure 3 (for full details,
see [14, 16, 17]. LURCH uses an memory-saving AND-
OR graph representation of the composite system be-
havior2. LURCH’s search space contains A∗V number
of nodes: i.e. one node for each possible assignment A

to a every variable V . By contrast, the search space of
a model checker contains at most AV nodes: i.e. one
node each consistent set of assignments to all variables.
The efficiency of the AND-OR graph is illustrated for a
range of models representing the Dining Philosophers
problem by figure 4 (we return to this problem in the
next section): LURCH’s memory requirements grows
far slower than the exponential memory requirements
of SPIN.

2To justify the analogy between LURCH results and phase
transition results reported by others, note that complete search
of the AND-OR graph used by LURCH to represent the com-
posite system is in fact NP-hard [16].

The algorithm is partial because, unlike the full
model checking technique, only a portion of possible
behavior is explored; the algorithm is random because
the choice of which behavior to explore is nondetermin-
istic. In practice, LURCH acts as the simple solution
strategy illustrated in figure 2, and, as indicated by
the experiments presented below, LURCH is surpris-
ingly successful compared to more sophisticated model
checking tools.
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LURCH is implemented as a Monte Carlo algo-
rithm: the basic search procedure runs again and again,
each time increasing the probability of finding a solu-
tion. In many cases LURCH quickly finds a solution,
but for those in which LURCH does not find a solution,
how do we know when to stop?
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Figure 5. LURCH output for a typical model:
quick saturation.
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Figure 5 shows output from LURCH running on a
typical input model. As LURCH runs, it explores the
reachable global state space, at first finding nearly all
new global state information, but after a little while
most of LURCH’s findings are redundant; figure 5 illus-
trates this: the percentage of global state information
which is new (vs. redundant) starts out at 100 %, but
very quickly decreases to near zero. We use this quick
saturation effect in LURCH output (see [14]) to deter-
mine when to stop: when some set saturation point
(close to 0 %) is reached, we assume that LURCH is
unlikely to find any more interesting information.3

Figure 5 shows that for typical models LURCH, if
it is likely to find a solution, is likely to find it quickly.
Conversely, if LURCH does not find a solution quickly,
it is likely that LURCH would never find a solution,
no matter how long it ran. This may seem counterin-
tuitive, saying essentially: if it’s not obvious, it’s not
there at all; but remember figures 1 and 2: unless we
were in the phase transition region, this is just what
we would expect. For problem cases in the easy region,
solutions are obvious. For problem cases in the region
easily shown impossible, it’s obvious that there is no
solution.
To efficiently track which global states have been

reached LURCH stores hash values based on the names
of all local states present in the global state to be
stored. Each global state gets one integer; these are
all kept in a tree, which remains approximately bal-
anced because the hash values are evenly distributed
across the range of integers. So in practice LURCH
treats these hash collisions as repeat global states al-
though they are actually potential repeat global states.
LURCH allows the user to limit the amount of memory
available for global state storage.
LURCH’s basic search procedure returns one global-

state path traced through the composite system be-
havior, terminating whenever a dead end or cycle is
found. In practice we have found that LURCH is able
to explore a space more quickly if the cycle detection
scheme is somewhat relaxed. In the current version,
the LURCH continues even after the first repeat global
state in a path (i.e., when a cycle is first detected);
instead, the while loop is exited after n repeat global
states, where n is a number input by the user. In this
way LURCH is allowed to pursue intersections, i.e.,
places where a path may cross itself but then continue
to find new information.
LURCH simulates synchronous execution of finite-

3For very large input models, such as the flight guidance sys-
tem described later, it is not practical to wait for global state
saturation; we are continuing to experiment with other stopping
criteria so that LURCH can run as quickly as possible, but with
consistent results.

state machines in the input model; that is, at each step
forward in time, every individual finite-state machine
that is able to execute a transition does, and the order
of these intra-time-step executions is considered irrele-
vant. Also, any side effects of a transition that would
interfere with the state of things at the start of the
time-step do not take effect until after all the machines
(attempt to) go forward.
By adding a simple modification we can simulate

asynchronous execution of the finite-state machines
in the input model. Instead of allowing an arbitrary
number of transitions to be processed at each time
step, which would correspond to giving all machines
a chance to move forward, we allow only one machine
to transition forward at each time step. Side effects of
that transition take effect before any other machines
have a chance to transition forward, and the particu-
lar interleaving of machines’ transitions is tracked, as
in an asynchronous system. We have used LURCH in
asynchronous mode to find to find deadlocks in Dining
Philosophers problem, as described below.
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Figure 6. LURCH and SPIN memory use for
models based on the Dining Philosophers
problem.

4 Dining Philosophers and N-Queens

Problems

Figure 6 compares memory required for LURCH and
SPIN searching for deadlocks in models representing
the Dining Philosophers problem, a well-known ab-
straction of processes competing for the use of shared
resources. In this problem a number of philosophers
(processes that think, wait, and eat) are seated around
a table with a fork between each and their two neigh-
bors. When a philosopher stops thinking and decides
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to eat, they pick up one fork, then another, eat, and
then replace both forks. If every philosopher decides to
eat at the same time, and they all pick up the left fork
(or if they all pick up the right fork) a deadlock occurs:
none can eat and none will allow any other to eat. For
LURCH, a global state which is at the end of a path
and which contains an invalid end state value for one
or more local machines is considered a deadlock, e.g.,
a global end state is reached when all forks are in the
state “held by philosopher on left” since at that point
all prevent each other from moving forward; but this
is not a legal end state, since all of the processes are
waiting to move forward.

We have plotted memory use for models represent-
ing 25, 50, 75, . . . 275 philosophers. Both LURCH and
SPIN terminated as soon as an error was found; other-
wise the output would likely resemble figure 4, which
describes data structures used to store the entire global
state space. In this experiment LURCH found dead-
locks using less memory than SPIN, but for the largest
models SPIN ran much faster. This may be because
the models are highly symmetric, and paths to the
deadlock are relatively short, i.e., they are conducive
to heuristics and optimization strategies not present in
LURCH.
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Figure 7. LURCH and SPIN memory use for
models based on the N-Queens problem.

Figure 7 compares LURCH and SPIN memory re-
quirements for models based on the N-Queens problem.
The object is to place N queens on an N×N board in
such a way that none attacks any other. Input models
were written so that each tool began with a blank board
and randomly assigned queens until 1) N queens were
placed legally, or 2) fewer than N queens were placed
but no more could legally be placed. Case 1) was de-
scribed as an error state in the model, so that the tool

would report it and terminate when it was discovered.
In this case LURCH is able to solve the search prob-

lem using much less memory than SPIN, which actually
runs out of memory for boards 14×14 and above (note
the logarithmic scale used for the y-axis). One very
interesting thing about this problem: SPIN appears to
require much more memory for even-numbered board
sizes. This is perhaps due to the fact that SPIN’s sys-
tematic search of the global state space must for some
reason explore more of the space before solving the
problem, for even-numbered board sizes. More impor-
tantly, this suggests one of the well-known advantages
randomized strategies have over systematic strategies:
they are less vulnerable to idiosyncrasies in the input.
While their behavior is not predictable in a specific
case, it may actually be more consistent over a range
of cases.

5 Tic-Tac-Toe

Figure 9 shows results from a series of experiments
comparing LURCH (our simple, approximate verifica-
tion strategy), to two widely used model checking tools,
SMV [12] and SPIN [8]. In this experiment models
were generated based on a simple tic-tac-toe game. For
board sizes ranging from 2×2 (worst-case composite
size 162 states) through 15×15 (worst-case composite
size 4.5×10107 states), with some spaces initially as-
signed at random, each verification tool was used to
determine whether it was still possible for either player
to win (this was expressed as a temporal logic prop-
erty). Figure 8 shows two examples, a board for which
it is still possible for one player to win and a board for
which it is not.

X O
O X X

O X O X
O

X O
O X X

O X O
O X

Figure 8. Two tic-tac-toe boards: for the board
on the left, it’s still possible for someone to
win; for the other it’s not.

Why tic-tac-toe? Because it’s easy for a person to
look at the board for a game in progress and determine
whether it’s still possible for one of the players to win.
You would just check that all of the horizontal, verti-
cal, and two diagonal rows contain both X’s and O’s;
if so, obviously neither player can win. But we have
generated input models so that for LURCH (or SMV
or SPIN) there is no easy solution oracle. The tools are
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forced to actually simulate possible sequences of play
until they find a winner.

The upper plot of figure 9 begins tracking memory
for 6×6 boards because models for smaller boards were
verified so quickly it was difficult to get fair memory use
data (memory was logged by the Windows XP typeperf

utility). In its normal complete search mode, SPIN ex-
ceeds 250 megabytes for 8×8 boards, and continues
at around 260 megabytes through board size 12×12.
One convenient feature of SPIN is that it runs out of
memory gracefully: there is an error message and the
program terminates. So in the middle plot, from board
size 8×8 to 12×12, the SPIN plot is actually showing
how much memory was used before SPIN gave up; like-
wise, for board size 8×8 to 12×12, the SPIN plot shows
how much time it took SPIN to run out of memory.

We also ran SPIN in its memory-saving supertrace
approximation mode. This required very little memory
compared to the other methods. The middle plot shows
that for SMV memory spikes around 260 megabytes for
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Figure 9. LURCH, SMV and SPIN running on
models based on tic-tac-toe games. Results
are average values for 20 randomly generated
boards of each size.

9×9 boards. For any larger boards, SMV required a lot
of virtual memory and therefore ran so slowly it was
not practical to continue. LURCH, finally, required
average memory between 2 and 9 megabytes for boards
between 9×9 and 15×15.
The lower plot of figure 9 compares the accuracy

(in terms of % error) of LURCH, SMV and SPIN in
this experiment. Where the complete verification tools
SMV and SPIN are inaccurate, it is because they ran
out of memory before finding the error (that it was still
possible for a player to win). Although it is difficult
to see, SMV is accurate (0 % error) from board size
2×2 through 9×9, at which point it was no longer used
because it ran out of memory for larger boards. When
SPIN reaches 7×7 and begins to run out of memory
for some of the runs, its % error quickly rises, so that
for boards from 8×8 through 12×12 it’s running out of
memory on most boards before finding the error. SPIN
in supertrace mode does better, but shows significant
error for boards over 9×9.
Only LURCH continues to be reliable through

15×15 boards, at which point we get the first incor-
rect answer from LURCH; that is, LURCH terminated
before finding that a player could win and reported
that neither could win—when in fact it was possible
for a player to win. Here we should distinguish be-
tween problem cases in the phase transition region (fig-
ures 1 and 2) and cases which are simply too large
to be solved easily. The key difference is that cases
in the phase transition are significantly more difficult
than other problems of the same size in the easy and
easily-shown-impossible regions. With this in mind,
LURCH’s failure here could be explained in at least
two ways. First, we may be approaching the point
where the problems are too large, whether or not they
are in the phase transition. Second (and more likely),
it could be that we have been solving phase transi-
tion problems every so often throughout the experi-
ment and only at 15×15 are the problems big enough
to thwart LURCH’s simple solution strategy. In any
case, the fact that LURCH outperforms more sophisti-
cated strategies suggests that no more than a few of the
problem cases encountered could have been the patho-
logical phase transition cases.

6 Flight Guidance System Experiment

To validate the performance and accuracy of
LURCH in a realistic situation, we conducted an exper-
iment using a model of the mode logic for a commer-
cial flight guidance system developed in collaboration
between Rockwell Collins Inc. and the University of
Minnesota. The mode logic is captured in RSML−e
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Figure 10. Flight Guidance System

and automatically translated to SMV and LURCH
through NIMBUS, the development environment for
RSML−e [18–20].

6.1 Background

A Flight Guidance System (FGS) is a component
of the overall Flight Control System (FCS) in a com-
mercial aircraft. It compares the measured state of
an aircraft (position, speed, and altitude) to the de-
sired state, generating pitch and roll guidance com-
mands to minimize the difference between the mea-
sured and desired state. The FGS can be broken down
to mode logic, which determines which lateral and ver-
tical modes of operation are active and armed at any
given time, and the flight control laws that accept in-
formation about the aircraft’s current and desired state
and compute the pitch and roll guidance commands. In
this case study we have used the mode logic.
Figure 10 illustrates a graphical view of a FGS in the

Nimbus environment. The primary modes of interest
in the FGS are the horizontal and vertical modes. The
horizontal modes control the behavior of the aircraft
about the longitudinal, or roll, axis, while the vertical
modes control the behavior of the aircraft about the
vertical, or pitch, axis. In addition, there are a num-
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Verification
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Figure 11. Veri£cation Framework.

ber of auxiliary modes, such as half-bank mode, that
control other aspects of the aircraft’s behavior.

6.2 NIMBUS and RSML−e

Figure 11 shows an overview of the NIMBUS tools
framework. The user builds a behavioral model of the
system in the fully formal and executable specification
language RSML−e (see below). After evaluating the
functionality and behavioral correctness of the specifi-
cation using the Nimbus simulator, users can translate
the specifications to the PVS, NuSMV, or LURCH in-
put languages.
RSML−e is based on the statecharts [6] like language

Requirements State Machine Language (RSML) [11].
RSML−e is a fully formal and synchronous data-flow
language without any internal broadcast events (the
absence of events is indicated by the −e).
An RSML−e specification consists of a collection

of input variables, state variables, input/output inter-
faces, functions, macros, and constants; input variables
are used to record the values observed in the environ-
ment, state variables are organized in a hierarchical
fashion and are used to model various states of the
control model, interfaces act as communication gate-
ways to the external environment, and functions and

macros encapsulate computations providing increased
readability and ease of use.
Figure 12 shows a specification fragment of an

RSML−e specification of the Flight Guidance System4.
The figure shows the definition of a state variable,
ROLL. ROLL is the default lateral mode in the FGS mode
logic.
The conditions under which the state variable’s

value changes are defined in the TRANSITION clauses
in the definition. The condition tables are encoded
in the macros Select ROLL and Deselect ROLL. The
use of macros not only improves the readability of the

4We use here the ASCII version of RSML−e since it is much
more compact than the more readable typeset version.
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STATE_VARIABLE ROLL : Base_State

PARENT : Modes.On

INITIAL_VALUE : UNDEFINED

CLASSIFICATION : State

TRANSITION UNDEFINED TO Cleared IF NOT Select_ROLL()

TRANSITION UNDEFINED TO Selected IF Select_ROLL()

TRANSITION Cleared TO Selected IF Select_ROLL()

TRANSITION Selected TO Cleared IF Deselect_ROLL()

END STATE_VARIABLE

MACRO Select_ROLL() :

TABLE

Is_No_Nonbasic_Lateral_Mode_Active() : T;

Modes = On : T;

END TABLE

END MACRO

MACRO Deselect_ROLL() :

TABLE

When_Nonbasic_Lateral_Mode_Activated() : T *;

When(Modes = Off) : * T;

END TABLE

END MACRO

Figure 12. A small portion of the FGS speci£-
cation in RSML−e .

specifications but also helps to localize errors and fu-
ture changes. The tables are adopted from the original
RSML notation–each column of truth values represents
a conjunction of the propositions in the leftmost col-
umn (a ‘*’ represents a ”don’t care” condition). If a
table contains several columns, we take the disjunction
of the columns; thus, the table is a way of expressing
conditions in a disjunctive normal form.

6.3 Experimental Setup

The RSML−e FGS model consists of 2564 lines of
RSML−e code defining 142 state variables. When
translated to SMV, we get 2902 lines of SMV code that
requires 849 BDD variables for encoding. The trans-
lated LURCH state machine model consists of 635 local
states and 1288 transitions. The RSML−e model has
been extensively validated through testing and we have
verified over 250 properties using NuSMV.
To validate the performance of the analysis tools, we

had to create a collection of faulty specifications and se-
lect a subset of the 250 properties that would reveal the
faults. To create the faulty specifications, we reviewed
the revision history of the FGS model and identified a
set of changes that had been made in response to faults
found during our original verification effort—from this
set we selected four faults for reintroduction into the
model. We then hand seeded these actual faults back
into the specification, thus creating four faulty ver-
sions of the FGS specification. As an example, fig-
ure 13 shows a missing condition fault contained in
macro When LGA Activated, the fault was created by

MACRO When_LGA_Activated() :

TABLE

Select_LGA() : T;

PREV_STEP(..LGA) = Selected : F;

/* Is_This_Side_Active : T; */

END TABLE

END MACRO

Figure 13. An example fault seeded into FGS
model.

commenting out the condition Is This Side Active =

True.
To select properties of interest, we reran the com-

plete verification suite on the FGS using NuSMV. We
found that 8 properties of the original 253 were vio-
lated in the four faulty specifications—these are the
eight properties we have used in this experiment. By
chance, two distinct properties were violated in each of
the four faulty FGS models. The properties are con-
sidered proprietary Rockwell Collins Inc. information
and we can only paraphrase their informal definitions
in this report. Nevertheless, the informal examples be-
low should give the reader some understanding of the
type of property we used in this experiment.

Property 4: If the flight director cues are off, the
flight director cues shall not be turned on when
the Transfer Switch is pressed, (provided that no
lateral or vertical mode is selected and 〈some ad-
ditional conditions〉).

Property 8: If mode annunciations are off, auto pilot
engagement shall cause ROLL mode to be selected
(provided 〈some additional conditions〉).

6.4 Results

LURCH was run with a search depth limit of 2000
and a “cut of” of 2000 seconds, that is, if no violation
was found within 2000 seconds, the search was termi-
nated. We could have used state space saturation (as
discussed earlier in this paper) as a termination cri-
teria. Given the enormous state space of the FGS,
however, reaching saturation was not an option so we
elected to simply select an ample, but tolerable, maxi-
mum search time. Finally, due to the random nature of
LURCH, we ran each verification run five times on each
FGS model for the set of properties. In both NuSMV
and LURCH, all properties were grouped in a batch.
Table 1 summarizes the performance results of

NuSMV and LURCH. Each entry shows the CPU time
(in seconds) and peak memory usage (in megabytes)
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Models Violations SMV LURCH
Test 1 Test 2 Test 3 Test 4 Test 5

FGS Fault1 Property 1 442s/28.3MB 435s/19.0MB 191s/9.7MB 50s/3.9MB 93s/5.6MB 14s/2.7MB
Property 2 442s/28.3MB 435s/19.0MB 191s/9.7MB 50s/3.9MB 93s/5.6MB 14s/2.7MB

FGS Fault2 Property 3 214s/25.8MB 35s/3.4MB 47s/3.9MB 31s/3.3MB 19s/2.8MB 18s/2.6MB
Property 4 214s/25.8MB NF NF NF NF NF

FGS Fault3 Property 5 1800s/40.3MB NF 338s/16.1MB NF 1711s/71.1MB NF
Property 6 1800s/40.3MB 110s/6.1MB 42s/3.7MB 47s/4.0MB 108s/6.0MB 68s/4.7MB

FGS Fault4 Property 7 635s/28.1MB 0.4s/1.9MB 0.3s/1.9MB 1.2s/2.0MB 0.7s/2.0MB 0.4s/1.9MB
Property 8 635s/28.1MB 131s/7.2MB 61s/4.4MB 86s/5.4MB 18s/2.8MB 36s/3.4MB

Table 1. Performance results for NuSMV and LURCH on the fault seeded FGS models.

taken to find the particular property violation. The
NuSMV results were obtained by running NuSMV with
command options -dynamic (dynamic variable reorder-
ing) and -coi (cone of influence reduction). Without
these options, NuSMV was unable to produce any re-
sult within 10 hours and without memory usage exceed-
ing 900MB. We report the LURCH results for each of
the five runs we performed for each specification. In
the table, an NF entry indicates that LURCH did not
find a counterexample for the property within our al-
lotted search time of 2000 seconds. For the original
FGS model, as expected, no property violations were
found by either NuSMV nor LURCH and the results
are not reported in the table.

Our results indicate that LURCH finds the same
property violations as NuSMV in most cases. When
LURCH finds a violation, it typically does so orders
of magnitude faster than NuSMV and LURCH uses
orders of magnitude less memory. This result is en-
couraging and indicates that LURCH could be a very
powerful refutation tool to use when debugging large
models—models that cannot be analyzed using current
exhaustive verification techniques.

For some properties LURCH either failed to find a
counterexample (Property 4) or only found it on some
runs (Property 5). This inaccuracy is not surprising
given the incomplete searches in LURCH. In fact, some
members of the research team expected LURCH to be
much less accurate than what we saw in this case study.
Furthermore, by extending the search depth during
“tinkering” with LURCH, the violation of Property 5
could also be consistently found in a reasonable amount
of time5. Our experiences lead us to believe that the
performance of LURCH can be improved by tuning its
search parameters—in the experiment we used the de-
fault settings. The effect of parameter tuning is largely
unknown at this time; for example: will we get bet-
ter performance through many shallow searches as op-
posed to a few long searches? Understanding and lim-

5The results gathered while informally experimenting with
LURCH are not shown in Table 1 to keep the conditions un-
changed for the formal experiment

iting the magnitude of the inaccuracy of LURCH on
realistic models is a critical issue if the techniques im-
plemented in LURCH are to be used as an approxi-
mation for full verification where the size of the model
precludes full verification—this issue will be the sub-
ject of future investigations.
Finally, the search results for LURCH are surpris-

ingly consistent—the variance in search time for a fault
is rather small. In addition, LURCH seems to reliably
find (or not find) violations of properties (recall that
Property 5 could be reliably found with somewhat dif-
ferent search parameters). This lends some support for
the hypothesis that if a fault is present it is either very
easy or very difficult to find. What we hope to explore
in future investigations is how many fault really fall in
the category of “really difficult to find,” regardless of
how LURCH’s adjustable parameters are set.

7 Conclusion

LURCH is an attempt to extend some of the ben-
efits of model checking to systems too large or irreg-
ularly structured for complete verification tools like
SMV or SPIN. The phase transition affect observed
by others suggests that exhaustive search strategies
may be overkill for many complex problems. If this
is true, a simple, efficient (albeit incomplete) strategy
like LURCH may be an effective way to check for many
of the errors possible in systems too large for complete
verification.
Our experiments with set of randomly generated in-

put models show that LURCH is able to scale at least
as well, and often much better than standard model
checking tools, to large state spaces. LURCH found
safety and liveness violations in these randomly gener-
ated input models using in some cases orders of mag-
nitude less memory. More importantly, LURCH found
errors in models so large that SMV and SPIN ran out of
memory before complete verification could be accom-
plished.
One interesting result (recall figure 7 and the N-

Queens problem) suggests that LURCH is less suscep-
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tible than SPIN to idiosyncrasies in the input model.
This is one of the advantages of randomized algorithms
recognized in other domains: they are less likely to be
biased in favor of or against a particular problem case.
Continuing experiments with LURCH should help us
understand whether this is a significant advantage for
model checking problems.
Finally, the flight guidance system experiment sum-

marized above shows that LURCH is (at the very
least) a promising addition to the range of available
model checking tools. Results were surprisingly com-
plete and consistent, even for a very large and complex
model. Our future work will focus on exploring how
LURCH’s adjustable parameters should be tuned to
different types of models. We will also continue to ex-
plore what makes LURCH work better with some types
of models than with others.
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