
On the Advantages of Approximate vs. Complete Verification:

Bigger Models, Faster, Less Memory, Usually Accurate

Mats Heimdahl, Jimin Gao

Dept. of Computer Science & Engineering

University of Minnesota

Minneapolis, MN 55455

heimdahl@cs.umn.edu

jgao@ece.umn.edu

David Owen,Tim Menzies

Lane Dept. of Computer Science

and Electrical Engineering

West Virginia University

Morgantown, WV 26506

drobo75@hotmail.com

tim@menzies.us

1 Introduction

As software grows increasingly complex, verification
becomes more and more challenging. Automatic veri-
fication by model checking has been effective in many
domains including computer hardware design, network-
ing, security and telecommunications protocols, auto-
mated control systems and others [2, 4, 6]. Many real-
world software models, however, are too large for the
available tools. The difficulty—how to verify large
systems—is fundamentally a search issue: the global
state space representing all possible behaviors of a com-
plex software system is exponential in size. This state

space explosion problem has yet to be solved, even after
many decades of work [4].

We have been exploring LURCH, an approximate
(not necessarily complete) alternative to traditional
model checking based on a randomized search algo-
rithm. Randomized algorithms like LURCH have been
known to outperform their deterministic counterparts
for search problems representing a wide range of appli-
cations [7].

The cost of randomized algorithms are their inac-
curacies. If complete algorithms terminate, they find
all the features they are searching for. On the other
hand, by their very nature, randomized algorithms can
miss important features. Our experiments suggest that
this inaccuracy problem is not too serious. In the case
studies presented here, LURCH’s random search usu-
ally found the correct results. Also, these case studies
strongly suggest that LURCH can scale to much larger
models than standard model checkers like SMV and
SPIN.

While we prefer the complete search of SMV and
SPIN, some models are too large to be processed by

Increasingly Constrained Problems −→

E
ffo

rt
to

S
ol

ve
(o

r
G

iv
e

U
p)

Phase Transition
(hard or hard to
show impossible)

?

Easy
Easy to Show

Impossible

Figure 1. Hard problems exhibit a phase tran-
sition.

these standard methods. If the choice is random search
versus nothing at all (because the model is too big),
our results suggest that random search methods like
LURCH can still be a useful analysis tool.

2 The Phase Transition

Difficult search problems, e.g., NP-hard problems,
have been shown to exhibit a phase transition (figure
1) [1, 5, 8]. In some cases the problem turns out to
be very easy to solve; other cases are impossible. For
these impossible cases, however, it usual easy and fast
to show that they can not be solved.

So there are easy cases and cases that can easily
be shown to be unsolvable. Are there cases that are
very hard but solvable? Or, for unsolvable cases, are
there any that are very hard to determine that they
are not solvable? Yes, these pathological cases exist,



but they are rare: there is just a narrow transition
region where a lot of effort is required to either solve
or determine that no solution is possible. This, in the
words of Cheeseman et.al., is “where the really hard
problems are” [1].

Figure 2 shows how a simple solution strategy can
be used to exploit easy problems but avoid wasting ef-
fort on problems that are very hard or unsolvable [11].
We put a relatively small amount of effort into solv-
ing the problem with our simple strategy (effort could
be time, memory, or some other limited resource). If
the problem is easy, we solve it easily. If we do not
solve the problem, we know it is either very difficult
or impossible. Of course there is nothing revolutionary
about this approach. The key point is that the phase
transition region is narrow. A very simple strategy is
therefore capable of solving very nearly everything that
could be solved by much more sophisticated strategies,
but with much less effort.

3 Approximate Verification

Model checking is used to verify that finite-state con-
current systems satisfy specified temporal logic prop-
erties [3, 6]. The amount of memory required to store
all possible behaviors of a finite-state concurrent sys-
tem is, in the worst case, an exponential function of the
size of the original model—this is the so-called state-

space explosion [4]. For many systems, model checking
requires a prohibitively large amount of memory and
time.

The full model checking technique may be overkill,
however, for problems which turn out to be in the
easily solvable range (recall figure 1). We have hence
been experimenting with a simple, efficient alternative
to model checking in a tool called LURCH. The algo-

Increasingly Constrained Problems −→

E
ffo

rt
to

S
ol

ve
(o

r
G

iv
e

U
p)

Solved by
Simple

Strategy

Simple
Strategy

Can’t Solve

� Simple Strategy
Quits Here

Figure 2. The power of a simple solution strat-
egy.

1: next-global-state(state) {
2: Execute a transition for every machine in which there is

at least one whose input conditions are satisfied; if more
than one transition is possible for a machine, choose one
at random. }

3: path(state) {
4: while (¬(path-end OR cycle)) do
5: state← next-global-state(state); }

6: main() {
7: repeat
8: path(initial-global-state);
9: until (user-defined maximum reached) }

Figure 3. LURCH’s partial, random search
procedure.

rithm is described in brief in figure 3 (for full details,
see [9–11]. LURCH uses an memory-saving AND-OR
graph representation of the composite system behav-
ior1. LURCH’s search space contains A ∗ V number of
nodes: i.e. one node for each possible assignment A to
a every variable V . By contrast, the search space of
a model checker contains at most A

V nodes: i.e. one
node each consistent set of assignments to all variables.

LURCH’s basic search procedure returns one global-
state path traced through the composite system be-
havior, terminating whenever a dead end or cycle is
found. In practice we have found that LURCH is able
to explore a space more quickly if the cycle detection
scheme is somewhat relaxed. In the current version,
the LURCH continues even after the first repeat global
state in a path (i.e., when a cycle is first detected);
instead, the while loop is exited after n repeat global
states, where n is a number input by the user. In this
way LURCH is allowed to pursue intersections, i.e.,
places where a path may cross itself but then continue
to find new information.

4 Flight Guidance System Experiment

To validate the performance and accuracy of
LURCH in a realistic situation, we conducted an ex-
periment using a model of the mode logic for a com-
mercial flight guidance system (FGS) developed in col-
laboration between Rockwell Collins Inc. and the Uni-
versity of Minnesota. The mode logic is captured in
RSML−e and automatically translated to SMV and
LURCH through NIMBUS, the development environ-
ment for RSML−e [12–14].

1To justify the analogy between LURCH results and phase
transition results reported by others, note that complete search
of the AND-OR graph used by LURCH to represent the com-
posite system is in fact NP-hard [10].

2



Models Violations SMV LURCH
Test 1 Test 2 Test 3 Test 4 Test 5

FGS Fault1 Property 1 442s/28.3MB 435s/19.0MB 191s/9.7MB 50s/3.9MB 93s/5.6MB 14s/2.7MB
Property 2 442s/28.3MB 435s/19.0MB 191s/9.7MB 50s/3.9MB 93s/5.6MB 14s/2.7MB

FGS Fault2 Property 3 214s/25.8MB 35s/3.4MB 47s/3.9MB 31s/3.3MB 19s/2.8MB 18s/2.6MB
Property 4 214s/25.8MB NF NF NF NF NF

FGS Fault3 Property 5 1800s/40.3MB NF 338s/16.1MB NF 1711s/71.1MB NF
Property 6 1800s/40.3MB 110s/6.1MB 42s/3.7MB 47s/4.0MB 108s/6.0MB 68s/4.7MB

FGS Fault4 Property 7 635s/28.1MB 0.4s/1.9MB 0.3s/1.9MB 1.2s/2.0MB 0.7s/2.0MB 0.4s/1.9MB
Property 8 635s/28.1MB 131s/7.2MB 61s/4.4MB 86s/5.4MB 18s/2.8MB 36s/3.4MB

Table 1. Performance results for NuSMV and LURCH on the fault seeded FGS models.

4.1 Experimental Setup

The RSML−e FGS model consists of 2564 lines of
RSML−e code defining 142 state variables. When
translated to SMV, we get 2902 lines of SMV code that
requires 849 BDD variables for encoding. The trans-
lated LURCH state machine model consists of 635 local
states and 1288 transitions. The RSML−e model has
been extensively validated through testing and we have
verified over 250 properties using NuSMV.

To validate the performance of the analysis tools,
we had to create a collection of faulty specifications
and select a subset of the 250 properties that would
reveal the faults. To create the faulty specifications,
we reviewed the revision history of the FGS model and
identified a set of changes that had been made in re-
sponse to faults found during our original verification
effort—from this set we selected four faults for reintro-
duction into the model. We then hand seeded these
actual faults back into the specification, thus creating
four faulty versions of the FGS specification.

To select properties of interest, we reran the com-
plete verification suite on the FGS using NuSMV. We
found that 8 properties of the original 253 were vio-
lated in the four faulty specifications—these are the
eight properties we have used in this experiment. By
chance, two distinct properties were violated in each of
the four faulty FGS models.

4.2 Results

LURCH was run with a search depth limit of 2000
and a “cut of” of 2000 seconds, that is, if no violation
was found within 2000 seconds, the search was termi-
nated. We could have used state space saturation (as
discussed earlier in this paper) as a termination cri-
teria. Given the enormous state space of the FGS,
however, reaching saturation was not an option so we
elected to simply select an ample, but tolerable, maxi-
mum search time. Finally, due to the random nature of
LURCH, we ran each verification run five times on each
FGS model for the set of properties. In both NuSMV

and LURCH, all properties were grouped in a batch.

Table 1 summarizes the performance results of
NuSMV and LURCH. Each entry shows the CPU time
(in seconds) and peak memory usage (in megabytes)
taken to find the particular property violation. The
NuSMV results were obtained by running NuSMV with
command options -dynamic (dynamic variable reorder-
ing) and -coi (cone of influence reduction). Without
these options, NuSMV was unable to produce any re-
sult within 10 hours and without memory usage exceed-
ing 900MB. We report the LURCH results for each of
the five runs we performed for each specification. In
the table, an NF entry indicates that LURCH did not
find a counterexample for the property within our al-
lotted search time of 2000 seconds. For the original
FGS model, as expected, no property violations were
found by either NuSMV nor LURCH and the results
are not reported in the table.

Our results indicate that LURCH finds the same
property violations as NuSMV in most cases. When
LURCH finds a violation, it typically does so orders
of magnitude faster than NuSMV and LURCH uses
orders of magnitude less memory. This result is en-
couraging and indicates that LURCH could be a very
powerful refutation tool to use when debugging large
models—models that cannot be analyzed using current
exhaustive verification techniques.

For some properties LURCH either failed to find a
counterexample (Property 4) or only found it on some
runs (Property 5). This inaccuracy is not surprising
given the incomplete searches in LURCH. In fact, some
members of the research team expected LURCH to be
much less accurate than what we saw in this case study.
Furthermore, by extending the search depth during
“tinkering” with LURCH, the violation of Property 5
could also be consistently found in a reasonable amount
of time2. Our experiences lead us to believe that the
performance of LURCH can be improved by tuning its
search parameters—in the experiment we used the de-

2The results gathered while informally experimenting with
LURCH are not shown in Table 1 to keep the conditions un-
changed for the formal experiment

3



fault settings. The effect of parameter tuning is largely
unknown at this time; for example: will we get bet-
ter performance through many shallow searches as op-
posed to a few long searches? Understanding and lim-
iting the magnitude of the inaccuracy of LURCH on
realistic models is a critical issue if the techniques im-
plemented in LURCH are to be used as an approxi-
mation for full verification where the size of the model
precludes full verification—this issue will be the sub-
ject of future investigations.

Finally, the search results for LURCH are surpris-
ingly consistent—the variance in search time for a fault
is rather small. In addition, LURCH seems to reliably
find (or not find) violations of properties (recall that
Property 5 could be reliably found with somewhat dif-
ferent search parameters). This lends some support for
the hypothesis that if a fault is present it is either very
easy or very difficult to find. What we hope to explore
in future investigations is how many fault really fall in
the category of “really difficult to find,” regardless of
how LURCH’s adjustable parameters are set.

5 Conclusion

Preliminary results with a random search device for
checking temporal properties have been very encourag-
ing. We are hence motivated to test the generality of
this work via future case studies.

Acknowledgements

We would like to thank Steve Miller, David Lempia,
and Alan Tribble at Rockwell-Collins’ Advanced Tech-
nology Center for building the FGS models and pro-
viding us feedback on our translation tools. This work
was conducted at the University of Minnesota and West
Virginia University. Partial support for this work came
from the NASA Office of Safety and Mission Assurance
under the Software Assurance Research Program led
by the NASA IV&V Facility under NASA grant NAG-
1-224 and NASA contracts NCC-01-001, NCC2-0979,
NCC5-685. Reference herein to any specific commer-
cial product, process, or service by trade name, trade-
mark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Govern-
ment.

References

[1] P. Cheeseman, B. Kanesfy, and W. Taylor. Where
the Really Hard Problems Are. In Proceedings of the
Twelfth International Joint Conference on Artificial
Intelligence IJCAI–91, Sidney, Austrailia, 1991.

[2] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
NUSMV: A New Symbolic Model Checker. Interna-
tional Journal on Software Tools for Technology Trans-
fer, 2(4), 2000.

[3] E. Clarke, O. Grumberg, and D. Long. Verifica-
tion Tools for Finite-State Concurrent Systems. A
Decade of Concurrency—Reflections and Perspectives,
803, 1993.

[4] E. Clarke, O. Grumberg, and D. Peled. Model Check-
ing. MIT Press, Cambridge, MA, 1999.

[5] B. Hayes. On the Threshold. American Scientist,
91(1), 2003.

[6] G. Holzmann. The Model Checker SPIN. IEEE Trans-
actions on Software Engineering, 23(5), 1997.

[7] H. Kautz and B. Selman. Pushing the Envelope: Plan-
ning, Propositional Logic and Stochastic Search. In
Proceedings of the 13th National Conference on Artifi-
cial Intelligence and the 8th Innovative Applications of
Artificial Intelligence Conference, 1996.

[8] T. Menzies and B. Cukic. Adequacy of Limited Testing
for Knowledge-Based Systems. International Journal
on Artificial Intelligence Tools, 9(1), 2000.

[9] T. Menzies, D. Owen, and B. Cukic. Saturation Effects
in Formal Verification. In Proceedings of the Interna-
tional Symposium on Software Reliability Engineering
(ISSRE), 2002.

[10] D. Owen. Random Search of AND-OR Graphs Rep-
resenting Finite–State Models. Master’s thesis, Lane
Department of Computer Science and Electrical Engi-
neering, West Virginia University, 2002.

[11] D. Owen and T. Menzies. Lurch: a Lightweight Alter-
native to Model Checking. In SEKE ’03, 2003.

[12] J. M. Thompson, M. P. Heimdahl, and S. P. Miller.
Specification based prototyping for embedded systems.
In Seventh ACM SIGSOFT Symposium on the Founda-
tions on Software Engineering, number 1687 in LNCS,
pages 163–179, September 1999.

[13] J. M. Thompson, M. W. Whalen, and M. P. Heimdahl.
Requirements capture and evaluation in Nimbus: The
light-control case study. Journal of Universal Com-
puter Science, 6(7):731–757, July 2000.

[14] M. W. Whalen. A formal semantics for RSML−e. Mas-
ter’s thesis, University of Minnesota, May 2000.

4


