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Abstract 

 
This paper describes the role of requirements discovery 
during the testing of a safety-critical software system.  
Analysis of problem reports generated by the integration 
and system testing of an embedded, safety-critical 
software system identified four common mechanisms for 
requirements discovery and resolution during testing:  (1) 
Incomplete requirements, resolved by changes to the 
software, (2) Unexpected requirements interactions, 
resolved by changes to the operational procedures, (3) 
Requirements confusion by the testers, resolved by 
changes to the documentation, and (4) Requirements 
confusion by the testers, resolved by a determination that 
no change was needed.  The experience reported here 
confirms that requirements discovery during testing is 
frequently due to communication difficulties and subtle 
interface issues.  The results also suggest that “false 
positive” problem reports from testing (in which the 
software behaves correctly but unexpectedly) provide a 
rich source of requirements information that can be used 
to reduce operational anomalies in critical systems. 
 
 
1.  Introduction 
 
   This paper describes the role of requirements discovery 
during the testing of a safety-critical software system.  
Difficulties with requirements have been repeatedly 
implicated as a source of both testing defects [2, 7] and 
accidents in deployed systems [3, 10].  In an effort to 
improve our understanding of how requirements 
discovery occurs during testing, and how such discoveries 
are resolved (or are not resolved) prior to deployment, we 
investigated the requirements-related problems reported 
during testing of a safety-critical system currently under 
development. Analysis of the problem reports generated  
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during integration and system testing of the software 
distinguished four common mechanisms for requirements 
discovery and resolution:  
   (1) Incomplete requirements, resolved by changes to the 
software.  As often occurs, testing caused several 
previously unidentified requirements to surface.  These 
new requirements usually involved complicated interface 
issues between software components or between hardware 
and software.  Several of the incomplete requirements 
involved fault protection, of special concern 
in safety-critical systems. 
   (2) Unexpected requirements interactions, resolved by 
changes to the operational procedures.  A closely related 
mechanism for requirements discovery was the 
identification during testing of unexpected interactions 
among the existing requirements.  Typically, these 
interactions resulted in new required sequencing of 
activities when the interleaved processes unexpectedly 
caused incorrect behavior or did not achieve the required 
precondition for correct execution of the software.   
   (3) Requirements confusion by the testers, resolved by 
changes to the documentation.  Testing revealed some 
significant misunderstandings on the part of the testers 
regarding what the requirements actually were.  In these 
cases the software worked as required and the 
requirements were correct, but the software's behavior 
was unexpected.  The corrective action was not to fix the 
software, but to enhance the documentation in order to 
better communicate the required software behavior or 
requirements rationale.   
   (4) Requirements confusion by the testers, resolved by a 
determination that no change was needed.  In this 
mechanism testing also revealed a gap in requirements 
understanding.  However, the problem report was judged 
to be a “false positive,” i.e., indicating failure where the 
software in fact behaved correctly.  We found that in 
some cases where the software behaved correctly but 
unexpectedly, an opportunity was missed to prevent 
similar, subsequent, requirements confusion by the 
operators of the deployed system. We propose some 
guidelines for distinguishing and responding to such 
situations. 



   The experience reported here suggests that problem 
reports generated during testing are an underused source 
of information about potential requirement-related 
anomalies that may occur after the software is deployed.  
Test defect reports provide a unique source of insights  
into future users' gaps in domain knowledge, 
misidentification of requirement rationales, and erroneous 
assumptions regarding required sequences of activities.  
In this limited sense, testing problem reports may provide 
a preview of some possible operational problems.  The 
main contributions of the paper are (1) to identify the 
common mechanisms by which requirements discovery 
and resolution occurred during testing, and (2) to report 
the lessons learned regarding how such discoveries can be 
better used to reduce future requirements anomalies in the 
deployed system. 
   The rest of the paper is divided into sections as follows.  
Section 2 describes the approach used to investigate 
requirements discovery during testing.  Section 3 
discusses and evaluates the results in the context of some 
illustrative examples.  Section 4 briefly compares the 
experience described here to others’ findings.  Section 5 
summarizes the lessons learned.  
 
2.  Approach 
 
   The data for this analysis consisted of the 171  
completed problem reports (PRs) written by project test 
teams during integration and system testing of the Mars 
Exploration Rovers (MER).  MER, to be launched in 
2003, will explore Mars with two robotic rovers equipped 
to search for evidence of previous water. The size of 
MER's flight software is roughly 300K Lines of Code, 
implementing approximately 400 software requirements 
of varying degrees of granularity.  Although the software 
was delivered in a series of builds, we do not distinguish 
here among the builds due to the relatively small number 
of PRs. 
   The on-line problem reports (PRs) filled out by the 
project consist of three parts.  The first part describes the 
problem and is filled out by the tester when the problem 
occurs.  The second part is filled out by the analyst 
assigned to investigate the problem. The third part is filled 
in later with a description of the corrective action that was 
taken to close out the problem.   
      The approach we selected for the analysis of the PRs 
was an adaptation of Orthogonal Defect Classification 
(ODC) [1].  ODC provides a way to "extract signatures 
from defects" and to correlate the defects to attributes of 
the development process (Fig. 1). Our ODC-based 
approach uses four attributes to characterize each PR:  
Activity, Trigger, Target, and Type. The Activity 
describes where the defect surfaced, e.g., Integration Test 
or System Test.  The Trigger describes the environment or 
condition that had to exis t for the defect to appear.  In the 
testing environment, the trigger was usually the testing of  

Figure 1.  Types of Corrections for Testing Reports 

 
a single command or of a capability sequence (i.e., a 
software requirement scenario).  The Target describes the 
high-level entity that was fixed in response to the problem 
report, e.g., Flight software, Ground software, etc.  The 
Type describes the actual correction that was made, i.e., 
“the meaning of the fix”  [1].       
    The two authors classified the PRs using the adapted 
ODC. Both of us have experience on flight projects at JPL 
but neither are directly involved with the testing of the 
MER software.  MER engineers generously assisted us 
with answers to our process and domain questions. 
    Following the ODC approach, we defined each 
classification attribute and the possible values it could 
take in a document that was reviewed by MER project 
personnel.  Adaptation of the standard ODC categories to 
the spacecraft domain was driven by the need to capture 
core properties of the anomalies seen during testing.  In 
order to improve repeatability and reduce bias, the 
process of classification involved three steps in which (1) 
each analyst separately classified the set of anomalies, (2) 
inconsistent classifications were highlighted and each 
analyst had an opportunity to correct any clear errors in 
her own classifications (e.g., missing fields), and (3) they 
analysts jointly reviewed the remaining inconsistencies 
and resolved them through dis cussion. A detailed 
description of the classification process and of efforts to 
remove bias is provided in [9]. 
   The work reported here is part of a multi-year pilot 
study to reduce the number of safety-critical software 
anomalies that occur post-launch.  This paper reports the 
first experience using the adapted ODC technique on a 
spacecraft currently under development.  The motivation 
was to mine the testing problem reports for insights into 
how requirements discovery during testing can be used to 
forestall or mitigate some critical software anomalies 
during operations.  
 
3.  Results and analysis 
 
   We here describe each of the four mechanisms for 
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requirements discovery and resolution identified during 
analysis of the problem reports (PRs) generated in 
integration and system testing of the spacecraft software.  
A subsection describes each mechanism in terms of the 
ODC classification values that characterize it, provides a 
more in-depth causal analysis of some typical examples, 
and evaluates the adequacy of the corrective action taken 
to resolve the requirements discovery. 
 
3.1 Incomplete requirements, resolved by changes 
to the software  
 
    Sixty-five of the completed 171 integration and system 
testing PRs were resolved by a change to the flight 
software (Fig. 2).  In ODC terms, the Target for these 
sixty-five PRs was “Flight Software.”   Twenty-three of 
the Flight Software PRs had an ODC Type of 
“Assignment/Initialization.”   These PRs were resolved by 
changes to parameters in the light of new system 
knowledge.  They entailed discovery of new requirements 
knowledge, but not of new functional requirements.  Two 
typical examples of these PRs are, in one case, a change 
to the value of the variable "max" to avoid unintended 
triggering of fault protection and, in another case, a 
change to require that a component come up disabled 
rather than enabled after a reboot.   
    Another twenty-three of the sixty-five Flight Software 
testing PRs had an ODC Type of “Function/Algorithm.”  
Some of these changes involved design or implementation 
issues such as testing of functions not yet delivered in the 
current build.  However, the PRs of interest to us from a 
requirements perspective are the ten that entailed more 
substantial changes to the flight software as the result of 
knowledge gained during testing.   
    Each of these ten PRs was resolved by requiring a new 
software function.  Many of the corrective actions taken 
to close these PRs involved additional reasonableness 
checks on preconditions and post-conditions. Several 
involved startup/restart scenarios, or the correct triggering 
of recovery software.  New requirements included an 
additional health check, a parameter validation check, an 
inhibit to checks of disabled software, distinguishing 
unavailability from non-response of a unit, turning off 
encoding in some cases, ignoring false out-of-order 
messages, providing a new capability to copy a rate to a 
register, an additional check so a warning does not occur 
in a shutdown mode, and a new capability to command a 
hardware unit. 
   An additional seven of the Flight Software PRs had an 
ODC Type of “Timing,” and seven more had an ODC 
Type of “Interfaces.”  In these types, as well, the role of 
testing in the discovery of new requirements was evident.  
Due to space constraints, we only mention briefly that 
several resulted in new requirements to insert delays in 
the software to compensate for interface delays. It is  
 

Figure 2 .  Fixing Testing Problem Reports   
 
worth noting that no PRs documented ext ra requirements 
(where the flight software did more than it should). 
 
3.2 Unexpected requirements interactions,  
resolved by changes to the operational 
procedures 
 
    The previous subsection described new requirements 
that were discovered during testing and resolved by 
changes to the flight software.  In this subsection we 
describe unexpected requirement interactions that were 
discovered during testing and fixed, not by changes to the  
software, but instead by changes to the procedures that 
will constrain operational activities.   
     This mechanism for requirements discovery tended to 
involve emerging requirements, not discovered until 
testing, on the sequencing or timing of activities in 
interfacing software components or software/hardware 
interfaces.  The ODC Target for these thirteen PRs was 
“Information Development” and the ODC Type for these 
PRs was “Missing or Incomplete Procedures.”     This 
second mechanism is a special case of the incomplete 
requirements described above, involving new knowledge 
and requirements that must be enforced on interactions. 
However, this mechanism differs from the first 
mechanism described above in that achievement of the 
new requirement is here allocated to procedures rather 
than to software.   
    Most of these PRs dealt  only with testing procedures 
and were not relevant to operations or maintenance.  
However, three of them involved discovery during testing 
of unexpected requirements interactions.   In each of these 
three cases, responsibility for the requirement was 
allocated to operations.  For example, in one PR testing 
revealed that unless a spacecraft component was re-
calibrated before use, it triggered fault-protection 
software.  The discovery of this requirement for 
sequential activities (first calibrate, then use) was 
allocated to an operational procedure.   
    In another, a tester observed that, contrary to 
expectations, an off command was issued redundantly by 
a software fault monitor.  Analysis showed that this 
behavior was correct, but idiosyncratic.  The corrective 



action was to avoid these redundant commands during 
operations by carefully selecting the high and low limits 
to preclude the state observed in testing.  It is easy to see 
how, even with a documented procedure in place, this 
situation might recur in operations.  
     This third mechanism for requirements discovery is of 
interest in preventing operational anomalies because 
corrections made to procedures still depend on the correct 
implementation of the procedure by the operator of the 
deployed system each time the relevant scenario arises.     
We were thus interested in whether some of the new 
requirements for constraining interactions, levied on the 
operational procedures, might be better handled in 
software. Given the small number of s in the study, no 
conclusion was appropriate.  However, the examples 
suggest that in long-lived systems, the tradeoff between 
easy but operator-dependent procedural fixes and more 
costly but operator-independent software fixes should be 
considered. 
   
3.3 Requirements confusion by the testers, 
resolved by changes to the documentation  
 
    The previous two subsections both described 
requirements discovery mechanisms in which the testers’ 
expectations were consistent with the required software 
behavior.  Testing revealed missing requirements that had 
to be added in order to achieve the correct, and expected, 
behavior.  The requirements discovery mechanism 
described in this section is different in that the testers’ 
expectations regarding the required software behavior 
were incorrect.  The resolution was to try to remove the 
source of the testers’ confusion by improving the 
documentation of the existing requirements and their 
rationale. 
    Fourteen of the 171 testing PRs were resolved by 
changes to the documentation.  The ODC Target for these 
PRs was “Information Development” and the ODC Type 
was “Documentation.”  (Only PRs that changed just 
documentation but not software or procedures are labeled 
this way).    
    Four of the PRs of type “Documentation” revealed 
erroneous requirements assumptions by the testers.  For 
example, in one case, the tester incorrectly assumed that 
certain heaters remain on during the transition from one 
mode to another, as the spacecraft transitions from the 
pre-separation mode of the Mars lander to the 
entry/descent mode (as the lander enters the Martian 
atmosphere).   The tester’s assumption was reasonable but 
incorrect. In fact, there is a software requirement on 
another component to turn the heaters off when this 
transition occurs.  Documentation of this fact was added 
to the Functional Design Document and the procedure 
writers were notified of the update in order to correct the 
misunderstanding prior to launch.   
    In these PRs it was requirements confusion, rather than 

new requirements that were discovered during testing.  
The perceived inconsistency between the test results and 
the required behavior was inaccurate.  The corrective 
action was not to fix the software but the source of 
confusion. This resulted in improved communication of 
the rationale for the existing behavior in the existing 
project documentation  
 
3.4 Requirements confusion by the testers, 
resolved by a determination that no change was 
needed.    
 
   The final mechanism for requirements discovery is 
similar to the previous one except that no fix is made, 
even to documentation.  Thirty of the 171 testing PRs 
have an ODC Target of “None/Unknown” and an ODC 
Type of “Nothing Fixed.” The reason that nothing was 
fixed is that these PRs were “false positives,” raising an 
alarm when nothing was broken.  Our interest in 
investigating this mechanism was to see if any of these 
PRs described requirements confusion or requirements 
interactions that could potentially recur in flight 
operations.  If so, it might be that some change to 
documentation or procedure was indicated.  
    As expected, for most of the PRs there was, in fact, 
nothing to fix.  For example, thirteen of the thirty PRs 
referred to problems that were no longer relevant (e.g., the 
current build removed the issue); two were clearly one-
time operator errors (e.g., misreading the test results); and 
three were relevant only to the test environment but not to 
flight.  However, eight of the thirty raised possible flight 
concerns, although in each case the software worked as 
required.  We describe several of these more fully here, 
since they support our claim that false positives 
encountered during testing often provide a useful window 
into latent requirements misunderstandings during 
operations. 
    For example, in one case the PR stated as an error that 
commands issued when a remote unit was off were not 
rejected as expected, but instead were completed when 
the unit rebooted.  Although the software operated 
correctly, the PR revealed a gap in understanding of the 
rationale for the software’s required behavior (a gap, by 
the way, that was shared by the analysts).  Since this 
requirements confusion could apparently reappear in a 
post-launch operational scenario, it may merit additional 
documentation to preclude a similar mistake by an 
operator. 
    Another PR of Type “Nothing Fixed” describes a 
situation in which one component, attempting to 
communicate with another component, received warning 
messages indicating that an invalid response had 
occurred.  In fact, the communication attempt happened to 
occur during a few-millisecond timeout that takes place in 
some particular scenarios.  This behavior is, in fact, 
correct and required, and subsequent communication 



attempts will be normal.  However, the effect of the 
timeout is rather subtle.   
     In a third example, the tester incorrectly assumed that 
a telemetry (data download) channel output the value of a 
counter when the channel instead provided the value of 
the counter’s high-water mark (the highest value yet 
recorded for the counter).  Thus, even when the counter 
was reset, the telemetry value remained constant.  The 
requirements rationale is sound -- that the fault-protection 
software needs information regarding the worst case over 
a time interval, not just the current snapshot of a 
frequently reset counter.  However, the requirements 
misunderstanding by the tester is reasonable and suggests 
that a similar erroneous assumption might be possible 
later. 
    Testing PRs often provide detailed descriptions of 
sequences of input, states, error messages, and even 
partial dumps in order that the test scenario can later be 
duplicated.  This level of detail is extraordinarily useful in 
allowing an analyst to pinpoint not only whether an error 
has occurred but also the source of any confusion 
regarding the required behavior.  Incorrect assumptions 
(e.g., about the effect of specific commands on the state 
of the system) and gaps in domain knowledge (e.g., of 
hardware idiosyncrasies or transients) can often be 
identified from the details in the problem reports.  
 
3.5 Implications for testing 
 
    Given limited project resources (in terms of schedule 
and budget), should these “false-positive” testing reports 
be documented further?   Based on the problem reports 
seen here and on past experience with operational 
anomalies [8, 9], we suggest the following guideline:  if 
the situation described in the problem report could recur 
in operations, and if the requirements confusion or 
misunderstanding of required interactions could also 
recur in operations, then the problem report may merit 
additional attention.  Using this guideline, each of the 
three examples above would have involved additional 
corrective actions.   
    For example, one such false-positive PR recorded a 
perceived discrepancy between two time tags that should 
be identical.  In fact, the software worked as required.  
The two time tags were two different representations of 
the same time (cumulative number of seconds since a 
standard base time and the translation of that value to the 
current UTC, the Universal Time). This misunderstanding 
by the tester is one that could be repeated by an operator 
or maintenance programmer with conceivably hazardous 
effect, so may merit additional documentation. 
    Experience with the MER testing PRs also suggests 
that PRs related to certain critical activities always merit 
additional attention even if the PR merely records 
requirements confusion. Thus, if the testing PR involves 
fault protection software, critical control software, critical 

maneuvers or activities (e.g., engine burns), or critical 
mission phases (e.g., insertion of the spacecraft into a 
planetary orbit), then the problem report should take into 
account measures to prevent the required behavior that 
surprised the testers from later surprising the operators. 

 
3.6 Implications for operations  

 
    False-positive problem reports from testing (when the 
software behavior was correct but unexpected, so nothing 
was fixed) have significant value in a development 
organization if the requirements confusion or emerging 
domain knowledge that led to them can be identified and 
remedied.  Especially in a long-lived spacecraft system 
where turnover of operational personnel is to be expected, 
loss of knowledge regarding requirement rationale can be 
substantial.  It appears that testers’ requirements 
confusion may provide some small degree of “crystal 
ball” insight into possible future post-release 
misunderstandings and, thus, the opportunity to mitigate 
those gaps, whether by documentation, training, or 
changes to software or procedures.   Techniques to trace 
the requirements misunderstandings encountered during 
testing into operations are at this time an open problem. 
    Some results from a recent study by the authors 
confirm that the requirements discovery mechanisms 
found in testing can affect safety-critical operations.  This   
ODC-based study profiled 199 safety-critical software 
anomalies recorded post-launch on seven spacecraft [9]. 
One of the surprises to emerge from that study was that 
some procedures needed for post-launch operations were 
not in place, and that these omissions contributed to 21% 
of the safety-critical anomalies.   Another finding related 
to requirements discovery was that in most of the 
anomalies of Type “Nothing Fixed” (14% of the total), 
what was originally reported as a safety-critical anomaly 
was in fact the required behavior of the spacecraft, i.e., 
requirements confusion.  Better understanding of the 
various requirements-discovery mechanisms in testing has 
as its primary goal to prevent slippage of requirements-
related testing problems into operations.  

 
4. Related Work 
 
    Most work on the analysis of testing defects has 
focused on measuring the quality or readiness of the 
software for release (see, e.g., [2]). In our study, the focus 
was instead on how to use the requirements discoveries 
made during testing (either of incomplete software or of 
incorrect human assumptions) to reduce critical defects 
during operations. 
    The results reported here tend to confirm the central 
role that Hanks, Knight, and Strunk have found for 
problems communicating domain knowledge [3].   Weiss, 
Leveson, Lundqvist, Farid, and Stringfellow specifically 



implicate requirements misunderstanding in several recent 
disasters, stating, “software-related accidents almost 
always are due to misunderstanding about what the 
software should do” [10].    In this regard, the instances of 
requirements confusion found here are somewhat similar 
to the examples of mode confusion by pilots and other 
operators that Leveson and others have described.   
    Previous work by one of the authors found that safety-
related testing defects on two earlier spacecraft arose most 
commonly from (1) misunderstanding of the software’s 
interfaces with the rest of the system and (2) 
discrepancies between the documented requirements and 
the requirements needed for correct functioning of the 
system [7].  A recent study by Lauesen and Vinter found 
similar results for non-critical systems, with slightly more 
than half the defect reports being requirements defects 
and the major source being missing requirements [5].    
Several defect classification methods (see, e.g., [6, 1]) 
include communication failures as root causes or as defect 
triggers.  However, these approaches tend not to 
distinguish requirements confusion in which the reported 
software behavior is actually correct from other kinds of 
communication failures, as we found helpful here.  These 
studies also focus on ways to prevent requirements 
defects from reaching testing, whereas we were more 
interested in how to use testing problem reports to prevent 
defects from reaching operations.    
    Harold recently suggested the use of “test artifacts” for 
software engineering tasks in describing future directions 
for work, but added that “this research is in its infancy” 
[4].  The experience described here suggests that testing 
problem reports may be useful test artifacts that can be 
more effectively mined for requirements insights to 
reduce post-deployment anomalies. 
  
 5. Conclusion 
 
The results reported here distinguish four common 
mechanisms for requirements discovery and resolution 
during the integration and system testing of a safety-
critical software system.   One of the lessons learned was 
that requirements discovery during testing is frequently 
due to communication difficulties and subtle interface 
issues.  Requirements discovery in testing thus drove 
changes not only to the software but also to the 
operational procedures and to the documentation of 
requirements rationale.  Another lesson learned was that 
false-positive problem reports from testing (where the 
software behaves correctly but unexpectedly) provide a 
rich source of insights into potential requirements-related 
anomalies during operations.  This information may be 
able to be used to reduce operational anomalies in critical 
systems.   
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