

Requirements Discovery during the Testing of Safety-Critical Software

Robyn R. Lutz
Jet Propulsion Laboratory
and Iowa State University

rlutz@cs.iastate.edu

 Inés Carmen Mikulski
Jet Propulsion Laboratory
Pasadena, CA 91109-8099

ines.c.mikulski@jpl.nasa.gov

Abstract

This paper describes the role of requirements discovery
during the testing of a safety-critical software system.
Analysis of problem reports generated by the integration
and system testing of an embedded, safety-critical
software system identified four common mechanisms for
requirements discovery and resolution during testing: (1)
Incomplete requirements, resolved by changes to the
software, (2) Unexpected requirements interactions,
resolved by changes to the operational procedures, (3)
Requirements confusion by the testers, resolved by
changes to the documentation, and (4) Requirements
confusion by the testers, resolved by a determination that
no change was needed. The experience reported here
confirms that requirements discovery during testing is
frequently due to communication difficulties and subtle
interface issues. The results also suggest that “false
positive” problem reports from testing (in which the
software behaves correctly but unexpectedly) provide a
rich source of requirements information that can be used
to reduce operational anomalies in critical systems.

1. Introduction

 This paper describes the role of requirements discovery
during the testing of a safety-critical software system.
Difficulties with requirements have been repeatedly
implicated as a source of both testing defects [2, 7] and
accidents in deployed systems [3, 10]. In an effort to
improve our understanding of how requirements
discovery occurs during testing, and how such discoveries
are resolved (or are not resolved) prior to deployment, we
investigated the requirements-related problems reported
during testing of a safety-critical system currently under
development. Analysis of the problem reports generated

The research described in this paper was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. It was funded by
NASA’s Office of Safety and Mission Assurance, Center Initiative
UPN 323-08. The first author’s research is supported in part by National
Science Foundation Grants CCR-0204139 and CCR-0205588.

during integration and system testing of the software
distinguished four common mechanisms for requirements
discovery and resolution:
 (1) Incomplete requirements, resolved by changes to the
software. As often occurs, testing caused several
previously unidentified requirements to surface. These
new requirements usually involved complicated interface
issues between software components or between hardware
and software. Several of the incomplete requirements
involved fault protection, of special concern
in safety-critical systems.
 (2) Unexpected requirements interactions, resolved by
changes to the operational procedures. A closely related
mechanism for requirements discovery was the
identification during testing of unexpected interactions
among the existing requirements. Typically, these
interactions resulted in new required sequencing of
activities when the interleaved processes unexpectedly
caused incorrect behavior or did not achieve the required
precondition for correct execution of the software.
 (3) Requirements confusion by the testers, resolved by
changes to the documentation. Testing revealed some
significant misunderstandings on the part of the testers
regarding what the requirements actually were. In these
cases the software worked as required and the
requirements were correct, but the software's behavior
was unexpected. The corrective action was not to fix the
software, but to enhance the documentation in order to
better communicate the required software behavior or
requirements rationale.
 (4) Requirements confusion by the testers, resolved by a
determination that no change was needed. In this
mechanism testing also revealed a gap in requirements
understanding. However, the problem report was judged
to be a “false positive,” i.e., indicating failure where the
software in fact behaved correctly. We found that in
some cases where the software behaved correctly but
unexpectedly, an opportunity was missed to prevent
similar, subsequent, requirements confusion by the
operators of the deployed system. We propose some
guidelines for distinguishing and responding to such
situations.

 The experience reported here suggests that problem
reports generated during testing are an underused source
of information about potential requirement-related
anomalies that may occur after the software is deployed.
Test defect reports provide a unique source of insights
into future users' gaps in domain knowledge,
misidentification of requirement rationales, and erroneous
assumptions regarding required sequences of activities.
In this limited sense, testing problem reports may provide
a preview of some possible operational problems. The
main contributions of the paper are (1) to identify the
common mechanisms by which requirements discovery
and resolution occurred during testing, and (2) to report
the lessons learned regarding how such discoveries can be
better used to reduce future requirements anomalies in the
deployed system.
 The rest of the paper is divided into sections as follows.
Section 2 describes the approach used to investigate
requirements discovery during testing. Section 3
discusses and evaluates the results in the context of some
illustrative examples. Section 4 briefly compares the
experience described here to others’ findings. Section 5
summarizes the lessons learned.

2. Approach

 The data for this analysis consisted of the 171
completed problem reports (PRs) written by project test
teams during integration and system testing of the Mars
Exploration Rovers (MER). MER, to be launched in
2003, will explore Mars with two robotic rovers equipped
to search for evidence of previous water. The size of
MER's flight software is roughly 300K Lines of Code,
implementing approximately 400 software requirements
of varying degrees of granularity. Although the software
was delivered in a series of builds, we do not distinguish
here among the builds due to the relatively small number
of PRs.
 The on-line problem reports (PRs) filled out by the
project consist of three parts. The first part describes the
problem and is filled out by the tester when the problem
occurs. The second part is filled out by the analyst
assigned to investigate the problem. The third part is filled
in later with a description of the corrective action that was
taken to close out the problem.
 The approach we selected for the analysis of the PRs
was an adaptation of Orthogonal Defect Classification
(ODC) [1]. ODC provides a way to "extract signatures
from defects" and to correlate the defects to attributes of
the development process (Fig. 1). Our ODC-based
approach uses four attributes to characterize each PR:
Activity, Trigger, Target, and Type. The Activity
describes where the defect surfaced, e.g., Integration Test
or System Test. The Trigger describes the environment or
condition that had to exis t for the defect to appear. In the
testing environment, the trigger was usually the testing of

Figure 1. Types of Corrections for Testing Reports

a single command or of a capability sequence (i.e., a
software requirement scenario). The Target describes the
high-level entity that was fixed in response to the problem
report, e.g., Flight software, Ground software, etc. The
Type describes the actual correction that was made, i.e.,
“the meaning of the fix” [1].
 The two authors classified the PRs using the adapted
ODC. Both of us have experience on flight projects at JPL
but neither are directly involved with the testing of the
MER software. MER engineers generously assisted us
with answers to our process and domain questions.
 Following the ODC approach, we defined each
classification attribute and the possible values it could
take in a document that was reviewed by MER project
personnel. Adaptation of the standard ODC categories to
the spacecraft domain was driven by the need to capture
core properties of the anomalies seen during testing. In
order to improve repeatability and reduce bias, the
process of classification involved three steps in which (1)
each analyst separately classified the set of anomalies, (2)
inconsistent classifications were highlighted and each
analyst had an opportunity to correct any clear errors in
her own classifications (e.g., missing fields), and (3) they
analysts jointly reviewed the remaining inconsistencies
and resolved them through dis cussion. A detailed
description of the classification process and of efforts to
remove bias is provided in [9].
 The work reported here is part of a multi-year pilot
study to reduce the number of safety-critical software
anomalies that occur post-launch. This paper reports the
first experience using the adapted ODC technique on a
spacecraft currently under development. The motivation
was to mine the testing problem reports for insights into
how requirements discovery during testing can be used to
forestall or mitigate some critical software anomalies
during operations.

3. Results and analysis

 We here describe each of the four mechanisms for

0

2

4

6

8

10

12

14

16

18

A
ss

ig
nm

t/I
ni

t

Fu
nc

tio
n/

A
lg

or
ith

m

In
te

rfa
ce

s

T
im

in
g

A
ss

ig
nm

t/I
ni

t

Fu
nc

tio
n/

A
lg

or
ith

m

In
te

rfa
ce

s

T
im

in
g

Integration Test System Test

0

5

10

15

20

25

30

35

40

45

50

Flight Software Ground Software Information
Development

None/Unknown Hardware

System Test

Integration Test

requirements discovery and resolution identified during
analysis of the problem reports (PRs) generated in
integration and system testing of the spacecraft software.
A subsection describes each mechanism in terms of the
ODC classification values that characterize it, provides a
more in-depth causal analysis of some typical examples,
and evaluates the adequacy of the corrective action taken
to resolve the requirements discovery.

3.1 Incomplete requirements, resolved by changes
to the software

 Sixty-five of the completed 171 integration and system
testing PRs were resolved by a change to the flight
software (Fig. 2). In ODC terms, the Target for these
sixty-five PRs was “Flight Software.” Twenty-three of
the Flight Software PRs had an ODC Type of
“Assignment/Initialization.” These PRs were resolved by
changes to parameters in the light of new system
knowledge. They entailed discovery of new requirements
knowledge, but not of new functional requirements. Two
typical examples of these PRs are, in one case, a change
to the value of the variable "max" to avoid unintended
triggering of fault protection and, in another case, a
change to require that a component come up disabled
rather than enabled after a reboot.
 Another twenty-three of the sixty-five Flight Software
testing PRs had an ODC Type of “Function/Algorithm.”
Some of these changes involved design or implementation
issues such as testing of functions not yet delivered in the
current build. However, the PRs of interest to us from a
requirements perspective are the ten that entailed more
substantial changes to the flight software as the result of
knowledge gained during testing.
 Each of these ten PRs was resolved by requiring a new
software function. Many of the corrective actions taken
to close these PRs involved additional reasonableness
checks on preconditions and post-conditions. Several
involved startup/restart scenarios, or the correct triggering
of recovery software. New requirements included an
additional health check, a parameter validation check, an
inhibit to checks of disabled software, distinguishing
unavailability from non-response of a unit, turning off
encoding in some cases, ignoring false out-of-order
messages, providing a new capability to copy a rate to a
register, an additional check so a warning does not occur
in a shutdown mode, and a new capability to command a
hardware unit.
 An additional seven of the Flight Software PRs had an
ODC Type of “Timing,” and seven more had an ODC
Type of “Interfaces.” In these types, as well, the role of
testing in the discovery of new requirements was evident.
Due to space constraints, we only mention briefly that
several resulted in new requirements to insert delays in
the software to compensate for interface delays. It is

Figure 2 . Fixing Testing Problem Reports

worth noting that no PRs documented ext ra requirements
(where the flight software did more than it should).

3.2 Unexpected requirements interactions,
resolved by changes to the operational
procedures

 The previous subsection described new requirements
that were discovered during testing and resolved by
changes to the flight software. In this subsection we
describe unexpected requirement interactions that were
discovered during testing and fixed, not by changes to the
software, but instead by changes to the procedures that
will constrain operational activities.
 This mechanism for requirements discovery tended to
involve emerging requirements, not discovered until
testing, on the sequencing or timing of activities in
interfacing software components or software/hardware
interfaces. The ODC Target for these thirteen PRs was
“Information Development” and the ODC Type for these
PRs was “Missing or Incomplete Procedures.” This
second mechanism is a special case of the incomplete
requirements described above, involving new knowledge
and requirements that must be enforced on interactions.
However, this mechanism differs from the first
mechanism described above in that achievement of the
new requirement is here allocated to procedures rather
than to software.
 Most of these PRs dealt only with testing procedures
and were not relevant to operations or maintenance.
However, three of them involved discovery during testing
of unexpected requirements interactions. In each of these
three cases, responsibility for the requirement was
allocated to operations. For example, in one PR testing
revealed that unless a spacecraft component was re-
calibrated before use, it triggered fault-protection
software. The discovery of this requirement for
sequential activities (first calibrate, then use) was
allocated to an operational procedure.
 In another, a tester observed that, contrary to
expectations, an off command was issued redundantly by
a software fault monitor. Analysis showed that this
behavior was correct, but idiosyncratic. The corrective

action was to avoid these redundant commands during
operations by carefully selecting the high and low limits
to preclude the state observed in testing. It is easy to see
how, even with a documented procedure in place, this
situation might recur in operations.
 This third mechanism for requirements discovery is of
interest in preventing operational anomalies because
corrections made to procedures still depend on the correct
implementation of the procedure by the operator of the
deployed system each time the relevant scenario arises.
We were thus interested in whether some of the new
requirements for constraining interactions, levied on the
operational procedures, might be better handled in
software. Given the small number of s in the study, no
conclusion was appropriate. However, the examples
suggest that in long-lived systems, the tradeoff between
easy but operator-dependent procedural fixes and more
costly but operator-independent software fixes should be
considered.

3.3 Requirements confusion by the testers,
resolved by changes to the documentation

 The previous two subsections both described
requirements discovery mechanisms in which the testers’
expectations were consistent with the required software
behavior. Testing revealed missing requirements that had
to be added in order to achieve the correct, and expected,
behavior. The requirements discovery mechanism
described in this section is different in that the testers’
expectations regarding the required software behavior
were incorrect. The resolution was to try to remove the
source of the testers’ confusion by improving the
documentation of the existing requirements and their
rationale.
 Fourteen of the 171 testing PRs were resolved by
changes to the documentation. The ODC Target for these
PRs was “Information Development” and the ODC Type
was “Documentation.” (Only PRs that changed just
documentation but not software or procedures are labeled
this way).
 Four of the PRs of type “Documentation” revealed
erroneous requirements assumptions by the testers. For
example, in one case, the tester incorrectly assumed that
certain heaters remain on during the transition from one
mode to another, as the spacecraft transitions from the
pre-separation mode of the Mars lander to the
entry/descent mode (as the lander enters the Martian
atmosphere). The tester’s assumption was reasonable but
incorrect. In fact, there is a software requirement on
another component to turn the heaters off when this
transition occurs. Documentation of this fact was added
to the Functional Design Document and the procedure
writers were notified of the update in order to correct the
misunderstanding prior to launch.
 In these PRs it was requirements confusion, rather than

new requirements that were discovered during testing.
The perceived inconsistency between the test results and
the required behavior was inaccurate. The corrective
action was not to fix the software but the source of
confusion. This resulted in improved communication of
the rationale for the existing behavior in the existing
project documentation

3.4 Requirements confusion by the testers,
resolved by a determination that no change was
needed.

 The final mechanism for requirements discovery is
similar to the previous one except that no fix is made,
even to documentation. Thirty of the 171 testing PRs
have an ODC Target of “None/Unknown” and an ODC
Type of “Nothing Fixed.” The reason that nothing was
fixed is that these PRs were “false positives,” raising an
alarm when nothing was broken. Our interest in
investigating this mechanism was to see if any of these
PRs described requirements confusion or requirements
interactions that could potentially recur in flight
operations. If so, it might be that some change to
documentation or procedure was indicated.
 As expected, for most of the PRs there was, in fact,
nothing to fix. For example, thirteen of the thirty PRs
referred to problems that were no longer relevant (e.g., the
current build removed the issue); two were clearly one-
time operator errors (e.g., misreading the test results); and
three were relevant only to the test environment but not to
flight. However, eight of the thirty raised possible flight
concerns, although in each case the software worked as
required. We describe several of these more fully here,
since they support our claim that false positives
encountered during testing often provide a useful window
into latent requirements misunderstandings during
operations.
 For example, in one case the PR stated as an error that
commands issued when a remote unit was off were not
rejected as expected, but instead were completed when
the unit rebooted. Although the software operated
correctly, the PR revealed a gap in understanding of the
rationale for the software’s required behavior (a gap, by
the way, that was shared by the analysts). Since this
requirements confusion could apparently reappear in a
post-launch operational scenario, it may merit additional
documentation to preclude a similar mistake by an
operator.
 Another PR of Type “Nothing Fixed” describes a
situation in which one component, attempting to
communicate with another component, received warning
messages indicating that an invalid response had
occurred. In fact, the communication attempt happened to
occur during a few-millisecond timeout that takes place in
some particular scenarios. This behavior is, in fact,
correct and required, and subsequent communication

attempts will be normal. However, the effect of the
timeout is rather subtle.
 In a third example, the tester incorrectly assumed that
a telemetry (data download) channel output the value of a
counter when the channel instead provided the value of
the counter’s high-water mark (the highest value yet
recorded for the counter). Thus, even when the counter
was reset, the telemetry value remained constant. The
requirements rationale is sound -- that the fault-protection
software needs information regarding the worst case over
a time interval, not just the current snapshot of a
frequently reset counter. However, the requirements
misunderstanding by the tester is reasonable and suggests
that a similar erroneous assumption might be possible
later.
 Testing PRs often provide detailed descriptions of
sequences of input, states, error messages, and even
partial dumps in order that the test scenario can later be
duplicated. This level of detail is extraordinarily useful in
allowing an analyst to pinpoint not only whether an error
has occurred but also the source of any confusion
regarding the required behavior. Incorrect assumptions
(e.g., about the effect of specific commands on the state
of the system) and gaps in domain knowledge (e.g., of
hardware idiosyncrasies or transients) can often be
identified from the details in the problem reports.

3.5 Implications for testing

 Given limited project resources (in terms of schedule
and budget), should these “false-positive” testing reports
be documented further? Based on the problem reports
seen here and on past experience with operational
anomalies [8, 9], we suggest the following guideline: if
the situation described in the problem report could recur
in operations, and if the requirements confusion or
misunderstanding of required interactions could also
recur in operations, then the problem report may merit
additional attention. Using this guideline, each of the
three examples above would have involved additional
corrective actions.
 For example, one such false-positive PR recorded a
perceived discrepancy between two time tags that should
be identical. In fact, the software worked as required.
The two time tags were two different representations of
the same time (cumulative number of seconds since a
standard base time and the translation of that value to the
current UTC, the Universal Time). This misunderstanding
by the tester is one that could be repeated by an operator
or maintenance programmer with conceivably hazardous
effect, so may merit additional documentation.
 Experience with the MER testing PRs also suggests
that PRs related to certain critical activities always merit
additional attention even if the PR merely records
requirements confusion. Thus, if the testing PR involves
fault protection software, critical control software, critical

maneuvers or activities (e.g., engine burns), or critical
mission phases (e.g., insertion of the spacecraft into a
planetary orbit), then the problem report should take into
account measures to prevent the required behavior that
surprised the testers from later surprising the operators.

3.6 Implications for operations

 False-positive problem reports from testing (when the
software behavior was correct but unexpected, so nothing
was fixed) have significant value in a development
organization if the requirements confusion or emerging
domain knowledge that led to them can be identified and
remedied. Especially in a long-lived spacecraft system
where turnover of operational personnel is to be expected,
loss of knowledge regarding requirement rationale can be
substantial. It appears that testers’ requirements
confusion may provide some small degree of “crystal
ball” insight into possible future post-release
misunderstandings and, thus, the opportunity to mitigate
those gaps, whether by documentation, training, or
changes to software or procedures. Techniques to trace
the requirements misunderstandings encountered during
testing into operations are at this time an open problem.
 Some results from a recent study by the authors
confirm that the requirements discovery mechanisms
found in testing can affect safety-critical operations. This
ODC-based study profiled 199 safety-critical software
anomalies recorded post-launch on seven spacecraft [9].
One of the surprises to emerge from that study was that
some procedures needed for post-launch operations were
not in place, and that these omissions contributed to 21%
of the safety-critical anomalies. Another finding related
to requirements discovery was that in most of the
anomalies of Type “Nothing Fixed” (14% of the total),
what was originally reported as a safety-critical anomaly
was in fact the required behavior of the spacecraft, i.e.,
requirements confusion. Better understanding of the
various requirements-discovery mechanisms in testing has
as its primary goal to prevent slippage of requirements-
related testing problems into operations.

4. Related Work

 Most work on the analysis of testing defects has
focused on measuring the quality or readiness of the
software for release (see, e.g., [2]). In our study, the focus
was instead on how to use the requirements discoveries
made during testing (either of incomplete software or of
incorrect human assumptions) to reduce critical defects
during operations.
 The results reported here tend to confirm the central
role that Hanks, Knight, and Strunk have found for
problems communicating domain knowledge [3]. Weiss,
Leveson, Lundqvist, Farid, and Stringfellow specifically

implicate requirements misunderstanding in several recent
disasters, stating, “software-related accidents almost
always are due to misunderstanding about what the
software should do” [10]. In this regard, the instances of
requirements confusion found here are somewhat similar
to the examples of mode confusion by pilots and other
operators that Leveson and others have described.
 Previous work by one of the authors found that safety-
related testing defects on two earlier spacecraft arose most
commonly from (1) misunderstanding of the software’s
interfaces with the rest of the system and (2)
discrepancies between the documented requirements and
the requirements needed for correct functioning of the
system [7]. A recent study by Lauesen and Vinter found
similar results for non-critical systems, with slightly more
than half the defect reports being requirements defects
and the major source being missing requirements [5].
Several defect classification methods (see, e.g., [6, 1])
include communication failures as root causes or as defect
triggers. However, these approaches tend not to
distinguish requirements confusion in which the reported
software behavior is actually correct from other kinds of
communication failures, as we found helpful here. These
studies also focus on ways to prevent requirements
defects from reaching testing, whereas we were more
interested in how to use testing problem reports to prevent
defects from reaching operations.
 Harold recently suggested the use of “test artifacts” for
software engineering tasks in describing future directions
for work, but added that “this research is in its infancy”
[4]. The experience described here suggests that testing
problem reports may be useful test artifacts that can be
more effectively mined for requirements insights to
reduce post-deployment anomalies.

 5. Conclusion

The results reported here distinguish four common
mechanisms for requirements discovery and resolution
during the integration and system testing of a safety-
critical software system. One of the lessons learned was
that requirements discovery during testing is frequently
due to communication difficulties and subtle interface
issues. Requirements discovery in testing thus drove
changes not only to the software but also to the
operational procedures and to the documentation of
requirements rationale. Another lesson learned was that
false-positive problem reports from testing (where the
software behaves correctly but unexpectedly) provide a
rich source of insights into potential requirements-related
anomalies during operations. This information may be
able to be used to reduce operational anomalies in critical
systems.

Acknowledgments. The authors thank Daniel Erickson

and the Mars Exploration Rover engineers and test teams
for their assistance and feedback.

References

[1] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D.
S. Moebus, B. K. Ray, and M.-Y. Wong, “Orthogonal Defect
Classification—A Concept for In-Process Measurements, IEEE
Trans on SW Eng, Nov. 1992, pp. 943-956.

[2] S. Gardiner, ed. Testing Safety-Critical Software, Springer-
Verlag, London, 1999.

[3] K. S. Hanks, J. C. Knight, and E. A. Strunk, “Erroneous
Requirements: A Linguistic Basis for Their Occurrence and an
Approach to Their Reduction,” Proc. 26th NASA Goddard SW
Eng Workshop, IEEE, Greenbelt, MD, Nov., 2001.

[4] M. J. Harold, “Testing: A Roadmap” in The Future of
Software Engineering, A. Finkelstein, ed., ACM Press, New
York, 2000.

[5] S. Lauesen and O. Vinter, “Preventing Requirements
Defects: An Experiment in Process Improvement,”
Requirements Engineering Journal, 2001, pp. 37-50.

 [6] M. Leszak, D. E. Perry, and D. Stoll, “A Case Study in Root
Cause Defect Analysis,” Proc 22nd Intl Conf SW Eng (ICSE’00),
IEEE CS Press, Los Alamitos, CA, 2002, pp. 428-437.

[7] R. Lutz, “Analyzing Software Requirements Errors in
Safety-Critical, Embedded Systems,” Proc IEEE Intl Symp Req
Eng, IEEE CS Press, 1993, pp. 126-133.

[8] R. Lutz and I. C. Mikulski, “Operational Anomalies as a
Cause of Safety-Critical Requirements Evolution,” The Journal
of Systems and Software, to appear.

[9] R. Lutz and I. C. Mikulski, “Empirical Analysis of Safety-
Critical Anomalies During Operations,” submitted to IEEE
Trans on SW Eng.

[10] K. A. Weiss, N. Leveson, K. Lundqvist, N. Farid, and M.
Stringfellow, “An Analysis of Causation in Aerospace
Accidents,” Space, 2001, Aug., 2001.

