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At the core of soft computing is the intuition that from impre-
cise knowledge, we can still make reasonable inferences. This pa-
per offers experimental and mathematical evidence for this intuition.
Based on a literature review and a newly developed mathematics of
“reachability”, it is argued that searches through a space containing
uncertainties, most of the reachable conclusions will be reached via
a small number of ”master variables” in a ”narrow funnel”. Such
narrow funnels can be found using very simple randomized search
methods.



1 Introduction

Some intuitions, while compelling, may not be correct. For example,
consider Zadeh’s intuition that:

... as the complexity of a system increase, our ability to make
precise and yet significant statements about its behavior dimin-
ishes until a threshold is reached beyond which precision and
significance (or relevance) become almost mutually exclusive
properties.

–Lofti Zadeh[Zadeh, 1973]

Our own pre-experimental notions was that this intuition was es-
sentially correct. It seemed clear that the more we say, the less we
are certain on what we say. As theory complexity increases, the cer-
tainty of that theory’s assertions decreases as we struggle to fill de-
tails which we may never have explored before. One way in which
complex theories get imprecise is the presence of “many maybes”;
i.e. multiple points where it is unclear which mutually incompatible
assertion should be made. This may be as simple as a dispute be-
tween different designers over the size of a numeric constant in an
equation. Alternatively it may be as complex as a qualitative reasoner
that generates innumerable possible conclusions, one for each set of
consistent possibilities within a large space of contradictions. In ei-
ther case, the problem is the same: assertions about some point are
contradictory.

However, after reviewing the available evidence, these intuitions
must be revised. A repeated observation is that within the current
generation of software,many maybes mostly mean the same thing.

0An earlier version of this paper, with the same title, appeared in the 2nd Inter-
national Workshop on Soft Computing applied to Software Engineering, Nether-
lands, February, 2001:http://varlet.csc.uvic.ca/˜scase01/



That is, if we ask software containing contradictory assertions to
report on all the ways we achieve certain goals, then there emerge
certain goals that are always true, or always false, across the wide
space of “maybes”. For these stable inferences, we can make precise
and categorical statements in the presence of complex and possible
uncertain assertions. Suppose these experimental observations are
a general result, and not just a result of a quirky selection of case
studies. If so then we have an explanation for the success of fuzzy
logic [Zadeh, 1973], genetic algorithms [Cordero et al., 1997], neu-
ral nets [Shavlik et al., 1991], qualitative reasoning [Iwasaki, 1989],
heuristic programming [Buchanan and Shortliffe, 1984], stochastic
inference (e.g. ant intelligence [Dorigo and Gambardella, 1997],
ISAMP[Crawford and Baker, 1994],
HT0 [Menzies and Michael, 1999] GSAT [Selman et al., 1992],
black-box testing [Gutjhar, 1999]) and many other approximate
soft reasoning techniques. These techniques work not because of
their intrinsic power, but because many probes across a space of
uncertainties will achieve the same result.

This chapter tests the generality of the experimental observation that
many maybes mostly mean the same thing. At issue is how much
effort we should spend on the construction of elaborate soft comput-
ing tools. We will offer experimental and theoretical evidence that,
in the general case, very simple tools such as the random search of
HT0 (described in§3) or the limited learning of TAR2 (described in
§6) should suffice for soft computing tasks that reason about a space
of uncertainties.

The theoretical case that many maybes mean mostly the same thing is
based on the “funnel theory” of Menzies, Easterbrook, Nuseibeh and
Waugh [Menzies et al., 1999]. Funnel theory, as presented in§2, has
an intuitive appeal and explains the counter-intuitive experimental
observations listed in§3. However, until this chapter, funnel theory
had no formal basis. Based on a mathematical argument, it will be
shown that we can routinely expect our software to contain narrow
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funnels. This maths will be presented in two parts. Firstly, in§4, an
average casereachabilitymodel is presented that computes the odds
of reaching some randomly selected part using a theory that contains
contradictions. This model has an odd behavior: the number of con-
tradictions per literal does not greatly effect the output of the model.
This odd behavior prompted the development a second model. Based
on a simulation of an abstract model of funnels,§5 argues that if
some conclusion can be reached via a narrow funnel and a wide fun-
nel, then a random search will tend to use the narrower funnel. The
argument is recursive: given a narrow funnel and a narrower funnel,
random search will favor the narrower funnel over the narrow fun-
nel. Hence, the narrowest funnels act like strange attractors in chaos
theory, pulling in all the arguments. Since these arguments will use
narrow funnels, there will be few points of disagreement. Hence, the
net result of most of the disagreements will be very similar that most
maybes will mean the same thing.§6 presents TAR2: an application
of TAR2 in which a very simple search device is adequate for con-
trolling a diverse range of devices. TAR2 is such a dumb algorithm
that its repeated success is inexplicableunlessnarrow funnels are
common.

2 Funnel Theory

According to funnel theory, arguments within software are pathways
through a space of possible contradictions. Each pathway leads to
some desired goals and contains a set of assignments to variables.
Given a set of goals, if we build proof trees for each goal separately,
then it is possible that these proofs will demand different assignments
to the same variables. That is, the proofs are contradictory around
those variables. The set of variables with contradictory assignments
are called thefunnelof an argument. The cardinality of this set is
a measure of how much the conclusions from this theory can vary.
Given andS arguments about the assignments toN variables in the
funnel, then there areSN combinations of proof trees that we can



believe at the same time. Depending on which assignment we en-
dorse, different proof trees will be endorsed and different goals will
be reachable.

Figure 1.

As the funnel sizeN shrinks, then there are exponentially less differ-
ent ways to resolve the contradictions in a theory and exponentially
less methods for reaching different goals. Funnel theory claims that
most searches through a space of contradictory options will lead to
the same goals if the pathways crossvery narrow funnels. Narrow
funnels have two properties suggesting that many maybes will lead
to the same consequences. Firstly, narrow funnels dictate how argu-
ments must be resolved around the funnel. If an argumentmustmake
it through a funnel in order to reach a goal, then that argument must
adapt itself to the shape of the funnel. Secondly, narrow funnels let us
ignore certain disagreements. Consider two arguments: one around a
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narrow funnel and another very peripheral to that funnel. The funnel
argument could be resolved quickly since only certain resolutions
will pass through the funnel. Further, we need not spend much time
on the peripheral argument since it is likely that most pathways will
never use that peripheral part of the model.

To understand the effects of funnels consider some ants at the neck
of Figure 1 arguing about how to best crawl down to the feet. Each
ant’s argument relates to one possible pathway across the skeleton.
Note that our search space has funnels: all the pathways must pass
through the lumbar spine just above the hips. Our ants might have
different disputes about the best way to handle fingers, ribs, and the
lumbar spine. Some of these arguments are irrelevant. For example,
arguing about how to traverse a finger is irrelevant to the goal of
reaching the feet since no pathway through the fingers takes us to the
ground without returning to our current position at the neck. Also,
with respect to some stated goal, the presence of funnels ensures
that some of these arguments only have one possible resolution. For
example, suppose one of our ants prefers not to crawl around the
lumbar spine since the bones there are too pointy. Given the goal of
vertical motion to the feet across the skeleton, that ant must surrender
to the inevitable and travel across the pointy lumbar spine. Clearly,
if the software contains the same narrow funnels as Figure 1, then
we would expect that the net effect of the contradictory possibilities
within that software would be the same.

3 Experimental Evidence

This section reviews empirical evidence that narrow funnels
are common in software systems. Elsewhere, Menzies and Cu-
kic [Menzies and Cukic, 2000] have cataloged the number of tests
used to certify expert systems. In theory, probing a space to find a
bug with probability10−x takes4.6 ∗ 10x tests to be 99% sure of
finding that event. To show this, note thatN randomly selected in-



puts has certainty
C = 1− (

(1− x)N
)

of finding some event with probabilityx. Hence, at a 99% certainty,
C = 0.99 and this equation becomes:

N =
ln(1− 0.99)

ln(1− x)
=

−4.6

ln(1− x)
(1)

If the space is being probed by a nondeterminate search engine, as

reference #tests
[Harmon and King, 1983] = 4..5

[Buchanan et al., 1983] ≈ 6
[Bobrow et al., 1986] = 5..10

[Davies, 1994] = 8..10
[Yu et al., 1979] = 10

[Caraca-Valente et al., 2000]< 13
[Menzies, 1999] = 40

[Ramsey and Basili, 1989] =50
[Betta et al., 1995] = 200

Figure 2. Number of tests used to certify expert systems.

often used in a heuristic-based expert system, then4.6 ∗ 10x would
be a theoretical lower bound on the required number of tests. Never-
theless an often repeated observation is that a small number of inputs
can often reach significant errors in a program (see Figure 2). One ex-
planation for this surprising observation is that narrow funnels very
quickly drive a small number of test cases towards the reachable fail-
ures.

Similarly, in conventional software, surprisingly few random probes
will detect significant errors in a system. Leveson heuristically ap-
plied partial descriptions of software fault trees to ADA code. She
claims that this heuristic search detected as many errors in her
studied system as a much longer, and much more formal, analy-
sis [Leveson, 1995]. If conventional software contained narrow fun-
nels, that would explain how Leveson’s heuristic partial probing was
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so successful since any argument, generated either by formal or in-
formal methods, would both be sucked towards the funnels.

Another method of probing a system is mutation testing. In mutation
testing, a test suite is assessed via its ability to distinguish a pro-
gram from some mutation of that program. Numerous researchers
in mutation testing report that most mutations give rise to the same
nominal and off-nominal behaviors [Budd, 1980, Michael, 1997,
Wong and Mathur, 1995, Acree, 1980]. This result can be explained
assuming narrow funnels. Mutators are applied randomly and if the
funnels are small, it is unlikely that the mutators will stumble across
them.

Another reason to believe in narrow funnels is that the overall struc-
ture of our programs may not support wide chains of arguments.
Bieman and Schultz [Bieman and Schultz, 1992] report that a seem-
ingly complex natural language processing system contains, on av-
erage, a small number of narrowdu-pathways. A du-path is a link
from where a variable isdefinedto where it isused. Clearly, the
upper bound on the number of du-pathways in a program is expo-
nential on the number of program statements. The lower bound on
the du-pathways is 1; i.e. the tail of each path touches the head of
another path. Figure 3 shows the Bieman and Schultz results: 95.1%
of the modules in their system held less that 50 du-pathways. Anal-
ogous results has been seen in procedural code. In one analysis of
4000 FORTRAN functions and 3147 “C” functions, the control flow
graph of those functions grows linearly with the number of state-
ments [Harrold et al., 1998]. That is, the control-flow diagram forms
a single-parent tree. Arguments extracted from single-parent trees
would be very narrow indeed.

There is much evidence that the average size of a funnel in AI-based
systems is very narrow. Researchers in AI and requirements engi-
neering explore inconsistent theories. A repeated result consistent
with narrow funnels is that committing to a randomly selected res-
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Figure 3. Path found in software modules by [Bieman and Schultz, 1992]

olution to a conflict reaches as much of a program as carefully ex-
ploring all resolutions to all conflicts. For example, Figure 5 shows
Crawford and Baker’s [Crawford and Baker, 1994] comparison of a
standard depth first search backtracking algorithm (TABLEAU) to
ISAMP, a randomized search theorem prover (shown in Figure 4).
ISAMP randomly assigns a value to one variable, then infers some
consequences using a fast forward chainer. After forward chaining,
if incomparable conclusions were reached, ISAMP re-assigns all the
variables and tries again (giving up afterMAX-TRIES number of
times). Otherwise, ISAMP continues looping till all variables are as-
signed. When implemented, Crawford and Baker found that ISAMP
took lesstime than TABLEAU to reachmorescheduling solutions
using, usually, just a small number ofTRIES. Crawford and Baker
offer a speculation why ISAMP was so successful: their systems con-
tained mostly “dependent” variables which are set by a small number
of “control” variables. Note that this dependent-control theory is con-
sistent with narrow funnels: the small number of control variables
are those found in the narrow funnels. TABLEAU failed since it’s
rigorous search demanded the resolution of unimportant arguments
outside the narrow funnels.

Experiments with randomized multiple-worlds inference engines
support the thesis that narrow funnels are common. If multiple
worlds of belief are created via very wide funnels, then we would
expect a large number of worlds created with each world condoning
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for TRIES := 1 to MAX-TRIES
{set all vars to unassigned;

loop
{if everything assigned

then return(assignments);
else pick any var v at random;

set v’s value at random;
forwardChainFrom(v);
if contradiction
then exit loop;
fi

fi
}
} return failure

Figure 4. The ISAMP algorithm [Crawford and Baker, 1994]

TABLEAU: ISAMP:
full search partial, random search
% Time % Time Tries

Success (sec) Success (sec)
A 90 255.4 100 10 7
B 100 104.8 100 13 15
C 70 79.2 100 11 13
D 100 90.6 100 21 45
E 80 66.3 100 19 52
F 100 81.7 100 68 252

Figure 5. Average performance of elaborate search (TABLEAU) vs ran-
domized search (ISAMP) on 6 scheduling problems (A..F) with different
levels of constraints and bottlenecks.

possibly different inferences. However, if such worlds are created
through narrow funnels, then we would see that only a small number
of worlds are created. Further, since there are few disagreements be-
tween the worlds, it is likely that the created worlds would condone
similar inferences. In results consistent with narrow funnels, Men-
zies, Easterbrook, Nuseibeh and Waugh [Menzies et al., 1999] report
that exploring a few set-covering worlds returned nearly as much in-



%test ‘ors/ands’ in a random order
X ror Y :- maybe -> (X;Y); (Y;X).
X rand Y :- maybe -> (X,Y); (Y,X).

maybe :- 0 is random(2).

% Assuming that an object O’s attribute A is X is
% legal (must not conflict with existing assumptions,
% must disappear on backtracking over this assumption
A of O is X :- a(A,O,Old), !, Old = X.
A of O is X :- assert(a(A,O,X)).
A of O is X :- retract(a(A,O,X)), fail.

% N times, zap assumptions, try the goal list.
ht0(0,_) :- !.
ht0(N0,G0) :- rememberBestCover(G0),

retractall(a(_,_,_)),
% Goals with lower weights
% are tried first
sort(G0, G1),
maplist(prove,G1,G),
N is N0 - 1,
ht0(N,G).

% Lower/raise a goal’s weight according to how well it works
prove(In/Goal,Out/Goal):-

X is 1 + random(10ˆ3)/10ˆ6,
(call(Goal) -> Out is In+X; Out is In-X).

% E.g: 5 times, random search for "sad" or "rich".
:- ht0(5,[1/sad,1/rich]).

Figure 6. HT0, simplified (handles acyclic ground theories only). The full
version contains many more details such as how variables are bound within
rand s and the implementation ofrememberBestCover . For full de-
tails, see [Menzies and Michael, 1999].

formation as a rigorous exploration of all worlds. That experiment is
described below.
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Figure 7. HT4 (solid line) vs HT0 (dashed line).U% denotes what per-
centage of the available domain data was ignored in each run.

The Menzies, Easterbrook, Nuseibeh and Waugh study compared the
behavior of two multiple-world reasoners: HT0 and HT4. HT4 gen-
erates all pathways from inputs to goals and sorts them into con-
sistent worlds of belief [Menzies, 1995]. HT0 just returns the first
world it finds randomly [Menzies and Michael, 1999]. HT0 random-
izes the order in which it searches for proofs. During the proof of
goal i, when processing a set of goals in a disjunction or a conjunc-
tion, the order of the processing is selected randomly (seerand/2,
ror/2 in Figure 6). If a proof of goali fails, the system does not
backtrack to retry one of goal1 . . . (i− 1). Instead, HT0 lowers a
weight associated with goali and moves on to try goali + 1 (see
prove/2 in Figure 6). When HT0 has finished with all the goals, it
wipes all the assumptions, sorts the goal list according to the adjusted



weights, then tries to prove them all again (seeht0/2 in Figure 6).
When HT0 and HT4 were run on the same examples, HT4’s run-
times were observed to be exponential while HT0 was less than cu-
bic [Menzies and Michael, 1999]. Also, and most important for our
discussion, the random search of HT0 reaches nearly as many goals
as the rigorous search of HT4. Menzies, Easterbrook, Nuseibeh and
Waugh executed thousands of models using HT0 and HT4. To gener-
ate these models, mutators would corrupt influences in a theory; e.g.
proportional signs were flipped to inversely proportional and visa
versa, influences were added at random, and less and less data was
offered to the reasoner. In a result consistent with most maybes mean
the same thing, the average difference in covered goals between the
random partial search of HT0 and the rigorous search of HT4 was
less than6% (see Figure 7).

4 Generalizing HT0 with Reachability
Theory

Did HT0 work because of quirks in its case study? Or was it an ex-
ample of a general principle? This section argues that HT0’s results
are quite general: the average odds of reaching a goal across a space
containing contradictions is quite high. These average-case odds can
be calculated using thereachability analysis[Menzies et al., 2000]
described below.

Reachability studies the odds of reaching a random part ofNAYO
graphs like Figure 8. Such NAYO graphs containNo-edges, And-
nodes, Yes-edges, andOr-nodes. Yes-edges denote valid inferences
and no-edges denote incompatibilities “maybes”. TheV nodes
of a NAYO graph are divided into and-nodes and or-nodes with
ratios andf and orf respectively (orf + andf = 1). In the
reachability model, and-nodes and or-nodes have mean parents
andp, orp respectively. Or-node contradict, on average,no other
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diet(fatty).
diet(light).
happy :-

tranquillity(hi)
; rich,healthy.

healthy :- diet(light).
satiated :- diet(fatty).
tranquillity(hi) :-

satiated
; conscience(clear).

happy tranquility(hi)

diet(light)

and1 rich

healthy

diet(fatty)
no

yesyes

yesyes

yes

satiated yes

yes

conscience(clear)

yes

Figure 8. A NAYO graph (shown right) connecting terms within some
theory (shown left).

or-nodes.andp, orp, no are random gamma variables with means
andfµ, andpµ, orpµ, noµ; “skews” andpα, orpα, noα; and range0 ≤
γ ≤ ∞. andf is a random beta variable with meanandfµ and range
0 ≤ β ≤ 1. And-nodes are reached at heightj via one parent at
heighti = j − 1 and all others at height:

i = β(depth) ∗ (j − 1) (2)

so 0 ≤ i ≤ (j − 1). Note that asdepth decreases, and-nodes find
their pre-conditions closer and closer to the inputs.

The probabilityP [j]and of reaching an and-node at heightj > 0 is
the probability that one of its parents is reached at heightj − 1 and
the rest are reached at height1..(j − 1); i.e.

P [j]and = P [j − 1] ∗



andp[j]∏
2

P [i]


 (3)

Or-nodes are reached at heightj via one parent at heighti = j − 1.
The probabilityP [j]or of reaching an or-node at heightj > 0 is the
probability of not missing any of its parents; i.e.

P [j]or = 1− (1− P [j − 1]) ∗



orp[j]∏
2

(1− P [i])


 (4)



FromP [j], we computeP ′[j]or by modifyingP [j] with two factors:
one for the odds of not entering into an inferencing loop, and one for
the odds of not causing contradictions:

P [j]no contradiction =
(
1− no

V

)n[j]∗orf

(5)

P [j]no loop =

(
1− 1

V

)n[j]∗orf

(6)

wheren[j] is a guesstimate of the size of the proof tree to depthj.
Observe the use ofn[j] ∗ orf in Equation 5 and Equation 6. And-
nodes contradict no other nodes; hence we only need to consider
contradictions fororf of the system. Also, since every and-node has
an or-node as a parent, then we need only check for loops amongst
the or-nodes.

The probabilityP [j] of reaching any node is hence the sum ofP ′[j]or

andP [j]and weighted by the frequencies of and-nodes and or-nodes;
i.e.

P [j] = andf ∗ P [j]and + orf ∗ P ′[j]or (7)

P ′[j]or = P [j]or ∗ P [j]no loop ∗ P [j]no contradiction (8)

A simulation of the above system of equations is around 200 lines
of Prolog. This model can be executed to generateP [j]. From this
figure, we find the number of testsN required to beC = 99% per-
cent certain of reaching a random node in a dependency graph using
Equation 1.

The above model was run for a wide range of input parameters; e.g.
up to 108 nodes, up to 1000 inputs, wildly varying the frequency
and skew of and-nodes, or-nodes, and no-edges, etc. The frequency
distribution of the generatedN values is shown in Figure 9 divided
according to thej (proof height) value. The simulation results shows
that HT0’s success was not a quirk of the models in its domains.
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Rather, if we explore a NAYO graph to more than a shallow depth
(j > 50) then in the usual case, we can reach most parts of that
theory with small number of random inputs.

5 Formal Funnel Theory

A formal analysis of funnel theory explains why the odds of reach-
ing some randomly selected part of a theory is barely effected by the
number of contradictions in that theory. In this section, a mathemat-
ical simulation demonstrates that given the choice of a narrow or a
wide funnels to reach a goal, a random search engine will select the
narrow funnel. That is, even if a theory supports many arguments,
randomized search will favor the less contentious parts of a theory.

Suppose some goal can be reached by a narrow funnelM or a wide
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Figure 9. Some frequency distributions of the number of tests required to
be 99% sure of reaching a node at heightj generated from the Menzies-
Cukic-Singh reachability model.



funnelN as follows:

a1−→ M1
a2−→ M2

. . .
am−→ Mm





c−→ goali
d←−





N1
b1←−

N2
b2←−

N3
b2←−

N4
b2←−
. . .

Nn
bn←−

Under what circumstances will the narrow funnel be favored over the
wide funnel? More precisely, when are the odds of reachinggoali via
the narrow funnel much greater that the odds of reachinggoali via the
wide funnel? To answer this question, we begin with the following
definitions. Let theM funnel usem variables and theN funnel usen
variables. Each member ofM is reached via a path with probability
ai while each member ofN is reached via a path with probabilitybi.
Two paths exist from the funnels to this goal: one from the narrow
neck with probabilityc and one from the wide neck with probability
d. The probability of reaching the goal via the two pathways is:

narrow = c

m∏
i=1

ai (9)

wide = d

n∏
i=1

bi (10)

For comparison purposes, we express the size of the wider funnel as
a ratioα of the narrower funnel; i.e.

n = αm (11)

Assuming that the goal is reached, then there are three ways to do so.
Firstly, we can reach the goal using both funnels:

narrow ∧ wide = narrow.wide (12)
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Secondly, we can reach the goal using the narrow funnel and not the
wider funnel:

narrow ∧ ¬wide = narrow(1− wide) (13)

Thirdly, we can reach the goal using the wider funnel and not the
narrow funnel.

¬narrow ∧ wide = (1− narrow)wide (14)

Let g be probability of reachinggoali. Clearly,g is the sum of Equa-
tion 12, and Equation 13, Equation 14; i.e.

g = narrow + wide− narrow.wide (15)

Given the goal is reached, then the conditional probabilities of reach-
ing thegoali via two our funnels is:

P (narrow|g) =
narrow

narrow + wide− narrow.wide
(16)

P (wide|g) =
wide

narrow + wide− narrow.wide
(17)

The odds of an event with probabilityP (X) is the ratio of that event
to it’s complement; i.e. P (X)

1−P (X)
. Hence, the odds of Equation 16 is:

Odds (narrow|g) =
narrow

narrow+wide−narrow.wide

1− (
narrow

narrow+wide−narrow.wide

)

=
narrow

wide (1− narrow)
(18)

Similarly, the odds of Equation 17 is:

Odds (wide|g) =
wide

narrow (1− wide)
(19)



We divide Equation 18 by Equation 19 to compute the ratioR of the
conditional odds of reachinggoali via the narrow or the wide funnel:

R =
(narrow)2 (1− wide)

(wide)2 (1− narrow)
(20)

Our pre-condition for use of the narrow funnel is:

R > 1 (21)

In general, using the narrow funnel is much more likely ifR is very
large, i.e. bigger than some threshold valuet

R > t (22)

wheret is some number much larger than 1.

We can now define a procedure for finding situations when a random
search engine will favor narrow funnels over wide funnels:

• For a wide range of values ofai, bi, c, d, m, α, . . .

• Look for situations when Equation 22 is satisfied.

We apply this procedure below, twice:

• In the first application, we make some simplifying assumptions
such asai and bi come from uniform probability distributions.
These simplifying assumptions let us derive expressions for the
ratios ofc andd that would satisfy Equation 22.

• In the second application, we reject the simplifying assumptions
and describe a simulation that handles a wider range of cases.

In both applications, it is clear that if we grow the wide funnel wider,
then Equation 22 is often satisfied.
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5.1 The Uniform Case

Consider the simple case thatai andbi come from uniform probabil-
ity distributions, i.e.

m∑
i=1

ai = 1

∴ ai =
1

m

∴ narrow = c

(
1

m

)m

(using Equation 9) (23)

Similarly

wide = d

(
1

n

)n

(using Equation 10) (24)

Thus, by Equation 21, narrow funnel is more likely when:

narrow2(1− wide) > wide2(1− narrow)

which we can rearrange to

(narrow − wide)(narrow + wide− narrow.wide) > 0 (25)

Equation 25 contains two terms, the second of which is Equa-
tion 15 which is always positive. Hence, Equation 25 is positive when
narrow

wide
> 1. Substituting in Equation 23 and Equation 24, yields:

narrow

wide
=

c
(

1
m

)m

d
(

1
n

)n (26)

Recall thatn = αm, i.e. Equation 26 will hold when:

(αm)αmm−m >
d

c
(27)



Consider the case of two funnels, one twice as big as the other; i.e.
α = 2. Equation 27 can be rearranged to show thatnarrow

wide
> 1 is true

when

(4m)m >
d

c
(28)

At m = 2, Equation 28 becomesd < 64c. That is, to accessgoali
from the wider funnel, the pathwayd must be 64 times more likely
than the pathwayc. This is not highly likely and this becomes less
likely as the narrower funnel grows. By the same reasoning, atm =
3, to accessgoali from the wider funnel, the pathwayd must be 1728
times more likely than the narrower pathwayc. That is, under the
assumptions of this uniform case, as the wide funnel gets wider, it
becomes less and less likely that it will be used.

5.2 The Non-Uniform Case

We have seen that the two assumptions of

1. low threshold value oft = 1 and

2. uniform probability distributions for the funnel preconditions

means that the narrow funnel is far more likely than the wider funnel.
This section relaxes these two assumptions to use very large values
of t and wildly varying values forai and bi. A small simulator is
used to compute Equation 22 as follows. The meanµ and standard
deviationσ of the logarithm of the variablesai, bi, c, d were picked
at random from the following ranges:

µ ∈ {1, 2, . . . 10} (29)

spread ∈ {0.05, 0.1, 0.2, 0.4, 0.8} (30)
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µ andspread where then converted into probability as follows:

σ = spread ∗ µ

probability = 10−1∗normDist(µ,σ) (31)

Note that this method produces non-uniform probabilities forai and
bi. Next,m andα were picked at random from the ranges:

m ∈ {1, 2, . . . 10} (32)

α ∈ {1, 1.25, 1.5, . . . 10} (33)
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Figure 10. Outputs from 100000 runs of the funnel simulator. The Y-axis
shows what percentage of the runs satisfies Equation 22 asα increases. On
the plot,α is shown as “alpha”.

R was then calculated and the number of timesR exceeded differ-
ent values fort is shown in Figure 10. As might be expected, at
t = 1, α = 1 the funnels are the same size and the odds of using one
of them is 50%. Asα increases, then increasingly Equation 22 is sat-
isfied and the narrower funnel will be preferred to the wider funnel.
The effect is quite pronounced. For example, in 82% of our simu-
lated runs, random search will be 10,000,000,000 times as likely as



to use funnels1
3

smaller than alternate wider funnels (see theα = 3
results).

In summary, in both the uniform and non-uniform case, many
maybes mostly mean the same thing. Perhaps the reason for this is as
a funnel widens, it becomes exponentially less likely that a random
search engine will find all the members of the wider funnel. What
ever the underlying cause, the effect is clear: the narrow funnel will
usually be favored and the number of arguments that can effect the
reachable goals will be reduced.

6 Applications of Funnel Theory

If the thesis of this chapter is valid, then is should be possible to
explore complex spaces very simply. This section tests that thesis and
describes the TAR2treatment learner. TAR2 is a deliberately broken
machine learner. The algorithm includes an exponential time sub-
routine. If many variables are required to control a device, this sub-
routine should make the whole TAR2 system impractical. However,
as we shall see, TAR2 works in many domains. TAR2 is therefore
both thetestand theapplicationof funnel theory. ThemoreTAR2
works, themorewe believe that many maybes mean mostly the same
thing. Further, if many maybes means mostly the same thing, then a
simple controller like TAR2 will be applicable in many domains.

To understand TAR2, consider the log of golf playing behavior seen
in Figure 11. In that log, we only playlots of golf in 6

5+3+6
= 43%

of cases. To improve our game, we might search for conditions that
increases our golfing frequency. Two such conditions are shown in
theWHEREtest of the select statements in Figure 11. In the case of
outlook=overcast , we playlotsof golf all the time. In the case
of humidity ≤ 90 , we only playlotsof golf in 20% of cases. So
one way to play lots of golf would be to select a vacation location
where it was always overcast. While on holidays, one thing to watch
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for is the humidity: if it rises over 90%, then our frequent golf games
are threatened.

The tests in theWHEREclause of the select statements in Figure 11 is
a treatment. Classes in treatment learning get a score and the learner
uses this to assess the class frequencies resulting fromapplying a
treatment(i.e. using them in aWHEREclause). In normal mode,
TAR2 doescontroller learningthat finds a treatment which selects
for better classes and reject worse classes By reversing the scoring
function, treatment learning can also select for the worse classes and
reject the better classes. This mode is calledmonitor learningsince
it finds the thing we should most watch for. In the golf example,out-
look = ’overcast’ was the controller andhumidity ≥ 90 was the
monitor.

TAR2 automatically explores a very large space of possible treat-
ments. TAR2’s configuration file lets an analyst specify a search
for the best treatment using conjunctions of size 1,2,3,4, etc. Since
TAR2’s search is elaborate, an analyst can automatically find thebest
andworst possible situation within a data set. For example, in the
golf example, TAR2 explored all the attribute ranges of Figure 11
to learn that thebestsituation wasoutlook = ’overcast’and worst
possible situation washumidity ≥ 90.

TAR2 has been applied to many domains. The algorithm
shouldn’t work but it has proven successful in many domains
(see [Hu, 2003, Menzies and Hu, 2001b, Menzies and Hu, 2002a,
Menzies and Hu, 2002b, Menzies et al., 2002]). Theoretically,
TAR2 is intractable since there are an exponential number of
possible attribute ranges to explore. TAR2 culls the space of possible
attribute ranges using a heuristicconfidence1measure that selects
attribute ranges that are more frequent in good classes than in poorer
classes. However, this heuristic is pretty dumb: it was merely the
first one we could think of. The repeated success of TAR2 in many
domains is inexplicableunlessnarrow funnels are common.



outlook temp(oF) humidity windy? class
sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

input:
SELECT class
FROM golf

SELECT class
FROM golf
WHERE
outlook =

’overcast’

SELECT class
FROM golf
WHERE
humidity >= 90

output: none none none
none none some
some some lots
lots lots lots
lots lots

lots lots lots
lots

none none none
some lots

distributions: 0
2
4
6

5 3 6 0
2
4
6

0 0 4 0
2
4
6

3 1 1

legend: none some lots

Figure 11. Class distributions selected by different conditions.
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Due to the numerous examples of TAR2’s success, only a sample of
its applications are shown below. One way to assess TAR2 is to test
how well it can control some model. To perform such an assessment,
we (i) generated data sets from some model; (ii) apply TAR2 to find
treatments from those data set; (iii) imposed those treatments as con-
straints on the model; (iv) ran the model a second time; (v) compared
the outputs of the second run to the predictions made by TAR2.

In the following simulations studies, abaselineclass distribution was
used by TAR2 to generate a best controller and a prediction of how
this best controller would change the class distribution. We call the
predicted distribution thetreateddistribution. Theactualdistribution
was the class distribution seen after the best controller was imposed
on the model and the model executed again. In Figure 12 and Fig-
ure 13, the treated distribution matches the result distribution almost
exactly; i.e. TAR2 accurately predicted the effects of the controller
treatment.

Figure 12 was generated from a model of software project risk. This
risk model was implemented as part of the COCOMO project. The
goal of the COCOMO project is to build an open-source software
cost estimation model [Abts et al., 1998]. Internally, the model con-
tains a matrix of parameters that should be tuned to a particular soft-
ware organization. Using COCOMO-II, the Madachy risk model can
assess the risk of a software cost over-run [Madachy, 1997]. For ma-
chine learning purposes, the goal of using the Madachy model is to
find a change to a description of a software project that reduces the
likelihood of a poor risk software project [Menzies and Sinsel, 2000,
Menzies and Hu, 2001b]. In the experiment shown in Figure 12, the
model was executed 30,000 times using randomly selected inputs.
When the treatments learnt from TAR2 treatments were imposed on
model inputs, and the model was executed again, all the high risk
projects were removed, the percentage of medium risk projects was
significantly reduced, and the percentage of low risk projects was
tripled.
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Figure 12. COCOMO key: very high risk; high risk;
medium risk; low risk.

Figure 13 shows TAR2 controlling a qualitative description of an
electrical circuit. A qualitative description of a circuit of 47 wires
connecting 9 light bulbs and 16 other components was coded in Pro-
log. The model was expressed as a set of constraints; e.g. thesum of
the voltages of components in series is thesum of the voltage drop
across each component. The goal of the circuit was to illuminate a
space using the 9 light bulbs. The circuit is qualitative and qualita-
tive mathematics is nondeterministic; e.g. sum of a negative and a
positive value is unknown. The problem with the circuit was out-
of-control nondeterminism. On backtracking, this circuit generated
35,228 different solutions to the constraints. In many of these solu-

baseline: 0
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treated: 0
20
40

0 1 2 3 4 5 6 7 8 9

actual: 0
20
40

0 1 2 3 4 5 6 7 8 9

Figure 13. Circuit. X-axis denotes number of bulbs glowing in the circuit.
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tions, the circuit was unacceptably dark: only two bulbs glowing, on
average (see the top histogram of Figure 13) . The goal of the ma-
chine learning was hence to find a minimal set of changes to the cir-
cuit to increase the illumination [Menzies and Hu, 2001a]. Figure 13
shows the distribution of the frequency with which bulbs glowed in
a qualitative circuit description. The behavior of qualitative circuits
is notoriously hard to predict [Clancy and Kuipers, 1997] but TAR2
found two actions on the circuit that trebled the average number of
bulbs that glowed (see thetreatedandactualplot of Figure 13).
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Figure 14. Results from the satellite domain. The dots below the line show
the initial output of the model: note the very large spread in the costs and
benefits. The dots above the line show the final outputs of the model after 5
iterations of TAR2 learning.

Figure 14 shows a third simulation study with TAR2. Analysts at the
NASA Jet Propulsion Laboratory debate satellite design by building
a semantic network connecting design decisions to satellite require-
ments [Feather et al., 2000]. Each edge is annotated with the numeric
cost and benefits of taking some action. Some of these nodes repre-
sent base decisions within the project (e.g. selection of a particu-
lar type of power supply). Each set of decisions has an associated
cost. The net can be executed by selecting actions and seeing what
benefits results. One such network included 90 possible actions; i.e.
299 ≈ 1030 combinations of actions. Note the black line, top-left, of



Figure 14. All the dots below this line were generated via 10,000 ran-
dom selections of the decisions, and the collection of their associated
costs and benefits. All the dots above this line represent high bene-
fit, low cost projects found by TAR2 [Feather and Menzies, 2002].
In this application, TAR2 was used as a knowledge acquisition tool.
After each run of TAR2, the proposed best controller was debated
with the analysts. Each run, and its associated debate, resulted in a
new set of constraints for the semantic net. The new constraints were
then imposed on the model before the next run. After five runs, TAR2
found 30 decisions (out of 99) that crucially effected the cost/benefit
of the satellite. Note that this means TAR2 also found 99-30=67 de-
cisions that could be safely ignored.

For comparison purposes, a genetic algorithm (GA) was also applied
to the Figure 14 domain [Feather and Menzies, 2002]. The GA also
found decisions that generated high benefit, low cost projects. How-
ever, each such GA solution commented on every possible decisions
and there was no apparent way to ascertain which of these are the
most critical decisions. The TAR2 solution was deemed superior to
the GA solution by the domain experts, since the TAR2 solution re-
quired just 30 actions rather than the 99 demanded by the GA.

Note that the Figure 14 case study is not a counter example to our
thesis that most domains have narrow funnels. That study adopted
the incremental approach for reasons of convenience. JPL’s semantic
net simulator was too slow to generate enough examples at one run.
Hence, an incremental generate-and-constrain approach was taken.

7 Some Details

This section clarifies some details of this discussion.

Our case has been thatmostmaybes mean the same thing, not that
all maybes mean the same thing. As shown above in Figure 9, there
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exist discrete systems for which many maybes do not mean the same
thing.

Also, the argument described here relates to the properties of discrete
systems containing contradictions. Such an argument may not apply
to continuous systems with feedback loops. Continuous systems with
feedback loops can generate wildly varying behavior if that system
moves into a chaotic region of its state space. Clearly, in systems
experiencing such chaos, many maybes will not mostly mean the
same thing.

Our emphasis on discrete systems does not preclude the applica-
tion of this analysis to conventional procedural software. Much re-
search has been devoted to the extraction of discrete models (in
the form of finite state machines) from procedural code. For exam-
ple, the BANDERA system [Corbett et al., 2000] automatically ex-
tracts (slices) the minimum portions of a JAVA program’s bytecodes
which are relevant to proving particular properties models. These
minimal portions are then converted into the finite state machine re-
quired for automatic formal analysis. Also, in domains where tools
like BANDERA are unavailable, finite state machines can be gener-
ated from the high-level documentation describing a procedural sys-
tem [Whittle and Schumann, 2000].

This chapter suggests that we can reason about a theory that con-
tains inconsistencies. Such a suggestion might be foreign to students
of classical deductive logic in which a contradiction implies any-
thing at all. Classical deduction was a useful tool but in the late
twentieth century, many researchers found that non-standard log-
ics were required for inconsistency-tolerant reasoning about (e.g.)
model-based diagnosis [Console and Torasso, 1991], conflicting re-
quirements [Finkelstein et al., 1994], or overrides in inheritance hi-
erarchies [Etherington and Reiter, 1983].

The argument made here was that the average number of reachable



goal literals are not effected greatly by the presence of contradic-
tory inferences in a theory. This is a statement about where inference
pathwaysendand not about the route taken to a goal. Hence, even
when most maybes mean the same thing (i.e. the same number of
goals are being reached), an indeterminate device (i.e. one contain-
ing contradictions) can take many different pathways to those goals.
Consequently, the side-effects of reaching a goal can be very differ-
ent. If the negation of undesirable side-effects (e.g. not reactor melt
down) are added to the goal set, then the argument of this paper will
apply and we can quickly check if we can/ cannot reach undesirable
side effects.

This analysis assumes a set-covering semantics; i.e. we only con-
sider literals that exist on proof trees between input and goal lit-
erals. The opposite to set-covering semantics is consistency-based
semantics in which inference spreads out to find all literals consis-
tent with inputs and goals, regardless of whether or not those liter-
als are required for accessing some goals. The debate between set-
covering and consistency-based semantics has occurred elsewhere
(e.g. [Konoligue, 1992, Console and Torasso, 1991]). This study fa-
vor set-covering semantics since if we are interested in literals out-
side the goal-finding proof trees, we can add them to our goal set.

8 Conclusion

As theory size or complexity grows, we will become less and less
sure about the assertions in that theory. Contradictory options (the
“maybes”) will often be entered into theories, particularly if that the-
ory is generated from designers with different views about a domain
or the purpose of a program.

An often repeated experimental observation is that a fast random
exploration of a program will reach as many interesting goals as a
larger number of considered probes. The mathematics of reachabil-
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ity shows us that these observations are not some quirk of particular
domains. Rather these observations are examples of a general prin-
ciple: on average, the way we resolve contradictions does not effect
the overall number of reachable goalsprovided thatwe are probing
into our theories to a non-trivial depth. The TAR2 experience is that
simple Monte Carlo simulations satisfy this probing depth require-
ments.

These mathematical and experimental results can be explained using
funnel theory. Given a choice ofM arguments orN arguments (M <
N ) to reach a goal, random search will usually favor the smaller set
of arguments. Hence, fewer critical factors will change the number
of goals we can reach, most maybes will mean the same thing, and
we can use very simple methods (like TAR2) to control complex and
uncertain spaces.
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