
memo9@.ai.wvu.2003. Available from http://tim.menzies.com/pdf/03omo.pdf

OMO: Software cost estimation

Tim Menzies

Lane Department of Computer Science, West Virginia University, PO Box 6109, Morgantown, WV, 26506-6109, USA;
http://tim.menzies.us; tim@menzies.us

Wp ref: ˜menzies/src/pl/prod/omo.pl, January 30, 2003.

Abstract COCOMO is a software effort estimation tool.
OMO is COCOMO written in SWI-Prolog [5]

Contents

1 Warning!!! . 1
2 What is COCOMO? 1
3 Installation . 3
4 Pre-load actions . 3

4.1 Hooks . 3
5 Main System . 3

5.1 Main driver . 3
5.2 Equations . 3
5.3 Tunings . 3
5.4 Data dictionary 4

6 Start-up actions . 5
7 OMO Support code 5

7.1 Multis/2 . 5
7.2 Fields/3 . 5
7.3 w/2 . 5
7.4 Random types 5

8 Knowledge base . 5
8.1 Sample project 5
8.2 LOC per Function points 6

9 Bugs . 6
A License . 6

A.1 nowarranty.txt 6
A.2 warranty.txt . 6
A.3 conditions.txt 6

List of Figures

1 Parameters of the COCOMO-II effort risk
model . 2

2 Influence of different COCOMO parameters 3
3 Find out more about PROD. 7

1 Warning!!!

Contains deliberate error. Output should be:

COCOMO.ga says 1223.53 months (total);
28 staff over 45 months

But show how that is all broken.

COCOMO.ga says 134588.0 months (total);
547 staff over 247 months

What is wrong?

2 What is COCOMO?

The COCOMO project aims at developing an open-source,
public-domain software effort estimation model. The project
has collected information on 161 projects from commercial,
aerospace, government, and non-profit organizations [1, 4].
As of 1998, the projects represented in the database were
of size 20 to 2000 KSLOC (thousands of lines of code) and
took between 100 to 10000 person months to build.

COCOMO measures effort in calendar months where
one month is 152 hours (and includes development and man-
agement hours). The core intuition behind COCOMO-based
estimation is that as systems grow in size, the effort required
to create them grows exponentially, i.e. �����������
	���
�������� .
More precisely:

�������������� "!$#%�&

�����('*),+ -/.103254687:9:;:< 6>=/? !A@B .1CDEGF .IH$J ELKM
where is a domain-specific parameter, and KSLOC is es-
timated directly or computed from a function point analy-
sis.

NPO are the scale factors (e.g. factors such as “have we
built this kind of system before?”) and H$J E are the cost
drivers (e.g. required level of reliability). Figure 1 lists the
scale drivers and effort multipliers.

Software effort-estimation models like COCOMO-II should
be tuned to their local domain. Off-the-shelf “untuned” mod-
els have been up to 600% inaccurate in their estimates, e.g.
[3, p165] and [2]. However, tuned models can be far more
accurate. For example, [1] reports a study with a bayesian

Type Acronym Definition Low-end Medium High-end

EM acap analyst capability worst 15% 55% best 10%
EM aexp applications experience 2 months 1 year 6 years
SF arch architecture or risk resolution few interfaces defined

or few risk eliminated
most interfaces defined
or most risks eliminated

all interfaces defined or
all risks eliminated

EM cplx product complexity e.g. simple read/write
statements

e.g. use of simple inter-
face widgets

e.g. performance-
critical embedded
systems

EM data database size
(DB bytes/ Program SLOC)

10 100 1000

EM docu documentation many life-cycle phases
not documented

extensive reporting for
each life-cycle phase

SF flex development flexibility development process
rigorously defined

some guidelines, which
can be relaxed

only general goals de-
fined

EM ltex language and tool-set experi-
ence

2 months 1 year 6 years

EM pcap programmer capability worst 15% 55% best 10%
EM pcon personnel continuity

(% turnover per year)
48% 12% 3%

EM pexp platform experience 2 months 1 year 6 years
SF pmat process maturity CMM level 1 CMM level 3 CMM level 5
SF prec precedentedness we have never built this

kind of software before
somewhat new thoroughly familiar

EM pvol platform volatility
(���������	��

�����������

�
�����

�
��
	��������������
��

���������

�

	�����

�
��

�����)

 �!
����

" �
�

����

" � # ����

" �
�!�$

���
%
�

!&$
���
%
�!�'

���(�
EM rely required reliability errors mean slight in-

convenience
errors are easily recov-
erable

errors can risk human
life

EM ruse required reuse none across program across multiple product
lines

EM sced dictacted development
schedule

deadlines moved closer
to 75% of the original
estimate

no change deadlines moved back
to 160% of the original
estimate

EM site multi-site development some contact: phone,
mail

some email interactive multi-media

EM stor main storage constraints
(% of available RAM)

N/A 50% 95%

SF team team cohesion very difficult interac-
tions

basically co-operative seamless interactions

EM time execution time constraints
(% of available CPU)

N/A 50% 95%

EM tool use of software tools edit,code,debug well intergrated with
lifecycle

Fig. 1 Parameters of the COCOMO-II effort risk model; adapted from http://sunset.usc.edu/COCOMOII/expert_cocomo/
drivers.html. “Stor” and “time” score “N/A”” for low-end values since they have no low-end defined in COCOMO-II. “SF” denotes
“scale factors” and “EM” denotes “effort multipliers”.

tuning algorithm using the COCOMO project database. Af-
ter bayesian tuning, a cross-validation study showed that
COCOMO-II model produced estimates that are within 30%
of the actuals, 69% of the time.

Figure 2 shows the sizes of various COCOMO tuning
parameters. Notice the linear fits of the top two tunings:
these were generated via linear regression and hence are
straight lines. The bottom row shows tunings generated from
a genetic algorithm (GA): such GAs were designed to han-
dle non-linear situations so their curve fits can be all over
the place.

The intuition to be gained from Figure 2 is that some
COCOMO parameters are more influential than others. Some
are weakly correlated to increasing effort (column 1); some
are weakly correlated to decreasing effort (column 2); and
some are strongly correlated to decreasing effort (column
3). This will be useful later when we write search engines
to control COCOMO. A core heuristic will be “change the
influential parameters first”.

The last column of Figure 2 relate to the effort multipli-
ers. While shown here as linear, their influence can be even
greater than that since they are used up in an exponential
equation.

2

� � ���

0.5

1

1.5

2

vl l n h vh xh

COCOMO.2000

0.5

1

1.5

2

vl l n h vh xh

COCOMO.2000

0

2

4

6

8

vl l n h vh xh

COCOMO.2000

0.5

1

1.5

2

vl l n h vh xh

COCOMO.1983

0.5

1

1.5

2

vl l n h vh xh

COCOMO.1983

0

2

4

6

8

vl l n h vh xh

COCOMO.1983

0.5

1

1.5

2

vl l n h vh xh

COCOMO.ga

0.5

1

1.5

2

vl l n h vh xh

COCOMO.ga

0

2

4

6

8

vl l n h vh xh

COCOMO.ga

Fig. 2 Influence of different COCOMO parameters

3 Installation

1 :- load_files([lib % grab standard stuff
2 ,cfg % options controller
3 ,gpl0, gpl1 % GPL-2 license stuff
4 ,omo0 % pre-load actions
5 ,omolib % local libraries
6 ,omo1 % predicates
7 ,omo2 % start-up commands
8 ,omokb1 % example project file
9 ,ufp2sloc % function points per LOC database

10],[silent(yes),if(changed)]).

4 Pre-load actions

4.1 Hooks

Fast assertions of named variables.

11 term_expansion((X;Y :- Z),Out) :-
12 multis(((X;Y) :- Z),Out).

Instantiate named fields

13 term_expansion(Functor is Fields,Out) :-
14 fields(Fields,Functor,Out).

5 Main System

5.1 Main driver

15 estimate :-
16 cocomo(Coc),
17 estimate(Pm,Staff,Months),
18 format(’COCOMO.˜p says ˜p months (total);’,[Coc,Pm]),
19 format(’˜p staff over ˜p months � n’, [Staff,Months]).
20

21 estimate(Pm,Staff,Months) :-
22 tdev(Tdev),
23 pm(Pm0),
24 Pm is Pm0,
25 Staff is ceiling(Pm/Tdev),
26 Months is ceiling(Tdev),
27 !.

5.2 Equations

5.2.1 Sizing equations

28 size((1 + (R/100)) *(N + E)) :-
29 revl(R), newKsloc(N), equivalentKsloc(E).
30

31 equivalentKsloc(Ak*Aam*(1-(At/100))) :-
32 adaptedKsloc(Ak), at(At), aam(Aam).
33

34 aam(Am) :- aaf(Af), compare(C,Af,50), aam1(C,Af,Am).
35

36 aam1(=,Af, X) :- aam1(<,Af,X).
37 aam1(>,Af, (Aa+Af+(Su*U))/100) :- aa(Aa),su(Su),unfm(U).
38 aam1(<,Af,((Aa+Af*(1+(0.02*Su*U)))/100)) :-
39 aa(Aa), su(Su), unfm(U).
40

41 aaf(0.4*Dm+0.3*Cm+0.3*Im) :- dm(Dm), cm(Cm), im(Im).

5.2.2 Schedule Equations

42 tdev((C*(PˆF))*SP/100) :-
43 c(C), pmNs(P), f(F), scedPercent(SP).
44

45 f(D + 0.2*(E-B)) :-
46 d(D),e(E), b(B).

5.2.3 Effort Equations

47 hmmm... sced value never used
48 pm(Pm0*Em17+Pa) :-
49 pmNs(Pm0), w(sced,Em17), pmAuto(Pa).
50

51 pmNs(A*S*(SˆE)*Em1 *Em2 *Em3 *Em4 *Em5 *Em6 *Em7*Em8*Em9*
52 Em10*Em11*Em12*Em13*Em14*Em15*Em16) :-
53 a(A), size(S), e(E), w(rely,Em1), w(data,Em2),
54 w(cplx,Em3), w(ruse,Em4), w(docu,Em5), w(time,Em6),
55 w(stor,Em7), w(pvol,Em8), w(acap,Em9), w(pcap,Em10),
56 w(pcon,Em11),w(aexp,Em12),w(pexp,Em13),
57 w(ltex,Em14),w(tool,Em15),w(site,Em16).
58

59 e(B + 0.01*(Sf1+Sf2+Sf3+Sf4+Sf5)) :-
60 b(B),
61 w(prec,Sf1), w(flex,Sf2),w(arch,Sf3),
62 w(team,Sf4), w(pmat,Sf5).
63

64 pmAuto((Ak*(At/100))/Ap) :-
65 adaptedKsloc(Ak), at(At), atKprod(Ap).

5.3 Tunings

5.3.1 Constants

3

66 a(2.5) :- cocomo(1983).
67 a(2.94) :- cocomo(2000).
68 a(2.94) :- cocomo(ga).
69

70 b(0.91) :- cocomo(2000).
71 b(1.01) :- cocomo(1983).
72 b(1.01) :- cocomo(ga).
73

74 c(3.0) :- cocomo(1983).
75 c(3.67) :- cocomo(2000).
76 c(3.67) :- cocomo(ga).
77

78 d(0.28) :- cocomo(2000).
79 d(0.33) :- cocomo(1983).
80 d(0.33) :- cocomo(ga).

5.3.2 Post-architecture scale factors The COCOMO 2000
scale factors learnt via bayesian tuning.

81 postArch(2000,scaleFactors) =
82 [xl, vl, l, n, h, vh, xh]+
83 [[prec, _,6.20,4.96,3.72,2.48,1.24, _]
84 ,[flex, _,5.07,4.05,3.04,2.03,1.01, _]
85 ,[arch, _,7.07,5.65,4.24,2.83,1.41, _]
86 ,[team, _,5.48,4.38,3.29,2.19,1.01, _]
87 ,[pmat, _,7.80,6.24,4.68,3.12,1.56, _]
88].

The original scale factors.

89 postArch(1983,scaleFactors) =
90 [xl, vl, l, n, h, vh, xh]+
91 [[prec, _,4.05,3.24,2.43,1.62,0.81, _]
92 ,[flex, _,6.07,4.86,3.64,2.43,1.21, _]
93 ,[arch, _,4.22,3.38,2.53,1.69,0.84, _]
94 ,[team, _,4.94,3.95,2.97,1.98,0.99, _]
95 ,[pmat, _,4.54,3.64,2.73,1.82,0.91, _]
96].

Some scale factors learnt via some genetic algorithms.

97 postArch(ga,scaleFactors) =
98 [xl, vl, l, n, h, vh, xh]+
99 [[prec, _,4.05,3.24,2.43,1.62,0.81, _]

100 ,[flex, _,6.07,4.86,3.64,2.43,1.21, _]
101 ,[arch, _,4.22,3.38,2.53,1.69,0.84, _]
102 ,[team, _,4.94,3.95,2.97,1.98,0.99, _]
103 ,[pmat, _,4.54,3.64,2.73,1.82,0.91, _]
104].

5.3.3 Post-architecture effort multipliers: The COCOMO
2000 effort multipliers learnt via bayesian tuning.

105 postArch(2000,effortMultiplers) =
106 [xl, vl, l, n, h, vh, xh]+
107 [[rely, _,0.82,0.92,1.00,1.10,1.26, _]
108 ,[data, _,_ ,0.90,1.00,1.14,1.28, _]
109 ,[cplx, _,0.73,0.87,1.00,1.17,1.34,1.74]
110 ,[ruse, _,_ ,0.95,1.00,1.07,1.15,1.24]
111 ,[docu, _,0.81,0.91,1.00,1.11,1.23, _]
112 ,[time, _, _, _,1.00,1.11,1.29,1.63]
113 ,[stor, _, _, _,1.00,1.05,1.17,1.46]
114 ,[pvol, _, _,0.87,1.00,1.15,1.30, _]
115 ,[acap, _,1.42,1.19,1.00,0.85,0.71 , _]
116 ,[pcap, _,1.34,1.15,1.00,0.88,0.76, _]
117 ,[pcon, _,1.29,1.12,1.00,0.90,0.81, _]
118 ,[aexp, _,1.22,1.10,1.00,0.88,0.81, _]
119 ,[pexp, _,1.19,1.09,1.00,0.91,0.85, _]
120 ,[ltex, _,1.20,1.09,1.00,0.91,0.84, _]
121 ,[tool, _,1.17,1.09,1.00,0.90,0.78, _]
122 ,[site, _,1.22,1.09,1.00,0.93,0.86,0.80]
123 ,[sced, _,1.43,1.14,1.00,1.00,1.00, _]
124].

The original effort multipliers.

125 postArch(1983,effortMultiplers) =
126 [xl, vl, l, n, h, vh, xh]+
127 [[rely, _,0.75,0.88,1.00,1.15,1.40, _]
128 ,[data, _, _,0.94,1.00,1.08,1.16, _]
129 ,[cplx, _,0.75,0.88,1.00,1.15,1.30,1.65]
130 ,[ruse, _, _,0.89,1.00,1.16,1.34,1.56]
131 ,[docu, _,0.85,0.93,1.00,1.08,1.17, _]
132 ,[time, _, _, _,1.00,1.11,1.30,1.66]
133 ,[stor, _, _, _,1.00,1.06,1.21,1.56]
134 ,[pvol, _, _,0.87,1.00,1.15,1.30, _]
135 ,[acap, _,1.50,1.22,1.00,0.83,0.67, _]
136 ,[pcap, _,1.37,1.16,1.00,0.87,0.74, _]
137 ,[pcon, _,1.26,1.11,1.00,0.91,0.83, _]
138 ,[aexp, _,1.23,1.10,1.00,0.88,0.80, _]
139 ,[pexp, _,1.26,1.12,1.00,0.88,0.80, _]
140 ,[ltex, _,1.24,1.11,1.00,0.90,0.82, _]
141 ,[tool, _,1.20,1.10,1.00,0.88,0.75, _]
142 ,[site, _,1.24,1.10,1.00,0.92,0.85,0.79]
143 ,[sced, _,1.23,1.08,1.00,1.04,1.10, _]
144].

Some effort multipliers learnt via some genetic algorithms.

145 postArch(ga,effortMultiplers) =
146 [xl, vl, l, n, h, vh, xh]+
147 [[rely, _,0.79,0.78,1.00,1.16,1.41, _]
148 ,[data, _, _,0.96,1.00,1.31,1.20, _]
149 ,[cplx, _,0.90,1.06,1.00,0.99,0.99,0.87]
150 ,[ruse, _, _,0.89,1.00,1.16,1.34,1.56]
151 ,[docu, _,0.85,0.93,1.00,1.08,1.17, _]
152 ,[time, _, _, _,1.00,1.01,1.24,2.13]
153 ,[stor, _, _, _,1.00,1.36,1.37,1.42]
154 ,[pvol, _, _,1.25,1.00,1.13,1.15, _]
155 ,[acap, _,1.19,1.26,1.00,1.00,0.73, _]
156 ,[pcap, _,1.71,1.73,1.00,0.75,0.74, _]
157 ,[pcon, _,1.26,1.11,1.00,0.91,0.83, _]
158 ,[aexp, _,1.41,1.02,1.00,0.64,0.86, _]
159 ,[pexp, _,1.26,1.12,1.00,0.88,0.80, _]
160 ,[ltex, _,1.24,1.11,1.00,0.90,0.82, _]
161 ,[tool, _,1.13,0.91,1.00,1.09,2.86, _]
162 ,[site, _,1.24,1.10,1.00,0.92,0.85,0.79]
163 ,[sced, _,1.22,1.29,1.00,0.72,0.29, _]
164].

5.4 Data dictionary

5.4.1 General

165 languageP(X) :- upf2sloc(X,_).
166

167 sym(X) :- rsym(X).
168

169 onezeroP(X) :- rin(0,1,0.2,X), number(X).
170

171 percentP(X) :- rin(0,100,1,X),integer(X).
172

173 posint(X) :- rin(0,65536,X),integer(X).
174 posnum(X) :- rin(0,inf,X),number(X).
175

176 num10(X) :- rin(0,10,X), number(X).
177

178 cocomoP(2000).
179 cocomoP(1983).
180 cocomoP(ga).
181

182 vlvh(n). vlvh(l). vlvh(h). vlvh(vl). vlvh(vh).
183

184 lvh(n). lvh(l). lvh(h). lvh(vh).
185

186 vlxh(n). vlxh(l). vlxh(h).
187 vlxh(vl). vlxh(vh). vlxh(xh).
188

189 lxh(n). lxh(l). lxh(h). lxh(vh). lxh(xh).
190

191 nxh(n). nxh(h). nxh(vh). nxh(xh).

5.4.2 ”project”

4

192 (cocomo(Coc); label(L); language(Lan)
193 ;revl(R); newKsloc(K)
194 ;adaptedKsloc(A) ;cm(C); dm(D); im(I) ;aa(Aa) ;unfm(U)
195 ;su(Su) ;at(At) ;atKprod(Atp) ;scedPercent(Sc)
196) :-
197 project(Coc,L,Lan,R,K,A,C,D,I,Aa,U,Su,At,Atp,Sc),
198

199 cocomoP(Coc),
200 sym(L), languageP(Lan), percentP(R), percentP(K),
201 posint(A), percentP(C), percentP(I), percentP(Aa),
202 onezeroP(U), percentP(Su) ,percentP(At),
203 posnum(Atp) ,posint(Sc),!.

5.4.3 ”scores”
204 (s(prec,Prec) ;s(flex,Flex) ;s(arch,Arch)
205 ;s(team,Team) ;s(pmat,Pmat) ;s(rely,Rely)
206 ;s(data,Data) ;s(cplx,Cplx) ;s(ruse,Ruse)
207 ;s(docu,Docu) ;s(time,Time) ;s(stor,Stor)
208 ;s(pvol,Pvol) ;s(acap,Acap) ;s(pcap,Pcap)
209 ;s(pcon,Pcon) ;s(aexp,Aexp) ;s(pexp,Pexp)
210 ;s(ltex,Ltex) ;s(tool,Tool) ;s(site,Site) ;s(sced,Sced)
211):-
212 scores(Prec,Flex,Arch,Team,Pmat,Rely,Data,Cplx,
213 Ruse,Docu,Time,Stor,Pvol,Acap,Pcap,Pcon,
214 Aexp,Pexp,Ltex,Tool,Site,Sced),
215

216 vlvh(Prec), vlvh(Flex), vlvh(Arch), vlvh(Team),
217 vlvh(Pmat), vlvh(Rely), lvh(Data), vlxh(Cplx),
218 lxh(Ruse), vlvh(Docu), nxh(Time), nxh(Stor),
219 lvh(Pvol), vlvh(Acap), vlvh(Pcap), vlvh(Pcon),
220 vlvh(Aexp), vlvh(Pexp), vlvh(Ltex), vlvh(Tool),
221 vlxh(Site),!.

6 Start-up actions

Usual stuff.
222 :- sneak(
223 [’defaults.omo’ % see Figure ??
224 ,’config.omo’ % see Figure ??
225 ,ufp2sloc % see � ??
226]).
227

228 :- commandLine.
229 :- ?verbose -> hello ; true.

7 OMO Support code

7.1 Multis/2

Fast, named, assertions
230 multis(Stuff,All) :-
231 bagof(One,Stuffˆmulti(Stuff,One),All).
232

233 multi((Heads :- Tail),(Head :- Tail)) :-
234 d2l(Heads,List),
235 member(Head,List).

7.2 Fields/3

Poke some values into the named fields.
236 fields(Fields,Functor,Term) :- fields1(Fields,Functor,Term),!.
237 fields(_,_,[]).
238

239 fields1([],_,_).
240 fields1([Field|Fields],Functor,Term) :-
241 fields2(Field,Functor,Term),
242 fields1(Fields,Functor,Term).
243

244 fields2(Field,Functor,Term) :-
245 clause(Field,(Term,_)),
246 functor(Term,Functor,_),!.
247 fields2(Field,Functor,_) :-
248 barph(badField(Functor is [Field])).

7.3 w/2

Convert scores to numeric weights

249 w(A,W) :-
250 demand(s(A,S)),
251 postArch(A,S,W),
252 demand(num10(W)).
253

254 postArch(A,S,W) :-
255 cocomo(When),
256 lookUp(postArch(When,_),A,S,W).

7.4 Random types

7.4.1 Random strings

257 rsym(X) :- nonvar(X),!.
258 rsym(X) :- gensym(g,X).
259

260 rsym(_,X) :- nonvar(X),!.
261 rsym(A,X) :- gensym(A,X).

7.4.2 Random number within a range

262 rin(M,N,_,X) :- nonvar(X),!, number(X),M =< X, X =< N.
263 rin(M,N,O,X) :- Steps is integer((N-M)/O),
264 between(1,Steps,_),
265 Y is random(Steps+1),
266 X is min(M + Y*O,N).

7.4.3 Random value of a list

267 rin(M,N,X) :- nonvar(X),!, number(X),M =< X, X =< N.
268 rin(M,N,X) :- Steps is integer(N-M),
269 between(1,Steps,_),
270 Y is random(Steps+1),
271 X is min(M + Y,N).
272

273 rin(X,L) :- number(X),!, member(Y,L), X =:= Y.
274 rin(X,L) :- nonvar(X),!, member(X,L).
275 rin(X,L) :- length(L,N), rmember1(L,N,X).
276

277 rmember1([H],_,H) :- !.
278 rmember1([H|T],N,X) :- Pos is random(N) + 1,
279 less1(Pos,[H|T],Y,L),
280 (X=Y
281 ; N1 is N - 1,
282 rmember1(L,N1,X)).

8 Knowledge base

8.1 Sample project

283 scores is [s(pmat,vl)
284 ,s(pvol,l)
285 ,s(ltex,l)
286].
287

288 project is [cocomo(ga)
289 ,label(’eg#1’)
290 ,language(prolog)
291 ,revl(10)
292 ,newKsloc(100)
293 ,adaptedKsloc(0)
294 ,cm(0) % new code
295 ,dm(0) % new code
296 ,im(0) % new code
297 ,aa(2) % basic module search + docu [4, p24]
298 ,unfm(0.4) % somewhat familiar
299 ,su(30) % nominal value [4, p23]
300 ,at(0)
301 ,atKprod(2.4)
302 ,scedPercent(100)
303].

5

8.2 LOC per Function points

Also loaded, but not shown due to size, are tables showing
producitivity in different 482 different programming sys-
tems. It tables a lot of code to get anything done in binary,
but less code as the language matures. So:

upf2sloc(’1st generation default’,320).
upf2sloc(’2nd generation default’,107).
upf2sloc(’3rd generation default’,80).
upf2sloc(’4th generation default’,20).
upf2sloc(’5th generation default’,5).

The units here are lines of code per function point. For
more details, see Boehm.

9 Bugs

None known but many suspected.

Acknowledgements his research was conducted at West Virginia
University under NASA contract NCC2-0979 and NCC5-685. The
work was sponsored by the NASA Office of Safety and Mission
Assurance under the Software Assurance Research Program led by
the NASA IV&V Facility. Reference herein to any specific com-
mercial product, process, or service by trade name, trademark, man-
ufacturer, or otherwise, does not constitute or imply its endorse-
ment by the United States Government.

References

1. S. Chulani, B. Boehm, and B. Steece. Bayesian analysis of
empirical software engineering cost models. IEEE Transaction
on Software Engineerining, 25(4), July/August 1999.

2. C. Kemerer. An empirical validation of software cost estima-
tion models. Communications of the ACM, 30(5):416–429, May
1987.

3. T. Mukhopadhyay, S. Vicinanza, and M. Prietula. Examining
the feasibility of a case-based reasoning tool for software effort
estimation. MIS Quarterly, pages 155–171, June 1992.

4. B. W.Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark,
B. Steece, A. W. Brown, S. Chulani, and C. Abts. Software Cost
Estimation with Cocomo II. Prentice Hall, 2000.

5. J. Wielemaker. SWI-Prolog. Available from http://swi.
psy.uva.nl/projects/xpce/SWI-Prolog.html.

A License

This software is distributed under the GNU General Public Li-
cense.

A.1 nowarranty.txt

OMO comes with ABSOLUTELY NO WARRANTY: for more details type ’war-
ranty’.

This is free software, and you are welcome to redistribute it under certain condi-
tions: for more details, type ’conditions’.

A.2 warranty.txt

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
version 2 (see http://www.gnu.org/copyleft/gpl.html or type ’conditions’).

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place -
Suite 330, Boston, MA 02111-1307, US.

A.3 conditions.txt

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICA-
TION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this
General Public License. The ’Program’, below, refers to any such program or work,
and a ’work based on the Program’ means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another language. (Here-
inafter, translation is included without limitation in the term ’modification’.) Each
licensee is addressed as ’you’.

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is not re-
stricted, and the output from the Program is covered only if its contents constitute a
work based on the Program (independent of having been made by running the Pro-
gram). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty; and
give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty) and
that users may redistribute the program under these conditions, and telling the user
how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is
not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sec-
tions of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you dis-
tribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Sec-
tion 2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium cus-
tomarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing source dis-
tribution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

6

1. prod1.pl : “An example of the PROD Prolog delivery and documentation system.”
Available from http://tim.menzies.com/pdf/03prod1.pdf.

2. prod.pl : “A PROlog Documentation, and Delivery Tool”.
Available from http://tim.menzies.com/pdf/03prod.pdf.

3. prod0.pl : “TITLE”: a bare-bones minimal example of PROD.
Available from http://tim.menzies.com/pdf/03prod0.pdf.

4. prodabout.pl : “Motivations”: the why and who of PROD.
Available from Available from http://tim.menzies.com/pdf/03prodabout.pdf.

5. family.pl : “A family database”: documentation of a very simple Prolog family database.
Available from http://tim.menzies.com/pdf/03family.pdf.

6. lib.pl : “Commonly used predicates”:
Available from http://tim.menzies.com/pdf/03lib.pdf.

7. cfg.pl : “Handler for config files and command line options”:
Available from http://tim.menzies.com/pdf/03cfg.pdf.

8. gpl.pl : “Including GPL-2 in Prod”:
Available from http://tim.menzies.com/pdf/03gpl.pdf.

9. omo.pl : “Software cost estimation”:
Available from http://tim.menzies.com/pdf/03gpl.pdf.

Fig. 3 This document is part of the PROD delivery and documentation tool for Prolog applications. To find out more about PROD, the best
place to start is memo #2.

The source code for a work means the preferred form of the work for mak-
ing modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the executable. How-
ever, as a special exception, the source code distributed need not include anything that
is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code from
the same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify, subli-
cense or distribute the Program is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you un-
der this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Program or
its derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based on
the Program), you indicate your acceptance of this License to do so, and all its terms
and conditions for copying, distributing or modifying the Program or works based on
it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to copy, dis-
tribute or modify the Program subject to these terms and conditions. You may not
impose any further restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of
the Program by all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this section has
the sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or

she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a con-
sequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright holder who
places the Program under this License may add an explicit geographical distribution
limitation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation as
if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and ’any later version’, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the
Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE

IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
’AS IS’ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PRO-
GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMIT-
TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

7

