
When is Pair Programming Better?

Tim Menzies, Jefferey Smith
Lane Department of Computer Science

West Virginia University
PO Box 6109, Morgantown

WV, 26506-6109, USA;
tim@menzies.com,jefferey@jeffereysmith.com

David Raffo
School of Business Administration

Portland State University
P.O. Box 751, Portland,
OR; 97207-0751, USA

davidr@sba.pdx.edu

Abstract

A growing number of people are advocating the use of
agile processes (AP) in software development. But to date,
there have been few arguments, if any, that would convince
the doubters of AP’s benefit over conventional development
methods. Ideally, one would present detailed empirical ob-
servations, but the field is too young. Because of this, we
must instead turn to model-based results. In this article we
explore the economic benefits of one of AP’s core practices,
pair programming. We examine several claims as to why
pair programming is beneficial; and specifically, in what
situations pair programming proves more beneficial than
conventional methods.

NOTE TO REVIEWERS: This document is 4802 words,
plus four figures at 300 words/figure; i.e. 6002 words in
IEEE Computer count. This document is laid out assum-
ing the the appendices will become side-bars in the final
document. The IEEE Computer standard is that 15% of
the 6000 words (i.e. 900 words) be introductory tutorial
material. Our introductory material are the 1204 words in
Appendix A and Appendix B.

1 Introduction

In recent times, there have been many arguments made
in favor of agile processes (AP). Noted researchers such as
Kent Beck [1], Barry Boehm [2], Alistair Cockburn and
Laurie Williams [3], Martin Fowler [5], and many oth-
ers have shown their support for AP methods. Despite this
abundance of arguments however, there has been little em-
pirical proof to convince those in doubt. This is primarily
due to the fact that the concept is still relatively new. As a
result, one must turn to model-based testing to show AP’s
advantage over conventional methods.

Before beginning, it is important to stress the limits of
our study. This work will comment specifically on an ag-

ile process practice called pair programming (PP). We will
study pair programming because it is a core part of an agile
process called ”extreme programming”, which is the most
widely cited agile process in the literature. To do so, we will
take a set of equations defining some what is known about
the business of PP (Sidebar A shown in Appendix A offers
a quick review of some of the economic terms used in the
equations). These equations will be explored using a ma-
chine learner. In doing so, we will explore various claims
that have been made as to why PP is superior to conven-
tional methods. It will be shown that situations do exist
where PP is clearly the better choice. We will also find a
set of threshold points that critically control the benefits of
PP. The conclusion of this article lists those thresholds and
offers them as the key variables that management should
monitor when assessing the effectiveness of PP.

2 Agile Processes / Extreme Programming

AP is an approach that has gained popularity in recent
times. It is ”iterative, incremental, self-organizing, and
emergent” [7]. According to the Agile Manifesto, AP is
based on the idea of ”uncovering better ways of developing
software by doing it and helping others do it [4].” In his
article, ”Get Ready for Agile Methods, With Care,” Barry
Boehm states that the primary difference between AP and
conventional methods is that ”[AP] methods derive much
of their agility by relying on the tacit knowledge embod-
ied in the team, rather than writing the knowledge down in
plans [2].” He goes on to discuss that while AP methods
risk making mistakes that could have been found by plan-
ning practices used by conventional methods, conventional
methods risk ”that rapid change will make the plans obso-
lete or very expensive to keep up to date [2].” While AP
may not be appropriate in every situation, there appears to
exist cases in which AP may be advantageous to conven-
tional methods.

1



pair
programming (8)

refractoring (7)

collective
ownership (5)

continuous
integration (5)

coding
standards (3)

40 hour
week (3)

metaphor (3)

on-site
customer (3)

planning
game (3)short

release (2)

simple
design (5)

testing (8)

Figure 1. The connection between extreme
programming practices. From [1]. Pair pro-
gramming is shown central in the diagram.

AP is a collection of software design practices and tech-
niques that diverge from the heavily structured methodolo-
gies in favor of a less structured, more adaptive approach.
According to its manifesto [4], AP values. . .

• Individuals and interactions over processes and tools;
• Working software over comprehensive documentation;
• Customer collaboration over contract negotiation;
• Responding to change over following a plan.

There are many positive aspects of AP which might be
attractive to software development organizations:

• Continual interaction with the customer helps the
project to become more tailored to the customer’s
needs

• Frequent releases allow the customer to see progress
and working code more often

• Pair programming and continual testing leads to fewer
errors

A critique of AP is complicated by the broad and di-
verse nature of the AP movement. However, one of the most
popular AP approaches, Kent Beck’sextreme programming,
has been thoroughly specified; and therefore, it is easier to
study [1]. According to Beck, extreme programming has
the twelve key practices shown in Figure 1. The precise
definition of all these practices are beyond scope of this pa-
per. However, note the key role of one of the practices:
pair programming(PP). PP is the concept of two developers
working together at a single machine, designing and writing

code cooperatively. Figure 1 shows the connection between
XP programming practices. The numbers after each factor
in that diagram show how many factors connect to it. Note
that pair programming is one the practices with the most
number of connections.

AP proponents claim that by working in pairs, develop-
ers produce code at a faster rate, and with fewer errors. But
the idea of developer pairs leads to two scenarios, each with
their own issues:

• Pool: If additional developers are added to a project
from a pool of developers to create the developer pairs,
then does the time/error advantage outweigh the addi-
tional developer costs?

• NoPool: If additional developers are not added, and
instead, the current developers are divided into groups
of two, then does the time/error advantage outweigh
the additional time needed to write code that results
from the fewer number of tasks that can be worked on
at one time?

To answer these questions, the economic effects of PP
on a software project need to be examined, and compared
to the outcome of conventional methods.

3 Müller/Padberg Study

A study of this nature has been conducted previously.
In their paper, ”Extreme Programming from an Engineer-
ing Economics Viewpoint,” M̈uller and Padberg compare
the economics of PP with those of conventional methods
[6]. This section examines their work. The next section dis-
cusses our concerns with their methods, and the procedure
we followed as a result. For a summary of the equations
used by M̈uller and Padberg, refer to Appendix C.

3.1 Method (Müller/Padberg)

For their study, M̈uller and Padberg used a set of fixed
parameters, see Table 1.A, and four parameters, that they
considered to be key features, for which they systematically
varied their values (Table 1.B).

Note the termdiscount ratein Table 1.B. This rate re-
flects the time-value of money. A large discount rate means
that the passage of time is really valuable either to the po-
tential market value of the product being developed or in
terms of the amount of money that must be returned to in-
vestors. For example, a 100% discount rate means that the
asset looses half of its potential market value every year.
Such a discount rate might occur in a very dynamic mar-
ket with a great deal of competition. On the other hand, a
lower discount rate means that a longer time to market has
a relatively low cost. For example, a discount rate of 0%

2



Parameter

Developer Productivity 350 LOC/month

Developer Monthly Hours 135 hours/month

Defects per KLOC 100

Defects Eliminated by Conventional Processes 70%

Product Size 16,800 LOC

Developer Salary $50,000

Project Lead Salary $60,000

Asset Value $1,000,000

Table 1.A:Fixed parameters

Parameter
PairSpeedAdvantage 10% 20% 30% 40% 50%

PairDefectAdvantage 5% 10% 15% 20% 25% 30%

DefectRemovalTime 5h 10h 15h

DiscountRate 0% 25% 50% 75% 100%

Table 1.B:Varied Parameters

Table 1. Müller and Padberg parameters

would reflect a very stable market with little or no compe-
tition and little or no pressure to use the funds for another
project. With rapid technology changes and budget con-
straints within government agencies and private organiza-
tions, a realistic discount rate should be greater than 0%.

Müller and Padberg used the values of Tables 1.A and
1.B, plus the equations of Appendix C to calculate thePV
for the conventional method and the PP method. Moreover,
they made these calculations for both the Pool and No Pool
cases:

• NoPool: The number of developers was fixed. In this
situation, when the conventional method is usingn de-
velopers, the PP method is usingn

2 pairs.
• Pool: The number of developers is not fixed, as if there

existed pool of developers to create pairs with. In this
situation, when the conventional method is usingn de-
velopers, the PP method is usingn pairs, or2n devel-
opers.

3.2 Results (M̈uller/Padberg)

First, Müller and Padberg found that PP is advantageous
when the number of pairs is equivalent to the number of de-
velopers, as described in the Pool situation. In other words,
n developers are more efficient than n/2 pairs. Therefore, as
long as there exists additional tasks that can be assigned to
individual developers, PP is not the best solution.

However, if the project cannot be subdivided beyond n
tasks, and you have access to 2n developers, then PP has the

potential to be beneficial in certain cases. Müller and Pad-
berg found that PP is advantageous in this situation when
three criteria are met:

1. the project is of small to medium size (ProductSize
is not large)

2. the project is of high quality (AssetV alue is high)

3. the need for a rapid time to market is present
(DiscountRate is high)

4 Our Study

After examining the work done by M̈uller and Padberg,
we felt that a wider range of attributes could be explored.
By only varying four parameters, a large number of the
model’s attributes were not being examined as possible fac-
tors in determining the advantages of PP.

4.1 Method (our study)

To correct this, the M̈uller and Padberg model was re-
implemented, and random values within appropriate ranges
(see Table 2) were generated for a larger set of attributes
(which included the attributes and ranges from the previous
study). These attributes were then input into the model and,
using Equation 1, the total cost was found for both AP and
conventional development methods.

TotalCost =

0
@(1− 1

(1 + DiscountRate)
DevT ime

12
) ∗ AssetV alue

1
A (1)

+ DevCost

Equation 1 is a modified version of the Müller/Padberg
presented value calculation (see Equation 3 in Appendix C).
This modified equation combines the development cost with
the loss in asset value due to the length of time of the de-
velopment process. The resulting values from Equation 1
represent the total cost for each development method and
will always be positive. This then allowed us to use the fol-
lowing ratio without worrying about the effects of negative
numbers:

TotalCostofPP

TotalCostofConventional
(2)

This ratio was our means of comparison between the two
methods.

The random generation and calculations were repeated
for 10,000 cases, the results of each being recorded. These
10,000 cases were then used with a treatment learner to find
the attributes that led to an advantage for PP.

Having generated such a large data file, the next task was
to reduce it to just the key factors that most influence pair

3



Parameter Min Max

PairSpeedAdvantage -0.5 to 0 0.5 to 1.0

PairDefectAdvantage 5% 30%

DefectRemovalTime (hours) 5 15

DiscountRate 0% 100%

ProductSize (LOC) 10000 250000

DeveloperSalary ($) 45000 65000

ProjectLeaderSalary ($) 60000 90000

AssetValue ($) 200000 2000000

DeveloperProductivity (LOC/month) 100 500

NumberofDevelopers 4 20

DefectsPerKLOC 4 100

DefectsNotEliminated 10% 80%

CommunicationsFactor 1 1.5

Utilization 0.05 1.0

Table 2. Parameters and ranges used by our
study

programming. This study was conducted using theTAR2
treatment learner to mine the data. In summary, TAR2
is a tool for performing automatic sensitivity analysis of
large data files looking for constraints to parameter ranges
that can mostimproveor degradethe performance of a sys-
tem [8]. The tool performs a nearly-exhaustive search over
the data, and is capable of discovering treatments not easily
found by hand. In this study,improvementor degradation
was measured according to Equation 2; i.e. the impact on
the ratio of PP’s cost to the cost of conventional methods.
Notes on TAR2, and other data reduction tools shown in
sidebar B (see appendix B).

The treatment learner was applied to the test cases in two
separate studies:

• S1: no possible treatments were ignored. That is, no
attributes were ignored as possible factors that could
be changed to influence the performance of PP.

• S2: select attributes that the authors con-
sidered to be unchangeable were ignored as
possible treatments. These attributes were
PairSpeedAdvantage, PairDefectAdvantage,
andDefectRemovalT ime.

Also, each of these studies were examined in the two sit-
uations,NoPool and Pool, described in section 3.1, for a
total set of four studies:S1/Pool, S1/NoPool, S2/Pool, and
S2/NoPool

In addition to these tests, a set of additional tests were
conducted to examine the effects of some specific attributes
of PP, and to explore some claims made about PP in the
literature. All of these additional tests exceptT6 were con-
ducted under the conditions of bothS1/Pooland S2/Pool

described above. These additional tests were as follows:

• T1: DeveloperProductivity was set to the maxi-
mum value, 500 LOC/month, to see the distribution
when developers are being the most productive.

• T2: PairSpeedAdvantage and
PairDefectAdvantage were set to their maxi-
mum values shown in the literature, 50% and 30%
respectively, to see the distribution when pairs are
operating at their greatest rate of advantage over
individuals.

• T3: PairSpeedAdvantage was allowed to range
from 0.1 to 1.0 to see if the outcome would change.

• T4: PairSpeedAdvantage was allowed to range
from -0.5 to 0.5 to see the effects if pairs sometimes
worked slower individuals.

• T5: A communications factor was added to the model
to explore the idea that the improved communication
that results from PP leads to faster development times.

• T6: To expand on the concept of dividing tasks
among developers and constricting the number of de-
velopers available, some additions were made to the
model. As with theNoPool studies described above,
theNumberOfDevelopers was the same for both the
conventional and PP methods. Also, a random utiliza-
tion factor, ranging from 0.5 to 1.0, was generated rep-
resenting the the percent of developers actually being
utilized (ie the number of parallel tasks into which the
project could be divided).

4.2 Results (our study)

4.2.1 Summary

A summary of our results from the random testing,T1, and
T2 is shown in Figure 2. In those plots, pair program-
ming is at an advantage over conventional approaches when
Conventioanl

PP < 1.
Plot a in Figure 2 shows the output of our model from

10,000 runs across the distributions shown in Table 2. Note
that in only 8% of the runs is there an advantage to PP.

Plot b in Figure 2 shows the output fromT1. When
DeveloperProductivity was set to the maximum value,
PP was advantageous in approximately 20% of the cases.

Plot c in Figure 2 shows the output fromT2. From this
plot it can be seen that even when the two attributes that
have the most effect on the advantage of PP over conven-
tional methods are at their highest values, still only about
37% of the cases resulted in an advantage for PP. This is
the greatest advantage we found, even after usingTAR2to
exhaustively search all the attribute ranges. That is, in order
for PP to perform better than conventional, we found that
the Pair Speed Advantage needed to have a value of 50% or
above. To be best of our knowledge, no claim larger than

4



a)

0

0.5

1

1.5

2

0 5000 10000

(P
ai

r/
co

nv
en

tio
na

l) 
co

st

y values, sorted

baseline simulation

790

b)

0

0.5

1

1.5

2

0 5000 10000

(P
ai

r/
co

nv
en

tio
na

l) 
co

st

y values, sorted

With max. developer productivity

1986

c)

0

0.5

1

1.5

2

0 5000 10000

(P
ai

r/
co

nv
en

tio
na

l) 
co

st

y values, sorted

With max. pair speed & defect advantage 

3680

Figure 2. Raw data plots of a) completely random
cases, b) cases withDeveloperProductivity set to max-
imum (T1), and c) cases withPairSpeedAdvantage and
PairDefectAdvantage set to maximum (T2). The vertical line
indicates the point where PP is no longer advantageous

50% for Pair Speed Advantage has been made (claims in
the literature as to the advantage of PP over conventional
methods are greatly varied, PP’s development time is said
to be anywhere from 50% faster [9] to 15% slower [3] than
that of conventional methods). Therefore, we would argue
against claims for the superiority of PP over conventional
based on theT2 situation.

The results fromT3 andT4 revealed nothing new about
our model. The treatments found were the same as those
found in the previous tests.

0 5000 10000
0

0.5

1

1.5

2
With Treatments Found by Tar2

(P
ai

r/
co

nv
en

tio
na

l) 
co

st

3256 

Figure 3. Raw data plot of the outcome when the treatments
found by Tar2 were applied to the model

4.2.2 Details

In both S1/PoolandS1/NoPoolit was found that increas-
ing PairSpeedAdvantage and PairDefectAdvantage
was the way to most improve PP’s advantage over
conventional methods. This is not surprising since
PairSpeedAdvantage andPairDefectAdvantage rep-
resent advantages that PP has over conventional methods.
Another attribute property that showed some influence in
increasing the advantage of PP inS1/NoPoolwas a high
DefectRemovalT ime. This too makes sense because
conventional methods are prone to more defects, and there-
fore, a highDefectRemovalT ime would result in conven-
tional developers working significantly more than developer
pairs.

Considering that it may not be possible to simply
changePairSpeedAdvantage, PairDefectAdvantage,
andDefectRemovalT ime as needed, studiesS2/Pooland
S2/NoPoolignored these attributes as possible treatments,
and looked for additional features that could lead to an ad-
vantage for PP. InS2/Poolit was found that there were three
things that significantly contributed to an advantage of PP
over conventional methods:

• A high DiscountRate; i.e > 0.42;
• A smallProductSize; i.e. 10,000 to 60,000 LOC
• A high AssetV alue; i.e.≈ $1.6M to $2.0M LOC

These are the same three factors that were found by
Müller and Padberg when a pool of developers was present.
Hence, our pre-experimental concerns that Müller and Pad-
berg study had not surveyed enough of the options was not
correct. Nevertheless, even if we arrive at the same conclu-
sions, our study adds much to the rigor of that prior study
since we can defend our conclusions from a wider range of
criticisms that the original M̈uller and Padberg study.

Figure 3 shows the distribution when these changes were
made to the model. As you can see, in approximately 33%

5



of the runs PP had an advantage over conventional methods.
This is a significant improvement over the 8% found in the
baseline distribution in Figure 2.

In S2/NoPool, no significant treatments were found.
Therefore, when a pool of developers is not present, or when
additional tasks are present as described by Müller and Pad-
berg in section 3.2, PP does not have an advantage over con-
ventional methods.

In test T5, a communications factor was added to ex-
plore the idea that PP increases effective communication
among developers, thereby reducing development time.
To implement this addition, theDevT ime variable for
conventional programming was replaced byDevT ime ∗
CommunicationsFactor. Allowing this communications
factor to range from 0% to 50%, a significant advantage
for PP was found when the factor was≥ 40%. So if in-
creased communication (or any other factor that is not mod-
elled here) reduces development time by 60% (1 - 40%) or
more, then there is a strong case for PP. Note, however, that
this is a 60% reduction in development time in addition to
the factors already modelled, such as Pair Speed Advan-
tage and Pair Defect Advantage. So the actual advantage of
PP over conventional methods must be even greater. With
50% faster being the upper bound we have seen in the lit-
erature [9] and the communications factor mentioned above
needing to be 60% plus the other factors in the model, it
appears that a communications boost alone is not a valid ar-
gument for the use of PP. However, this does not count out
the possibility of other factors that were not modelled in this
experiment that may impact the performance of PP.

The final test,T6, was conducted to expand upon the idea
of the maximum number of tasks a project can be divided
into, and developer utilization. To explore this, a utiliza-
tion factor, which ranged from 0.05 to 1.0, was added to
the model to represent the number of tasks a project could
be divided into (i.e. the number of developers or pairs that
could be working at once). To implement this change, the
NumberofDevelopers variable in all the calculations of
the timing values (DevT ime andQATime) was replaced
byNumberofDevelopers∗UtilizatonFactor (and if this
resulted in a number less than one, then a value of one
was used). In this test, number of developers was the same
for both the conventional and PP methods (as it was in the
NoPool experiments above). While at first this appears to
be a reasonable extension to the model, it is actually unnec-
essary. When the utilization factor is≤ 0.5, there is no dif-
ference from thePool studies above. For example, if there
were 20 developers and the utilization factor was 0.25, there
would be20 ∗ 0.25 = 5 individual developers working with
the conventional method, and 5 pairs (i.e. 10 people) with
PP. On the other hand, when the utilization factor is> 0.5,
the model behaves no differently than theNoPool studies
above. For example, if there were 20 developers and the uti-

lization factor was 0.75, then there would be20∗0.75 = 15
individuals developers with the conventional method, but
only 10 pairs with PP (i.e. 20 people=min(20, 20 ∗ 1.5)).

5 Conclusions

Our tests have shown PP’s ability to potentially out per-
form conventional development methods when certain cir-
cumstances exist. When the project is relatively small, an
abundance of developers exists, and a rapid development
time is needed, or when PP significantly increases develop-
ment time due to improved communication, our study en-
dorses the use of PP.

This is not to say that PP is only advantageous in these
specific situations. This study is limited to the components
of its model. Constructing a complete economic model of
pair programming would be an enormous, if not impossible,
task. Because of the vast number of details to be considered,
models are limited to looking at a set number of attributes.
So from our model, we cannot conclude that a convincing
case can be made in favor of PP in every situation based
solely on the attributes we examined; i.e.

• increased productivity of pairs over conventional ap-
proaches

• productivity vs. cost
• lower error rates

As time passes and more concrete observations from
real-world experiences become available, the true benefits
of AP/PP will be seen. But until then, proponents of PP
must base their case on other factors not modelled in this pa-
per, possibly in conjunction with our results, such as (e.g.)
increased performance in rapid changing environments or
decreased cost due to conventional requirements reworking
to accommodate changes.

Finally, it is important to also reiterate the fact that our
study focuses primarily on the AP practice of pair program-
ming. If an AP method does not include pair programming
as part of its process, then the results of our study are not
applicable.

Acknowledgements

Helen Burgess provided helpful and timely editorial as-
sistance. This research was conducted at West Virginia Uni-
versity under NASA contract NCC2-0979. The work was
sponsored by the NASA Office of Safety and Mission As-
surance under the Software Assurance Research Program
led by the NASA IV&V Facility. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not con-
stitute or imply its endorsement by the United States Gov-
ernment.

6



References

[1] Kent Beck. Extreme Programming Explained: Em-
brace Change. Addison Wesley, 2000.

[2] B. Boehm. Get ready for agile methods.IEEE Com-
puter, pages 2–7, 2002.

[3] Alistair Cockburn and Laurie Williams. The costs and
benefits of pair programming, June 2000.

[4] M. Beedle et. al. Manifesto for agile software de-
velopment, 2001. Available fromhttp://www.
agilemanifesto.org/ .

[5] Martin Fowler. The new methodology, 2002. Available
from http://martinfowler.com/articles/
newMethodology.html .

[6] Matthias M. Mller and Frank Padberg. Extreme pro-
gramming from an engineering economics viewpoint.
In Proceedings of the Fourth International Workshop
on Economics-Driven Software Engineering Research
(EDSER), 2002.

[7] Ken Schwaber, 2002. Quote from the First
eWorkshop on Agile Methods. Available from
http://fc-md.umd.edu/projects/Agile/
Summary/Summary1.htm .

[8] T.Menzies and Y. Hu. The tar2 treatment learner,
2002. Available fromhttp://www.ece.ubc.ca/
twiki/pub/Softeng/TreatmentLearner/
intro.pdf .

[9] L. Williams, R. R. Kessler, W. Cunningham, and R. Jef-
fries. Strengthening the case for pair-programming.
IEEE Software, July/August 2000.

7



A Measuring benefits using financial mea-
sures of performance

Software project managers are increasingly using eco-
nomic considerations as a guide when making decisions.
[ref Sullivan]. The financial value of a process decision can
be found in many ways including simulation, cost estima-
tion, building analytic models, etc (e.g. see [1]). For each
cost or benefit (a.k.a. cash flows), there are four main char-
acteristics to consider: themagnitudeof the cost or benefit,
its timing (i.e. when does it occur), itsnature (e.g. one
time cash flow, recurring payment, etc.) and thedegree of
certaintyof the cash flow. In a basic analysis, costs and ben-
efits are estimated to occur at a fixed point time and with a
fixed magnitude. In a more sophisticated analysis, consid-
erations for uncertain magnitudes and timings of cash flows
are also dealt with. Some techniques that are often used to
assess the financial value of decisions include:

Present value techniques: The present value (PV) for any
cash flow simply means discounting the cash flow back to
the present time at a specific interest rate (often calleddis-
count rate).

Net present value(NPV) is the difference between the
present values of the benefits less the costs (see equation
3, appendix C). In a sense, NPV represents the amount of
profit that is received from an investment, after the investor
is paid back for putting up the money.

Return on Investment (ROI): ROI measures the amount
of benefit that is received for every dollar that is invested up
front (over and above the original investment). Intuitively,
we believe that a ROI of 20% will be preferred to a ROI
of 15%. The difficulty with the ROI measure is that this
intuition can be deceiving. For example, would we prefer
an investment that has a ROI of 20% but only lasts for one
year or an investment that has a ROI of 15% that lasts for
three years? Another problem with ROI is that for certain
complex cash flow scenarios, multiple answers may be ob-
tained. As a result, the ROI measure is used with caution
and typically provided in conjunction with other financial
measures such as NPV.

Payback Period:Payback period anddiscounted pay-
back periodmeasure the amount of time it takes to return
the initial investment. For instance, a payback period of
two years means that an investor’s initial outlay would be
returned in two years and any returns after that would be
considered to be pure profit. The discounted payback pe-
riod may also be considered a present value method in that
all cash flows are first discounted back to the present time
using a specified interest rate. Again, the discounted pay-
back period would be determined using the discounted cash
flows. The problem with the payback period measures is
also one of providing incomplete information. For instance,
after the initial investment is paid back, how long will the

returns continue? What is the overall profitability of this
alternative? The technique provides no visibility after the
payback period. So, as with the ROI, payback period tech-
niques are usually used in conjunction with Present Value
measures such as NPV.

In this paper, PV is used in Equation 3 of Appendix C
for determining the value of the software project. Equation
1 actually reflects the NPV of the costs associated with de-
velopment and the lost market value of the software asset
due to the time it takes to develop the product. The longer
it takes to develop the product, the greater the value that is
lost.

References

[1] D. M. Raffo, J. V. Vandeville, and R. Martin. Software
process simulation to achieve higher cmm levels.Jour-
nal of Systems and Software, 46(2/3), April 1999.

8



B Data Reduction and Treatment Learning

A variety of techniques can be used to reduce a data set
to a succinct summary. In a traditionalsensitivity analy-
sis, an initialscreeningphase tries to reduce the number of
variables being studied by some quick early studies. One
method used in screening is a divide and conquer technique
calledsequential bifurcation[1]. Using this technique, an-
alysts repeatedly sub-divide the known variables till they
find that no major effects in the remaining variables. At
each sub-division, some limited simulation studies may be
conducted.

After screening, another analysis studies the effect of ex-
treme changes to a model such as simulations using mini-
mum and maximum values for each variable or changing
the number of connections between components. The re-
sults of these extreme simulations may be summarized us-
ing mathematical regression. The art of this kind of analysis
is to design the least number of extreme experiments to most
sample the most number of model variables.

After experimenting with extremes, analysts might then
explore ranges of each input variable. Anuncertainty anal-
ysis treats each variable as a random variable with a mean
and a standard deviation. In uncertainty analysis, monte
carlo simulations are conducted to determine the probabil-
ity of various model outputs.

The above process is labor intensive and can require con-
siderable skill on the part of the analyst. The TAR2 treat-
ment learner was created as an experiment in simplifying
sensitivity analysis.

TAR2 assumes thesmall treatment effect; i.e. that within
a model, a very small number of variables control most of
the other variables. This small treatment effect has been
reported in many domains, albeit under different names. So
much so that Menzies and Cukic [3, 4] and Menzies and
Singh [6] speculated that small treatments are an emergent
property that will appear in most models.

In models with small treatment sizes, a very fast and sim-
ple sensitivity analysis can be performed by TAR2 as fol-
lows. Firstly, conduct numerous monte carlo simulations
and score each run (via some automatic oracle). Secondly,
rank each attribute value by comparing their frequency in
high scoring runs to their frequency in low scoring runs. In
models with small treatments, a small number of attribute
values should get outstandingly large rankings in this step.
Thirdly, build treatments by combining a small number of
attribute ranges with outstandingly large rankings (a “treat-
ment” is a conjunction of restrictions on the input values
that are intended to improve the results of subsequent model
outputs). Fourthly, test those treatments by applying them
as fresh constraints to a new run of a simulator. The treat-
ments “work” if these constraints do improve the output of
simulator. TAR2 automates steps one, two, and three.

Note if a model does not support small treatments then
an exponential number of combinations will be required in
step three to control a simulation and TAR2 will take too
long to execute. That is, TAR2 canonly work when a do-
main contains small treatments. The empirical evidence is
that TAR2 works in many domains [2, 5], suggesting that
small treatments are not uncommon. In the case of our
study, all our best treatments used only single attribute val-
ues so it was tractable to explore bigger treatments. None
of these bigger treatments proved more effective that the
smaller treatments. Hence, TAR2 is an adequate method of
finding controllers for this domain.

Another way to characterize TAR2 is to call it adata
mining tool. Data mining tools can suffer from the same
issues of complexity-of-use as sensitivity analysis. In par-
ticular, if the learnt theories are too complex, then humans
can’t understand them. TAR2’s treatments are always very
small, hence fast to read and understand. For a comparison
of TAR2 with standard data miners, see [5]. For more on
standard data mining tools, see [7].

References

[1] J.P.C. Kliijnen. Sensitivity analysis and related anal-
yses: a survey of statistical techniques.Journal Sta-
tistical Computation and Simulation, 57(1–4):111–142,
19987.

[2] T. Menzies, E. Chiang, M. Feather, Y. Hu, and J.D.
Kiper. Condensing uncertainty via incremental treat-
ment learning. InAnnals of Software Engineering,
2002. Available fromhttp://tim.menzies.
com/pdf/02itar2.pdf .

[3] T. Menzies and B. Cukic. Adequacy of limited
testing for knowledge based systems.International
Journal on Artificial Intelligence Tools (IJAIT), June
2000. Available fromhttp://tim.menzies.
com/pdf/00ijait.pdf .

[4] T. Menzies and B. Cukic. When to test less.IEEE
Software, 17(5):107–112, 2000. Available fromhttp:
//tim.menzies.com/pdf/00iesoft.pdf .

[5] T. Menzies and Y. Hu. Just enough learning (of as-
sociation rules): The tar2 treatment learner. InWVU
CSEE tech report, 2002. Available fromhttp://
tim.menzies.com/pdf/02tar2.pdf .

[6] T. Menzies and H. Singh. Many maybes mean (mostly)
the same thing. In2nd International Workshop on Soft
Computing applied to Software Engineering (Nether-
lands), February, 2001. Available fromhttp://
tim.menzies.com/pdf/00maybe.pdf .

9



[7] I. H. Witten and E. Frank.Data Mining: Practical Ma-
chine Learning Tools and Techniques with Java Imple-
mentations. Morgan Kaufmann, 1999.

10



C Equations

In their paper, M̈uller and Padberg present an economic
model of software projects for both PP and conventional
methods [1]. Their model is based on the Present Value
(PV ) of the software project, which is calculated and com-
pared for both programming methods.

ThePV of the projects is found using Equation 3.

PV =
AssetV alue

(1 + DiscountRate)
DevT ime

12
(3)

TheAssetV alue andDiscountRate are the same for both
projects. TheDiscountRate is used to simulate time to
market: a lower discount rate represents a longer time to
market, and a higher discount rate represents a faster time
to market.

The equation for the development time,DevT ime, dif-
fers for the two development methods. Since the PP method
results in fewer errors, an allowance must be made in the
development time for the conventional method to allow for
the elimination of an equivalent number of errors. This ad-
ditional time for quality assurance is theQATime. The
DevT ime equation for the conventional method is:

DevTime = QATime + (4)

ProductSize

DeveloperProductivity ∗NumberOfDevelopers

And theDevT ime equation for the PP method is:

DevTime =
1

DeveloperProductivity
∗ 1

NumberOfPairs
(5)

∗ ProductSize

(100% + PairSpeedAdvantage)

where

NumberOfPairs =
NumberOfDevelopers

2
(6)

The QATime requires three calculations. First, the
number of defects left in a typical project must be calcu-
lated using Equation 7.

DefectsLeft = ProductSize ∗ DPKLOC

1000
∗DNE (7)

DPKLOC is the number of defects per thousand lines
of code, andDNE is the percent of defects not eliminated
by conventional techniques (1 - Defects Eliminated by Con-
ventional Processes). OnceDefectsLeft has been cal-
culated, the next step is to find theDefectDifference.
This is simply the DefectsLeft multiplied by the
PairDefectAdvantage, which is the percent of defects
PP eliminates that conventional programming does not.

DefectDifference = DefectsLeft ∗ PairDefectAdvantage (8)

The final step is to calculate the time required for con-
ventional developers to remove these extra defects. This is
known as theQATime, and is found using Equation 9.

QATime = DefectDifference ∗ DefectRemovalT ime

DeveloperMonthlyHours
(9)

∗ 1

NumberOfDevelopers

The final calculation that is required for the project
model, which is the same for both the conventional and the
PP method, is the development cost,DevCost. DevCost
is found using Equation 10.

DevCost =
DevTime

12

∗(NumberOfDevelopers ∗DeveloperSalary

+ProjectLeadSalary) (10)

References

[1] Matthias M. Mller and Frank Padberg. Extreme pro-
gramming from an engineering economics viewpoint.
In Proceedings of the Fourth International Workshop
on Economics-Driven Software Engineering Research
(EDSER), 2002.

11


