
memo4@ai.wvu.2003. Available from http://tim.menzies.com/pdf/03prodabout.pdf

PROD: Motivations

Tim Menzies

Lane Department of Computer Science, West Virginia University, PO Box 6109, Morgantown, WV, 26506-6109, USA;
http://tim.menzies.us; tim@menzies.us

Wp ref: ˜menzies/src/pl/prod/prodabout.tex, January 30, 2003.

Abstract The motivations for the PROD system are ex-
plained.

Contents

1 Why? . 1

1.1 Paradigms of computer systems 1

1.2 Must show software 1

1.3 But why are you still using Prolog? 2

2 Who? . 3

A License . 3

A.1 nowarranty.txt 3

A.2 warranty.txt . 3

A.3 conditions.txt 3

List of Figures

1 Prolog resources. 2
2 Find out more about PROD. 4

1 Why?

I wrote PROD because I needed new training material to
teach grad students about Prolog programming. Why was
that so? Well, to begin with, I think the training given to most
programmers emphases one particular paradigm of computer
systems. I wanted to broaden that training. Also, as a soft-
ware engineering educator, I needed to show software sys-
tems in my classes. Finally, despite all its flaws, Prolog is
a very useful language and I found myself using techniques
not found in the standard Prolog texts.

Not convinced? Well, then I see I’ll have to explain my-
self a little more...

1.1 Paradigms of computer systems

Computer development systems can be divided up according
to what they are trying to do. Systems based on “C” are usu-
ally optimized to run fast. Systems based on some normal-
ized database design are optimized to be maintained quickly.
And systems written in high-level languages are usually the
ones where programs can be written quickly.

This characterization of systems into “fast to run” or
“fast to maintain” or “fast to write” is, of course, only an
approximation. Clearly, these kinds of systems can be com-
bined so that (e.g.) systems written in high-level languages
can be quickly written then compiled to “C” so they run fast.
Nevertheless, the emphasis in most programming courses is
on procedural programs in languages such as “C” program-
ming. This has the side-effect that most programmers never
see how much of their work is influenced by the “fast to run”
approach. As standard desktop machines get faster, it be-
comes practical to move beyond the “fast to run” paradigm.

System development for systems that are fast to main-
tain has been discussed extensively elsewhere [2]. Here, we
focus on systems written in high-level languages that are
quick to write.

1.2 Must show software

Erwin Schroedinger once said if you cannot- in the long run-
tell everyone what you have been doing, your doing has been
worthless. Well, it took me a while to work it out but finally
I realized that as a software engineering educator, I should
be presenting software to my classes. Every class, lots of
software.

I’ve tried various languages and various formats and this
is my latest attempt. In this experiment, the new mix is:

– The programming language is Prolog [1,3,4,6,8]) since,
for me anyway, it lets me show the most functionality in
the fewest lines.

– The examples are biased towards logic-for- software-
engineering. . .

– . . . coded up in a programming style not discussed ex-
tensively in the standard Prolog texts . . .

Textbooks:

– The classic: Clocksin & Mellish, Programming in Prolog 4th ed. Springer-Verlag 1994.
– The best seller: Ivan Bratko, Prolog Programming for Artificial, Addison-Wesley. At the time of this writing, the

third edition was out.
– For the theoreticians: Hogger, C. J., Introduction to Logic Programming Academic Press 1984.
– Contains lots of cookbook solutions: Sterling and Shapiro, The Art of Prolog. MIT Press, Cambridge, Mass. 1986.
– Advanced Prolog programming (and small!): Clause and Effect: Prolog Programming for the Working Programmer

By William F.Clocksin, Springer Verlag 1997. ISBN: 3540629718
– Prolog & General AI: Computational Intelligence: A Logical Approach: D. Poole and A. Mackworth and R. Goebel,

Oxford University Press, 1998.

On-line material (there’s a lot out there; here is just a sample):

– Newsgroups: news://comp.lang.prolog is a friendly place to post queries, but be warned. Many students post
queries like “HELP: my assignment is due and I don’t know how to reverse a list. What can I do?”. And, sometimes,
the locals at news://comp.lang.prolog express (mild) annoyance at this sort of behavior

– The Prolog FAQ: http://flits102-126.flits.rug.nl/˜dirk-jan/prolog/faq/html/
– Code Libraries:

– Dick Botting’s Prolog collection: http://www.csci.csusb.edu/cs320/prolog/index.html. The
Techniques section is especially recommended.

– David Poole’s code library from the Computational Intelligence book: http://www.cs.ubc.ca/spider/
poole/ci/ci_code.html.

– The CMU Prolog repository: http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/
ai-repository/ai/lang/prolog/0.html

Tutorials:

– Nice: http://www.csupomona.edu/˜jrfisher/www/prolog_tutorial/contents.html
– Fun, but a little basic: http://burks.bton.ac.uk/burks/language/prolog/amzi/index.htm
– Very nice: http://ktiml.mff.cuni.cz/˜bartak/prolog/index.html

Fig. 1 Prolog resources.

– . . . presented in a very hands-on programming style.

Also, I can’t convince anyone that Prolog is pretty good
without pretty good documentation. PROD is a bunch of
LATEX tricks that let me rapidly generate camera-ready doc-
uments from my Prolog code.

Maybe you’ll find it useful as a programming or teaching
resource.

1.3 But why are you still using Prolog?

Well, it’s like this. As long as:

– I want to write state-of-the-art model-based software.
– I can keep up with the next generation of grad student

programmers.
– I don’t have unlimited programming time.
– There is a large international community of educators,

researchers and vendors supplying high quality Prolog
materials.

then, I’ll stay with Prolog. Here’s my reasons:
Prolog endures. It is an old language (1972) yet it keeps

being taught, keeps being used industrially, and high-quality
textbooks and interpreters are readily available (see Figure 1).
Nevertheless, like many folk, I used Prolog in grad school

then left it behind for something better. “Prolog?”, I used to
say, “that was something we used to do as kids”.

Only thing was, the “something better” wasn’t so much
better. After nearly a decade of real-world commercial pro-
gramming in Prolog, then Lisp, then Smalltalk, I realized
that my best logic programming code was smaller than my
best functional or OO code. This was a surprise since I thought
that (e.g.) OO would allow me to better structure my pro-
grams. (Actually, I stopped thinking that when I discovered
the wonderfully messy and practical Perl programming lan-
guage. Heck, my Prolog has to be at least as well structured
as the average Perl program.)

Anyway, then I became an academic again and I noticed
a couple of things. Firstly, the machines were getting faster.
It is now perfectly viable to deliver interpreted systems in a
commercial setting (look at all the Perl code out there).

While the machines get faster, I seem to be getting slower.
I kept finding that I didn’t have time to write huge programs.
I had to return to my Prolog in order to get certain jobs done.

Slow as I was, I found that I could still out-program my
grad students. See, I’d thrash around for a weekend in Prolog
and then give it to them saying “code it in C, make it faster,
make it better”. Trouble was, months later, they were still
fighting their way through memory leaks, pointer problems,
etc.

2

Another reason for staying with Prolog is that, at least
in my view, logic programming techniques are being used
more and more. For example, the reflection pattern proposed
by OO design gurus (and implemented as e.g. Java beans or
aspect-oriented programming) is just programmers realizing
that things like clause/2 is astonishingly useful. But this
is just a special case of my next point.

Old-fashioned software is like obsessed over-trained ath-
lete sprinting for the finish line. Such software runs fast
since it doesn’t look where it is going. But, it will stum-
ble and crash at the first hole in the road. Modern model-
based software builds and reflects over some model care-
fully crafted at runtime. Choices are recognized, and pro-
cessed via an on-going analysis of the internal model. Pro-
log is just terrific for implementing such reflection- 20 lines
of meta-interpretation can give you so very much.

Q.E.D.

2 Who?

PROD emerged after many years of programming. I list
here some of the people who, along the way, most influenced
my thinking. These credits are listed alphabetically by main
handle; e.g. last name or web site title.

Graham Mann: who always challenges me to reach further.
Numerous grad students: who always stared at me funny

when I confused them, forcing me to say it again, better,
simpler, more clearer. Special mention to:

– Eliza Chaing
– Lindsay Mason

David Poole: David was the first to show me the the trick
of adding LATEX command into a Prolog program. He
also “lead from the front” by writing some of the most
elegant Prolog I have ever seen [7].

Claude Sammut: who I believed, all those years ago, when
he said that Prolog can be used for real world applica-
tions. For my masters back in the 1980s, he asked me to
write a “good” Prolog expert system shell. Well, Claude,
I’ve nearly got it right so I hope you’ll give me a passing
grade.

Roland Sammut and Michael Wise: who originally taught me
Prolog.

The following people have never meet me, probably don’t
know my name, or my face. But I always sought to rise to
their exceptionally high standards:

Peter Norvig: whose Paradigms of Artificial Intelligence [5]
is an inspiration to all educators.

Guy L. Steele: The man who wrote two of the greatest tech-
nical documents in the world: Common Lisp, the Lan-
guage and The Hacker’s Dictionary. Any man who writes
a PhD thesis where the font sizes change twenty times in
a single sentence is my kind of Guy (I’ve been waiting
decades to make that joke...).

Acknowledgements This research was conducted at West Virginia
University under NASA contract NCC2-0979. The work was spon-
sored by the NASA Office of Safety and Mission Assurance under
the Software Assurance Research Program led by the NASA IV&V
Facility. Reference herein to any specific commercial product, pro-
cess, or service by trade name, trademark, manufacturer, or other-
wise, does not constitute or imply its endorsement by the United
States Government.

References

1. I. Bratko. Prolog Programming for Artificial Intelligence. (third
edition). Addison-Wesley, 2001.

2. C. Date. An Introduction to Database Systems, volume 6.
Addison-Wesley, 1995.

3. P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Stan-
dard. Sprunger, 1996.

4. T. Menzies. Domain-specific knowledge representations. AI
Expert, Summer 1989.

5. P. Norvig. Paradigms of Artificial Intelligence Programming:
Case Studies in Common Lisp. Morgan Kaufmann, 1992.

6. R. O’Keefe. The Craft of Prolog. MIT Press, 1990.
7. D. Poole, A. Mackworth, and R. Goebel. Computational Intel-

ligence: A Logical Approach. 1998.
8. L. Sterling and E. Shapiro. The Art of Prolog (second edition).

MIT Press, 1994.

A License

This software is distributed under the GNU General Public Li-
cense.

A.1 nowarranty.txt

PROD comes with ABSOLUTELY NO WARRANTY: for more details type ’war-
ranty’.

This is free software, and you are welcome to redistribute it under certain condi-
tions: for more details, type ’conditions’.

A.2 warranty.txt

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
version 2 (see http://www.gnu.org/copyleft/gpl.html or type ’conditions’).

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place -
Suite 330, Boston, MA 02111-1307, US.

A.3 conditions.txt

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICA-
TION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this
General Public License. The ’Program’, below, refers to any such program or work,
and a ’work based on the Program’ means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of it,

3

1. prod1.pl : “An example of the PROD Prolog delivery and documentation system.”
Available from http://tim.menzies.com/pdf/03prod1.pdf.

2. prod.pl : “A PROlog Documentation, and Delivery Tool”.
Available from http://tim.menzies.com/pdf/03prod.pdf.

3. prod0.pl : “TITLE”: a bare-bones minimal example of PROD.
Available from http://tim.menzies.com/pdf/03prod0.pdf.

4. prodabout.pl : “Motivations”: the why and who of PROD.
Available from Available from http://tim.menzies.com/pdf/03prodabout.pdf.

5. family.pl : “A family database”: documentation of a very simple Prolog family database.
Available from http://tim.menzies.com/pdf/03family.pdf.

6. lib.pl : “Commonly used predicates”:
Available from http://tim.menzies.com/pdf/03lib.pdf.

7. cfg.pl : “Handler for config files and command line options”:
Available from http://tim.menzies.com/pdf/03cfg.pdf.

8. gpl.pl : “Including GPL-2 in Prod”:
Available from http://tim.menzies.com/pdf/03gpl.pdf.

9. omo.pl : “Software cost estimation”:
Available from http://tim.menzies.com/pdf/03gpl.pdf.

Fig. 2 This document is part of the PROD delivery and documentation tool for Prolog applications. To find out more about PROD, the best
place to start is memo #2.

either verbatim or with modifications and/or translated into another language. (Here-
inafter, translation is included without limitation in the term ’modification’.) Each
licensee is addressed as ’you’.

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is not re-
stricted, and the output from the Program is covered only if its contents constitute a
work based on the Program (independent of having been made by running the Pro-
gram). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty; and
give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty) and
that users may redistribute the program under these conditions, and telling the user
how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is
not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sec-
tions of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you dis-
tribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Sec-
tion 2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium cus-
tomarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing source dis-
tribution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for mak-
ing modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the executable. How-
ever, as a special exception, the source code distributed need not include anything that
is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code from
the same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify, subli-
cense or distribute the Program is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you un-
der this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Program or
its derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based on
the Program), you indicate your acceptance of this License to do so, and all its terms
and conditions for copying, distributing or modifying the Program or works based on
it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to copy, dis-
tribute or modify the Program subject to these terms and conditions. You may not
impose any further restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of
the Program by all those who receive copies directly or indirectly through you, then

4

the only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this section has
the sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a con-
sequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright holder who
places the Program under this License may add an explicit geographical distribution
limitation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation as
if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and ’any later version’, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the
Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE

IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
’AS IS’ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PRO-
GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMIT-
TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

5

