
Model-Based Software Testing via Incremental Treatment Learning

Dustin Geletko, Tim Menzies
Lane Department of Computer Science and Electrical Engineering

West Virginia University, USA
dgeletko@mix.wvu.edu , tim@menzies.us

Abstract

Model-based software has become quite popular in re-
cent years, making its way into a broad range of areas, in-
cluding the aerospace industry. The models provide an easy
graphical interface to develop systems, which can generate
the sometimes tedious code that follows. While there are
many tools available to assess standard procedural code,
there are limits to the testing of model-based systems. A
major problem with the models are that their internals often
contain gray areas of unknown system behavior. These pos-
sible behaviors form what is known as adata cloud, which is
an overwhelming range of possibilities of a system that can
overload analysts [3]. With largedata clouds, it is hard to
demonstrate which particular decision leads to a particular
outcome. Even if definite decisions can’t be made, it is pos-
sible to reduce the variance of and condense the clouds [3].
This paper presents two case studies; one with a simple il-
lustrative model and another with a more complex applica-
tion. The TAR3 treatment learning tool summarizes the par-
ticular attribute ranges that selects for particular behaviors
of interest, reducing thedata clouds.

1 Introduction

Our thesis is that, when debating about complex sys-
tems with uncertain behavior, humans are slower than ma-
chine learners at identifying key decisions that give the most
leverage, saving both time and money, and allowing humans
to devote more time on important decisions and less time on
irrelevancies [9]. Benefits are then maximized, while costs
are minimized. The TAR3 treatment learner further bene-
fits the scenario by automatically finding the best and worst
possible situation within a model’s domain [9]. Our bottom
line is “time = money”, which is why automatic methods
are preferred.

In this paper, we test incremental treatment learning us-
ing software models such as those simulated in Matlabc©

Simulink for NASA applications; e.g. (STEREO, GLAST).

These models contain many complex control variables that
produce various outputs. Although a certain range of values
that the inputs to a system normally contain are known, a
particular value at any certain point in time could be ran-
dom, and checking every scenario for each value could
prove to be very time consuming. Knowledge of the range
of values or what particular value tends to steer a system to-
wards interesting points such as success or failure could be
critical and help evaluate the clouds of uncertainty in com-
plex systems.

In developing our tool to search for attributes that led
to particular model outputs, a few assumptions were neces-
sary. First, the output values of interest were known and di-
vided into predetermined classes. That is, users could act as
an oracle to assign some utility to the outputs of the model.
This is the key to the assessment of the model. There must
be some notion of adesiredclass in order to find mitigations
that lead to that class.

A second assumption was thatnarrow funnelsexisted
within the system. There can be numerous inputs or con-
trol variables in any particular system. Thenarrow funnel
assumption states that only a few critical variables control
the overall behavior of the entire system. In other words,
only a subset of all of the system controllables can be used
to adequately predict the overall system behavior [10].

Another important assumption was that the operational
profile of the system, or the normal operating input value
ranges, was known. In order to test a system, parameters
of the system must be known. In other words, ranges of
the possible values that the inputs can hold must be known
so a Monte Carlo analysis can be performed between those
ranges and the funnels that lead to certain predetermined
output classes can be utilized. Otherwise, there is an infinite
space to be sampled when conducting the analysis.

The rest of the paper applies these assumptions to two
models. The first model is a simple model, mainly used for
illustrative purposes. The second model utilized the method
on a complex real-world model, illustrating scalability on
more practical applications. The second model also illus-
trates the generality of this method, being applicable to any

1

Figure 1. Incremental Treatment Learning

model-based software package.

2 Incremental Treatment Learning

“Understanding” models refers to the act of finding a
model’s strengths and flaws, and possibly mitigations that
ultimately reduce those flaws [10]. Our proposed model
understanding tool is the process of incremental treatment
learning (See Figure 1).

To utilize incremental treatment learning, a controller
was developed to test for funnels in the software models.
The basic concept was to continuously generate random in-
puts to the model within the known range and simulate the
model numerous times. This Monte Carlo analysis gener-
ated a large data file. The file was fed through the treatment
learner (TAR3), which summarized the inputs along with
the ranges of those inputs, called treatments, that most pre-
dicted for a predetermined desired state. The inputs evalu-
ated could either be system inputs or inputs to a subsystem.
This process was repeated until no new information was
learned. The output’s worth, or the amount that the orig-
inal distribution was moved towards the desired outcome,
was used as a measure of the information learned.

Repeating this process forces the output of the system
to shift towards the desired distribution by continually con-
straining the inputs according to the newly discovered treat-
ments. The process will stop when either TAR3 finds no
new treatments or there are no new treatments that will
drive the output towards the desired state, and thereby in-
crease the worth. Decisions can then be made about the
treatment variables, which override decisions about vari-
ables not given in the treatments because they simply add
redundancy to the outcome. Minimal strategies can then
be defined to decrease uncertainty in the model [3]. The
usefulness of this system can be visualized if it is found to
provide significant results and help to better understand the
model.

The core of incremental treatment learning is the TAR3

treatment learner. In summary, TAR3 is a tool for perform-
ing automatic sensitivity analysis of large data files looking
for constraints to parameter ranges that can mostimprove
or degradethe performance of a system [7, 8]. The tool
performs a random search over the data and is capable of
discovering treatments not easily found by hand.

Another way to characterize TAR3 is to call it adata
mining tool. For a comparison of TAR2, the predecessor
of TAR3, with standard data miners, see [6]. For more
on standard data mining tools, see [14]. The advantage
of TAR3 over classic machine learners is its ability to give
short concise treatments of interest rather than complicated
and sometimes very large decision trees. The quick and
easy to read treatments dubs it the name “data mining for
very busy people” [8] because most practitioners are too
busy or have too many time constraints to deal with long
complicated reports.

TAR3 assumes thesmall treatment effect; i.e. that within
a model, a very small number of variables control most of
the other variables. This small treatment effect has been
reported in many domains, albeit under different names. So
much so that Menzies and Cukic [4, 5] and Menzies and
Singh [11] speculated that small treatments are an emergent
property that will appear in most models. This property,
known asFunnel Theory, is described in detail in [3]. The
theory has been extensively tested in the discrete domain,
but research in the numeric domain has been limited.

TAR3 is a machine learning technique that orders classes
by a scheme of weights, with the desired class having the
highest weight. A calculation, called lift, then finds a sub-
set of the data, called treatments, which are those attributes
that shift the baseline class distribution to a distribution con-
taining the most occurrences of the desired class. These at-
tributes given as treatments are the funnels of the system.
These treatments can then predict the attribute ranges that
lead to the desired class. For more details on treatment
learning, see [1]. For a short overview, see [8].

3 Feasibility

This method may not be feasible for certain models. De-
cisions must be made about the advantages of the method,
especially for critical applications, since TAR3 does not im-
plement an exhaustive search method. This method could
also require performing an overwhelming number of simu-
lations in the Monte Carlo analysis, which could be unfeasi-
ble for large-scale models whose simulations require unusu-
ally long run-times [10]. Determining a sufficient number
of random samples in the Monte Carlo analysis that ade-
quately represent the input space, and therefore converge
the treatments, could also be very time consuming.

2

baseline controller monitor
RADARrange= Wavelength=
[48.387..51.888] [0.075..0.159]

Weather= Weather=
[No Precip] [HeavyPrecip]

0

25

50

75

100

25 25

��

25

��

25

��
�
�
�

��

0

25

50

75

100

0 0
���

0
���

7.75
� �����

0

25

50

75

100

6.75 0
���

0
���

0
��� �����

KEY: Bad OK Good Best

Figure 2. RADAR
Output class distribution percentages of the
original treatments provided

4 Case Studies

4.1 RADAR Design

4.1.1 Background

The first study illustrates the process of incremental treat-
ment learning on a simple, small-scale model. A more com-
plex and large-scale model follows. In performing the re-
search, the built-in Simulink aerospace ‘Air Traffic Control
Radar Design’ demo was used. This model supplied a GUI
in which certain radar design parameters could be chosen to
observe the various effects on the performance of the sys-
tem. The goal of this case study was to perform the pro-
cess of incremental treatment learning twice, once to find
the controllers of the system, and the second time to find
the monitors of the system. The controllers are the vari-
ables that lead the system to thedesiredstate, and the mon-
itors are the variables that lead the system to theundesirable
state, in which preventive measures need to be implemented
[1]. Thedesiredstate in this case was detecting the aircraft
at higher altitudes, and theundesirablestate was detecting
the aircraft at lower altitudes, corresponding to poor system
performance.

4.1.2 Process

The process of testing the system involved numerous auto-
mated steps. The first step was writing a parameter file that
determined the types of inputs to the system. In the experi-
ments performed, possible inputs included normal, gamma,
beta, or discrete value distributions. The range and function
parameters such as mean, standard deviation, gamma value,

baseline controller monitor
RADARrange= Wavelength=
[48.387..51.888] [0.075..0.159]

Weather= Weather=
[No Precip] [HeavyPrecip]

0

25

50

75

100

25 25

��

25

��

25

��
�
�
�

��

0

25

50

75

100

0 0
���

0.75
���

99.25
�

�

�

��

0

25

50

75

100

100 0
�

��

0
���

0
��� �����

KEY: Bad OK Good Best

Figure 3. RADAR
Output class distribution percentages after
testing the accuracy of the treatments pre-
dicted

and beta values also had to be specified. The input distri-
butions were written to a file and fed through the software
model to simulate the system.

All of the model input parameters to design the radar
were programmed through a GUI. The GUI was modified
to allow ranges of values instead of a single value to be set
for each of the system’s attributes. Beta distributions with
a beta value of 0.5 (which is equivalent to uniform random
sampling) were then generated according to the values set in
the GUI and fed into the model’s inputs. The aircraft’s mo-
tion was simulated using a sinusoidal wave. For each set of
random input values, the simulation was run and the max-
imum altitude that the aircraft was detected was recorded
as the system output. The altitude was then discretized into
4 equal categories:Bad, OK, Good, Best, with Bestcorre-
sponding to detecting the plane at the highest altitudes and
Bad not picking up the aircraft until it was flying at low
altitudes.

Once TAR3 found the treatments of certain inputs, these
values, whether a continuous range or a dicrete subset, acted
as a constraint and replaced the original input distributions.
The parameter file was rewritten according to the treatments
and the new range of values were fed through the system,
producing afunnel and narrowing the input range further
and further. These treated inputs were then found to lead
to the desired classification for both the case of finding the
system controllers and monitors.

4.1.3 Results

The process was terminated after either the treatment
learner found no new treatments or the worth of the treat-

3

ments remained static, which occurred after two runs with
satisfying results for both the case of finding system con-
trollers and monitors. The outputs were discretized into the
four equal classes, so that the baseline distribution was even.
In the case of the controller, TAR3 found a 7.75% subset of
the original data, in which the inputs were constrained by
the treatments, that predicted for the desired class all of the
time. Listed below are the input attributes that were given
by the treatments in the case of finding a system controller:

1. RADAR range = [48.387..51.888]

2. Weather = No Precipitation

In the case of the monitor, TAR3 found a 6.75% subset
of the original data, in which the inputs were constrained
by the treatments, that also predicted for the desired class
all of the time. Listed below are the input attributes that
were given by the treatments in the case of finding a system
monitor:

1. Wavelength = [0.075..0.159]

2. Weather = Heavy Precipitation

TAR3’s final treatments and output class distributions for
each scenario are shown in Figure 2.

4.1.4 Validation

In order to check the accuracy of the predictions given by
TAR3, the inputs were then constrained according to the
treatments in both cases and simulated the same number of
times as performed in the Monte Carlo analysis to check
the percentage of cases in which the output fell within the
desired range when the treatments were applied. The dis-
tributions of the simulation outputs are shown in Figure 3
after the treatments were fed into the system. These dis-
tributions illustrate that TAR3 correctly predicted the treat-
ments in both scenarios. For the case of the system con-
troller, 99.25% of the output values fell within the desired
range. In the case of the system monitor, TAR3 found treat-
ments such that 100% of the output values fell within the in-
teresting class, which was poor system performance in this
scenario.

Figure 4 illustrates the improvement along with the
degradation in radar altitude detection performance. In this
figure, the average altitude of all the simulations in the
Monte Carlo analysis is plotted. The error bars indicate the
standard deviation of the average detection altitude. Run
number 1 corresponds to the initial analysis, and run num-
ber 2 corresponds to the analysis after the inputs were con-
strained according to the treatments. The system controller
altitudes are given in the graph on the left, while the system
monitor altitudes are given in the graph on the right. This
plot demonstrates that when the inputs were constricted to

5
10
15
20
25
30
35
40
45
50
55

1 2

A
lti

tu
de

 D
et

ec
te

d

Run Number

0
5

10
15
20
25
30
35
40
45

1 2

A
lti

tu
de

 D
et

ec
te

d

Run Number

Figure 4. Average Altitude Detected by
RADAR for Desirableand UndesirableClasses

the values given by the treatments, nearly 100% of the out-
puts fell within the desired range while simultaneously re-
ducing the variance significantly, providing a more confi-
dent result.

4.1.5 Discussion

The treatments predicted may sound trivial, for instance,
Heavy Precipitationleading to low altitude detection and
therefore poor performance, but we speculate that the
method could prove to be very insightful on more com-
plex models, providing useful information. The method
succeded in this experiment, appropriately finding predic-
tors for both thedesiredandundesirableclass and reducing
system variance and uncertainty.

4.2 Word Model

4.2.1 Background

In order to explore the generality of the previous study, we
chose a more complex model, which is described below.
In 1972, a team of system scientists and computer model-
ers studied the effects of the world’s exponentially growing
population and economy. A model was developed of the
world, and it predictedDoom! for the future, as shown in
Figure 6.

This model of global economics was complex, contain-
ing approximately 295 variables and over 100 nodes. Fig-
ure 5 illustrates the complexity of the revised model, a
Vensimc© model entitledWorld3-91. Such complex models
require skilled analysts to perform assessments. Qualified
analysts with knowledge about the internals of the model
are scarce and expensive.

The analysts spent a long time assessing the model and
determining possible solutions to prevent this predicted dis-
aster. It would prove beneficial to have an automatic inter-
pretation of the model and mitigations to improve thestate
of the world. After applying incremental treatment learn-
ing, we arrived at the same conclusions as the scientists
with our automated method in a matter of about 30 min-
utes. Our method also produced confident results because

4

Figure 5. The main part of the Vensimc© World3-91 model is shown at the top along with all of the
supporting models shown below

5

 1900 1950 2000 2050 2100
Time (Year)

State of the World

Non-Renewable Resources
Food

Persistant Pollution Index
Population

Industrial Output

Figure 6. Default “state of the world” plot il-
lustrating overshoot and collapse

the machine learner could quickly look at a wider range of
scenarios.

Figure 7 shows the results of the experiment given by
the C4.5 classifier, which further illustrates the usefulness
of the small treatments given by TAR3. These complex de-
cision trees are standard practice in current machine learn-
ing. Clearly, this complex and opaque tree is too compli-
cated and time consuming for practitioners to read and less
insightful as the small compact key variables given as treat-
ments by the TAR3 treatment learner.

The default output plots of the revised model con-
sists of the classes of world population, nonrenewable re-
sources, food, industrial output, and persistent pollution
index from the year range 1900 to 2100. The model is
rather complex, consisting of hundreds of variables, com-
prised of the five main sectors of persistent pollution, non-
renewable resources, population, agriculture(food produc-
tion, land fertility, and land development and loss), and
economy(industrial output, services output, and jobs) [2].

All of the plots illustrate the continued exponential
growth for the next couple of decades and then the “lim-
its” of the earth and its resources are reached. In assessing
the model, the projected year of complete collapse of 2100
(Shown in Figure 6) was used as the output class to try to
learn the model controllers in order to prevent this scenario.

4.2.2 Process

The model constants were first divided into controllables
and uncontrollables, because we needed variables that could
be controlled in order to find mitigations to lead us to a
more desirable state. We chose to use 44 model variables
in our analysis that appeared feasible to control, whether
by people’s choices, political organizations, or laws. They

Figure 7. Decision Tree produced by C4.5

were chosen to perform the Monte Carlo analysis on and
fed into the learner as the input attributes. The interesting
class variables wished to be changed were an increased and
steady life expectancy, food, nonrenewable resources, in-
dustrial output, and decreased pollution.

The input values and output of every class at the final
time step was first saved for every simulation of the Monte
Carlo analysis. Each class was then individually sorted, and
normalized between 0 and 1. Because the TAR3 treatment
learner is limited to predicting a single class, a utility func-
tion had to be implemented to combine all five of the inter-
esting classes.

The utility function was a scheme of weights multiplied
with each class and then summed to obtain a single numeric
value as follows:

w1 ∗ C1 + w2 ∗ C2 + · · · + wn ∗ Cn

wherew = weight andC = Class. This allowed impor-
tant output classes to carry more or less weight, depending
on their importance in the model.

The main question was how to appropriately develop the
utility function. We decided to allow TAR3 to automatically
choose the optimal weights. We developed these weights by
randomly choosing five numbers between 0 and 1, one for
each interesting class, multiplying the number by the corre-
sponding class, and adding them together to obtain a single
class value. Each of the weights were added to the data
file as model attributes, along with the final class number
after the utility function was applied. This method of de-
veloping the function was used to determine a number that
combined all of the classes and was utilized throughout the
experiment.

Because the TAR3 treatment learner is only capable of
handling nominal classes, the final class was sorted numer-
ically and discretized into four equally sized groups and as-
signed class names(Bad,Ok,Good,Best), with Bestcorre-
sponding to the highest value andBadcorresponding to the
lowest value indicating worst case scenarios.

6

20

30

40

50

60

70

80

90

1900 1950 2000 2050 2100

A
ve

ra
ge

 L
ife

 E
xp

ec
ta

nc
y

(A
ge

)

Time (Year)

Life Expectancy

Original Life Expectancy
Treated Life Expectancy

Figure 8. Life expectancy before and after in-
cremental treatment learning

This final file was fed into TAR3 to find treatments that
led to the desired class. If any of the weights were given as
treatments, the random numbers were regenerated and mul-
tiplied according to the ranges given in the treatments. This
was repeated until a model attribute was given as a treat-
ment, and then incremental treatment learning was utilized.

In this model, all treatments that increased the likelihood
of the desirable class were discovered after just 2 cycles of
the process. The two attributes given as the final treatments
for the classes of interest were:

1. desired completed family size normal = [0..2]

2. Industrial Capital Output Ratio 1 = [3..5]

4.2.3 Validation

The above treatments,desired completed family size normal
and Industrial capital output ratio 1, were then fed back
into the model to observe the output and check the accu-
racy of the predictions given by TAR3. These attributes not
only controlled the classes given in thestate of the world
default plot, but also raised and stabilized life expectancy in
years, as illustrated in Figure 8. The plots are shown in Fig-
ure 6 for the originalstate of the worldand in Figure 9 for
the stabilizedstate of the world. The final plot (Figure 9),
which shows the outcome of thestate of the worldwhen
the model values were changed according to the treatments,
indeed improved the chosen classes. Although they never
reach as high quantities as in the original scenario, the val-
ues, in general, remain constant throughout the time frame.
The major gain was in life expectancy, as was shown in Fig-
ure 8, in which the average life expectancy was increased to
over 80 years of age and remained constant.

 1900 1950 2000 2050 2100
Time (Year)

State of the World

Non-Renewable Resources
Food

Persistant Pollution Index
Population

Industrial Output

Figure 9. State of the worldafter implement-
ing treatments found by the Tar3 treatment
learner

4.2.4 Discussion

The book that summarizes the findings of theWorld3-91
model, Beyond the Limits, states that one way to transi-
tion to a sustainable system is to develop better birth control
methods andhaving at most two children. This shows that
the main path found by both TAR3 and the authors was to
decrease and limit family sizes, with our method observ-
ing these conclusions quickly and competently, taking into
account thousands of possible scenarios.

Further, we have removed one potential criticism of this
analysis only capable of handling a single output class by
incorporating a utility function, in which multiple classes
are optimally combined to achieve an improvement in the
overall result.

5 External Validity

Some questions may arise about the external validity of
this method to finding certain funnels in the system that lead
to a desired output. The first is the question about the accu-
racy of the random sampling of the inputs. How many val-
ues must be sampled and continued to be simulated in order
for the machine learner to accurately predict treatments that
led to the output? This question is not an easy one to answer
and is probably system dependent. If the input can contain
a large range of values, more samples are needed to ensure
that every extreme is randomly chosen.

If the process correctly predicts the treatments that lead
to the desired class, the following results could be observed.
First of all, the solutions will eventually converge. For in-
stance, if thousands of random samples are an adequate es-
timation of the system performance, then sampling millions

7

of values will deliver similar results. So when the final treat-
ments that the program delivers converge to a particular
value within a certain precision, sampling more and more
input values is unnecessary. The value of convergence could
be determined and verified by trial and error. If an insuffi-
cient number of samples from the input ranges are taken,
TAR3 could give false or misleading treatments. In the case
of the RADAR model, 400 random samples were sufficient
to converge the treatments. In the more complexWorld3-91
model, 10,000 random samples were used to converge the
treatments.

Finally, if the final treatments are correct and lead to
a particular output value of interest, those values can be
fed back into the system and yield similar outputs every
time. This data could provide important information regard-
ing any system. Large complex systems sometimes con-
tain cloudy areas that are not fully understood. This method
treats the system as ablack box, with the controllable inputs
and outputs as the only interests. The inside operation is not
important, just the final results and outputs. Measures could
then be taken to ensure fault tolerance to handle failures in
particular outputs when the inputs reach the given values
or the inputs could be steered towards a value that leads to
desired outputs. In both case studies, the treatments given
were verified and proved to lead the system to thedesired
state.

6 Related Work

Traditional control theory methods such as State-Space
analysis or Root Locus methods are more accurate methods
of determining the manner in which the open-loop poles and
zeros should be modified in order for the system response
to meet the required specifications [12]. Qualitative reason-
ing is another approach to this problem. Sensitivity analy-
sis could also be performed on the system to observe how
changes in input produced variations in the system output
[13]. In critical applications, more time should be focused
on these methods. The disadvantage of performing these te-
dious mathematical methods is that much has to be known
about the model to develop the system equations. The main
benefit of using data mining methods to perform this cru-
cial role of controlling the model is that knowledge about
the model’s internals is unnecessary, so we can treat it like
ablack box.

7 Problems to Address

There are numerous obstacles that must be overcome
when utilizing incremental treatment learning. One major
problem that must be addressed is developing the oracle that
determines the operational input value ranges and provides

an assessment criteria for thedesiredoutput. Different sub-
systems and portions of the model are designed and reused
by many different organizations, so obtaining a specifica-
tion sheet on input ranges and optimum output values from
each contributor to the system could be costly and time-
consuming. If the operational profile is unknown, there is
an infinite input sample space. Also,desirableoutput val-
ues must be known in order to find controllers, andundesir-
ableoutputs must be known to find monitors by the TAR3
treatment learner.

Another major problem, especially with the NASA
STEREOmodel, is that the model is comprised of the ac-
tual model and an environment simulator. All of the data
from the environment entering the model is strictly num-
bers of different data types. There is no real meaning
in assessing the model unless something is known about
these numeric values. For instance, if the machine learner
gives a treatment that includes some of the environment at-
tributes, which are simply numbers of different data types,
how would a practitioner assess the numbers to understand
the problem in order to utilize the mitigations given by the
TAR3 treatment learner without a specification sheet?

In conclusion, knowledge of the domain space is the ma-
jor issue when utilizing incremental treatment learning to
test model-based software. It is difficult and sometimes im-
possible to obtain all of the data needed to assess the input
and output spaces, yet it is crucial to the analysis.

8 Conclusion

These experiments suggest that machine learning can be
a valuable and time-saving technique for quickly finding
treatments that move the output distributions of complex
models towards a desired class, replicating the actions of
highly skilled practitioners in a fraction of the time, signifi-
cantly reducing costs.

The possibilities of incremental treatment learning are
illustrated by these case studies. Suppose little is known
about a system and limited formal testing tools are avail-
able for software models. If the output values that lead a
system to failure are known along with a constricted range
of possible input values, analysis of all of these inputs via
treatment learning could illustrate the important ranges that
lead the model to the desired state.

If the learner finds possible attribute ranges that can po-
tentially lead to failure, appropriate actions could be taken
to ensure the proper handling to either tolerate the faults
or to avoid them. This improvement of the plots illustrates
the success of treating the model as ablack boxand using
data mininig techniques, in particular the TAR3 treatment
learner, to summarize the results.

This analysis could prove useful in any kind of model in
which the internals are unknown but need to be controlled.

8

This experiment may also lead practitioners to believe that
narrow funnelsare not limited to the discrete world. They
may also be a property that many numeric models and data
possess, expanding the applications of incremental treat-
ment learning to evaluate models.

Our future direction is clear. More case studies must be
conducted on larger scale NASA models. The next model
that will test the value of this method will be theSTEREO
model. Once a constricted range of input values are known
and a desired output range is known, the model will be
tested. Either the entire system or an important subsystem
of the STEREOmodel will be used due to lengthy simu-
lation run-times. If the studies are successful and signifi-
cant results are found, other models will possibly be tested.
Hopefully significant issues can be determined quickly that
are not detected using traditional verification methods.

Acknowledgements

This research was conducted at West Virginia Univer-
sity under NASA contract NCC2-0979 and NCC5-685. The
work was sponsored by the NASA Office of Safety and
Mission Assurance under the Software Assurance Research
Program led by the NASA IV&V Facility. Reference herein
to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does
not constitute or imply its endorsement by the United States
Government.

References

[1] Y. Hu. Treatment Learning: Implementation and Application. May
2003. Available fromhttp://menzies.us/pdf/03hu.pdf .

[2] D. H. Meadows, D. L. Meadows, and J. Randers.Beyond the Limits.
Chelsea Green Publishing Company, Post Mills, Vermont, 1992.

[3] T. Menzies, E. Chiang, M. Feather, Y. Hu, and J. Kiper. Con-
densing uncertainty via incremental treatment learning. In T. M.
Khoshgoftaar, editor,Software Engineering with Computational In-
telligence. Kluwer, 2003. Available fromhttp://menzies.us/
pdf/02itar2.pdf .

[4] T. Menzies and B. Cukic. Adequacy of limited testing for knowledge
based systems.International Journal on Artificial Intelligence Tools
(IJAIT), June 2000. Available fromhttp://menzies.us/pdf/
00ijait.pdf .

[5] T. Menzies and B. Cukic. When to test less.IEEE Software,
17(5):107–112, 2000. Available fromhttp://menzies.us/
pdf/00iesoft.pdf .

[6] T. Menzies and Y. Hu. Just enough learning (of association rules):
The tar2 treatment learner. InJournal of Data and Knowledge En-
gineering (submitted), 2002. Available fromhttp://menzies.
us/pdf/02tar2.pdf .

[7] T. Menzies and Y. Hu. The TAR2 treatment learner,
2002. Available fromhttp://www.ece.ubc.ca/twiki/
pub/Softeng/TreatmentLearner/intro.pdf .

[8] T. Menzies and Y. Hu. Data mining for busy people. InIEEE Com-
puter, November 2003. Available fromhttp://menzies.us/
pdf/03tar2.pdf .

[9] T. Menzies, J. Kiper, and M. Feather. Improved software engineer-
ing decision support through automatic argument reduction tools. In
SEDECS: The 2nd International Workshop on Software Engineering
Decision Support (part of SEKE2003), June 2003. Available from
http://menzies.us/pdf/03star1.pdf .

[10] T. Menzies, D. Raffo, S. on Setamanit, Y. Hu, and S. Tootoo-
nian. Model-based tests of truisms. InProceedings of IEEE
ASE 2002, 2002. Available fromhttp://menzies.us/pdf/
02truisms.pdf .

[11] T. Menzies and H. Singh. Many maybes mean (mostly) the same
thing. In 2nd International Workshop on Soft Computing applied
to Software Engineering (Netherlands), February, 2001. Available
from http://menzies.us/pdf/00maybe.pdf .

[12] K. Ogata.Modern Control Engineering: 4th Edition. Prentice-Hall,
Inc., Upper Saddle River, New Jersey, 2002.

[13] A. Saltelli, K. Chan, and E. Scott.Sensitivity Analysis. Wiley Series
in Probability and Statistics, 2000.

[14] I. Witten and E. Frank. Data Mining: Practical Machine Learn-
ing Tools and Techniques with Java Implementations. Morgan Kauf-
mann, 1999.

9

