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Abstract

Randomized algorithms have been known to outperform
their deterministic counterpart over a wide range of prob-
lems. In this paper, we use randomized techniques for
validating and diagnosing autonomous intelligent systems.
Such techniques provide efficient approximate solutions to
both the diagnosability and the validation problems. In
particular, we show the effectiveness of LURCH, a random-
ized inference engine that we have developed in validating
and diagnosing autonomous systems. LURCH uses ran-
dom search methods that use (1) a fast partial search, (2) a
random selection amongst options, and (3) the occasional
reset/restart. We have conducted case studies on an opti-
cal navigation system, a camera control system and several
components a propulsion system all written in a Reactive
Model Programming Language (RMPL).

1. Introduction

Intelligent software is now being considered more often
as a vehicle for providing greater autonomy to automated
systems, replacing humans, in places where they cannot or
would not venture themselves, with robots. Such a trend is
best exemplified in NASA’s missions that continue to ex-
plore Mars and beyond. The great distances from earth
will require that they will be able to perform many of their
tasks autonomously. Autonomous systems rely on intelli-
gent inference capabilities to be able to take the right ac-
tions even in unknown environments. They perform many
of their tasks autonomously; e.g., the autonomous controller
for the in-situ propellant production facility, supposed to
produce spacecraft fuel on Mars, must operate with infre-
quent, severely limited human intervention to control com-
plex, real time, and mission-critical processes over many
months in poorly understood environments. While auton-
omy offers promises of improved capabilities at a reduced
operational cost, development and validation of software for
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such autonomous systems poses a tough challenge due to
exponential blow up in the number of possible situations
that they need to deal with.

One of the most effective techniques for dealing with the
complexity of developing software for autonomous systems
is model-based programming. It is based on the observa-
tion that programmers and operators generate the breadth of
desired functionality from common-sense hardware models
in light of mission level goals. Development of model li-
braries reduces design time, facilitates reuse and amortizes
software development costs. More importantly, validation
can be done at an early stage of the software design cycle.
Several high level languages for model-based programming
have been developed such as JMPL [1], RMPL [28] etc.

Autonomous systems have been recently integrated into
robotic networks. Model-based methods [11, 25, 27-29]
have been developed to monitor and coordinate such com-
plex autonomous systems and automate their diagnosis. Di-
agnosis is an important component of autonomy for any in-
telligent agent. Often, an intelligent agent plans a set of
actions to achieve certain goals and because some condi-
tions may be unforseen, it is important for it to be able to
reconfigure its plan depending upon the state in which it
is. This state identification problem is essentially a prob-
lem in diagnosis. In a model-based diagnosis and moni-
toring methodology, a model of the correctly functioning
system is used to predict the system’s behavior. Discrepan-
cies between these predictions and the observations of the
system are symptoms; the rest of the diagnostic and moni-
toring task (hypothesis formation, refinement and testing) is
driven by these symptoms (as in a feedback control system).
Automated model-based diagnosis has the capability to di-
agnose and explain novel faults. System (or system compo-
nent) modes that represent failures are assigned a cost corre-
sponding to the prior probability of that failure occurring in
that system (or system component). Starting with the low-
est cost mode assignment, all complete mode assignments
in order of total likelihood are considered until an assign-
ment cosistent with the observations is found. This mode
assignment represents the most likely state of the system.

Model-based diagnosis and recovery systems like Liv-
ingstone [29] have demonstrated their utility in several
NASA missions. In particular, Livingstone formed a com-



ponent of the Remote Agent architecture deployed in the
Deep Space probe. Livingstone monitors the sequence of
discrete commands that are issued to the system to track the
expected state of the system and compare the predictions
generated from its model against the observations received
from the sensors. Once a discrepancy occurs, Livingstone
performs diagnosis by searching for the most likely set of
(system) component mode assignments that are consistent
with the observations.

As mentioned earlier, software for autonomous systems
pose a tremendous challenge in terms of validation and di-
agnosability due to combinatorial explosion in the num-
ber of possible situations. Traditional deterministic search
strategies are unlikely to be efficient due to the inherent ex-
ponential blowup. In te realm of validation, traditional test-
ing methods fail to provide the desired confidence level due
to the combinatorial explosion in the number of possible
paths. Formal methods like model checking [4] and the-
orem proving [22] fail to scale up due to the exponential
blowup in the size of the state (proof) spaces.

Randomized algorithms have been known to outperform
their deterministic counterpart over a wide range of prob-
lems [19]. A randomized algorithm is allowed access to
a source of independent, unbiased, random bits. It is then
permitted to use these random bits to influence its computa-
tion. For many problems that require searching large spaces
of solutions, randomized techniques are known to provide
efficient solutions, while the best algorithms that their de-
terministic counterparts can come up with are those that run
in exponential time. Popular graph theoretic problems that
arise frequently in practice, such as the graph isomorphism
problem and the perfect matching problem fall in this class.

In this paper, we use randomized techniques for validat-
ing and diagnosing autonomous intelligent systems. Such
techniques provide efficient approximate solutions to both
the diagnosability and the validation problems. In par-
ticular, we show the effectiveness of LURCH, a random-
ized inference engine that we have developed in validating
and diagnosing autonomous systems. LURCH uses random
search methods that use (1) a fast partial search, (2) a ran-
dom selection amongst options, and (3) the occasional re-
set/restart. The cost of randomized inference is its inaccu-
racy. If complete inference terminates, it will find (infer)
all the features that are deducible. On the other hand, by
their very nature, randomized inference engines can miss
important features. Our experiments suggest that this in-
accuracy problem is not too serious. In the case studies
presented here, LURCH’s random search usually found the
correct results. Due to lack of space, a theoretical analysis
of LURCH is beyond the scope of this paper. Some analyt-
ical results offering us some confidence in the generality of
LURCHS-style inference can be found in [18].

We have conducted case studies on an optical navigation

system, a camera control system and several components a
propulsion system all written in a Reactive Model Program-
ming Language (RMPL) [28]. RMPL is a high-level model-
based programming language that can express a rich set of
hardware and software behaviors. The optical navigation
system as well as the camera control system was a compo-
nent of NASA’s Deep Space One Probe (DS1). The propul-
sion system is part of NASA’s Propulsion IVHM (Integrated
Vehicle Health Management) Technology Experiment (PI-
TEX). We present a translator that convert models written
in RMPL into specifications that can be input to LURCH. It
thereby shields the system designer from the technicalities
of LURCH.

The rest of the paper is organized as follows. In Section 2
we provide a brief introduction to the RMPL language. Sec-
tion 3 provides an introduction to LURCH and its imple-
mentation. It argues about the benefits of random search.
Section 4.1 discusses the use of LURCH for model-based
diagnosis and describes experimental results. Section 4.2
describes use of LURCH as a validation tool. Related work
is discussed in Section 5. Finally, Section 6 concludes the

paper.
2 RMPL

RMPL is a high level model programming language
that merges constructs from synchronous programming lan-
guages, qualitative modeling, Markov models and con-
straint programming. It consists of a minimum set of primi-
tives for constructing programs. A variety of program com-
binators are defined on the top of these primitives to make
the language usable. The primitive constructs of RMPL are
as follows (A, B represent well-formed RMPL programs).

e ¢ (constraint or state) This construct asserts that the
constraint or state holds at the initial instant of time.

o if c thennext A. This program starts behaving like A
in the next instant if at the current instant the con-
straints holding entail c.

e unless c thennext A. This program executes A in the
next instant if the constraints at the current instant do
not entail ¢. This construct is used for preemption. It
allows A to proceed as long as some condition is un-
known but stops when the condition is determined.

e A, B. This program executes two concurrent processes
A and B.

e always A. This program starts a new copy of A at each
instant of time, for all time.

e choose[A with p, B with q]. This program reduces to
A with probability p and to B with probability ¢ where
p+q=1



These six primitive combinators can be used to imple-
ment a rich set of combinators. RMPL provides full con-
currency, conditional execution, iteration, premption, prob-
abilistic choice and co-temporal constraint. An example of
a RMPL program is given below.

Camera
choose {
{

if CameraOn then {

if TurnCameraOff thennext MICASoff
elsenext CameraOn ,

if CameraTakePicture thennext CameraDone
} 14

if CameraOff then

if TurnCameraOn thennext CameraOn
elsenext CameraOff ,

if CameraFail then

if MicasReset thennext CameraOff
elsenext CameraFail

} with 0.99 ,

next CameraFail with 0.01

}

}

always {

It describes the camera control system shown in Fig-
ure 1. The dotted lines in the figure indicate threads start-
ing simultaneously. The texts beside the circles indicate
the constraints (boolean) true at the corresponding states.
The texts on the arrows indicate the constraints that must
hold for the transition to take place. From the initial state
the system either evolves to the state CameraFail with
probability 0.01 or to a state with probability 0.99 where
it evokes three threads indicated. The first thread in turn
invokes two new threads at the next time instant. The pro-
gram exploits full concurrency by intermingling sequential
and parallel threads of execution. The full RMPL language
is an object-oriented language in the style of Java that sup-
ports all the primitive combinators and a variety of defined
combinators. For more details about RMPL consult [28].

3 Lurch

As alluded to before, LURCH is a randomized inference
engine. We first introduced LURCH in [21]. While com-
plete search or inference is prefered, some models are too
large to be processed by complete search methods. If the
choice is random search versus nothing at all (because the
model is too big), our results suggest that random search
methods like LURCH can still be a useful analysis tool.
LURCH-style inference was very simple to implement. For
example, our current version of LURCH is less than 1000
lines long. It is written in C and uses hashing techniques for
fast search.

LURCH takes as input statecharts modeled as transition
functions.

Difficult search problems, e.g., NP-hard problems, have
been shown to exhibit a phase transition (figure 2) [2, 6,
16]. In some cases the problem turns out to be very easy
to solve; other cases are impossible. For these impossible
cases, however, it usual easy and fast to show that they can
not be solved.

So there are easy cases and cases that can easily be
shown to be unsolvable. Are there cases that are very hard
but solvable? Or, for unsolvable cases, are there any that
are very hard to determine that they are not solvable? Yes,
these pathological cases exist, but they are rare: there is just
a narrow transition region where a lot of effort is required to
either solve or determine that no solution is possible. This,
in the words of Cheeseman et.al., is “where the really hard
problems are” [2].

Figure 3 shows how a simple solution strategy can be
used to exploit easy problems but avoid wasting effort on
problems that are very hard or unsolvable [21]. We put a
relatively small amount of effort into solving the problem
with our simple strategy (effort could be time, memory, or
some other limited resource). If the problem is easy, we
solve it easily. If we do not solve the problem, we know it is
either very difficult or impossible. Of course there is noth-
ing revolutionary about this approach. The key point is that
the phase transition region is narrow. A very simple strat-
egy is therefore capable of solving very nearly everything
that could be solved by much more sophisticated strategies,
but with much less effort.

One very simple search method are random search meth-
ods that use (1) a fast partial search, (2) a random selection
amongst options, and (3) the occasional reset/restart. For
example, the GSAT family of algorithms uses hill-climbing
in order to test for CNF satisfiability. Given a set of propo-
sitional clauses like

(AVBVC)AN(DVEVF)A...

GSAT starts by assigning a truth-value to every variable. At
every iteration GSAT picks a variable and “flips” its value
from true to false or vice versa. With good heuristics for
selecting the variable to be flipped, these algorithms work
amazingly well and scale to theories much larger than what
can be processed by complete search [8].

The complete inference technique may be overkill, how-
ever, for problems which turn out to be in the easily solvable
range (recall figure 2). The algorithm is described in brief
in figure 4 (for full details, see [17,20,21]). LURCH uses an
memory-saving AND-OR graph representation of the com-
posite system behavior!. LURCH’s search space contains

I'To justify the analogy between LURCH results and phase transition
results reported by others, note that complete search of the AND-OR graph
used by LURCH to represent the composite system is in fact NP-hard [20].
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Figure 1. Camera Control System

A % V number of nodes: i.e. one node for each possible
assignment A to a every variable V. By contrast, the search
space of a complete inference engine contains at most AV
nodes: i.e. one node each consistent set of assignments to
all variables.

The algorithm is partial because, unlike the full model
checking technique, only a portion of possible behavior is
explored; the algorithm is random because the choice of
which behavior to explore is nondeterministic. In practice,
LURCH acts as the simple solution strategy illustrated in
figure 3, and, as indicated by the experiments presented be-
low, LURCH is surprisingly successful compared to more
sophisticated inference tools.

LURCH is implemented as a Monte Carlo algorithm: the
basic search procedure runs again and again, each time in-
creasing the probability of finding a solution. In many cases
LURCH quickly finds a solution, but for those in which
LURCH does not find a solution, how do we know when
to stop?

Figure 5 shows output from LURCH running on a typ-
ical input model. As LURCH runs, it explores the reach-
able global state space, at first finding nearly all new global
state information, but after a little while most of LURCH’s
findings are redundant; figure 5 illustrates this: the percent-
age of global state information which is new (vs. redun-
dant) starts out at 100 %, but very quickly decreases to near
zero. We use this quick saturation effect in LURCH output
(see [17]) to determine when to stop: when some set satura-
tion point (close to 0 %) is reached, we assume that LURCH
is unlikely to find any more interesting information.?

Figure 5 shows that for typical models LURCH, if it is
likely to find a solution, is likely to find it quickly. Con-

2For very large input models, it is not practical to wait for global state
saturation; we are continuing to experiment with other stopping criteria so
that LURCH can run as quickly as possible, but with consistent results.
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Figure 5. LURCH output for a typical model:
quick saturation.

versely, if LURCH does not find a solution quickly, it is
likely that LURCH would never find a solution, no matter
how long it ran. This may seem counterintuitive, saying es-
sentially: if it’s not obvious, it’s not there at all; but remem-
ber figures 2 and 3: unless we were in the phase transition
region, this is just what we would expect. For problem cases
in the easy region, solutions are obvious. For problem cases
in the region easily shown impossible, it’s obvious that there
is no solution.

To efficiently track which global states have been
reached LURCH stores hash values based on the names of
all local states present in the global state to be stored. Each
global state gets one integer; these are all kept in a tree,
which remains approximately balanced because the hash
values are evenly distributed across the range of integers.
So in practice LURCH treats these hash collisions as re-



peat global states although they are actually potential repeat
global states. LURCH allows the user to limit the amount
of memory available for global state storage.

LURCH’s basic search procedure returns one global-
state path traced through the composite system behavior,
terminating whenever a dead end or cycle is found. In prac-
tice we have found that LURCH is able to explore a space
more quickly if the cycle detection scheme is somewhat re-
laxed. In the current version, the LURCH continues even
after the first repeat global state in a path (i.e., when a cy-
cle is first detected); instead, the while loop is exited after n
repeat global states, where n is a number input by the user.
In this way LURCH is allowed to pursue intersections, i.e.,
places where a path may cross itself but then continue to
find new information.

LURCH simulates synchronous execution of finite-state
machines in the input model; that is, at each step forward
in time, every individual finite-state machine that is able to
execute a transition does, and the order of these intra-time-
step executions is considered irrelevant. Also, any side ef-
fects of a transition that would interfere with the state of
things at the start of the time-step do not take effect until
after all the machines (attempt to) go forward.

By adding a simple modification we can simulate asyn-
chronous execution of the finite-state machines in the input
model. Instead of allowing an arbitrary number of transi-
tions to be processed at each time step, which would corre-
spond to giving all machines a chance to move forward, we
allow only one machine to transition forward at each time
step. Side effects of that transition take effect before any
other machines have a chance to transition forward, and the
particular interleaving of machines’ transitions is tracked,
as in an asynchronous system.

In order to counter state explosion, finite state machines
are translated to And-Or graphs during their representation
in LURCH. The translation procedure assumes that finite-
state machines have transitions defined as follows: each
transition begins in the current state, and takes place if all
inputs are true. If a transition takes place, all outputs are set
true and the machine moves to the next state.

In an AND-OR graph, an AND-node is considered true
if all of its parent nodes are true; an OR-node is considered
true if any one of its parents is true. We add NO-edges to
indicate which nodes may not be true at the same time. For
example, since a local machine may not be in two states at
once, NO-edges connect all OR-nodes representing states in
the same local machine. Also, since two transitions in a lo-
cal machine may not occur simultaneously, NO-edges con-
nect all AND-nodes representing transitions in the same lo-
cal machine. The resulting AND-OR graph has O(n) nodes
and O(n?) edges, where n is the size of the input [20].

Unfortunately, complete search of our AND-OR graphs
is NP-hard and would therefore require exponential time

: node {
. kids, NO-kids;
: disqualified, frontier, reached,;
© wait; }
. process-queue(time) {
: while (Q # 0) do
n < pop(Q);
if (n.disqualified # time) then
if (n is an OR-node) then
10: n.reached = time;
1 for (¥ nodes n’ € n.NO-kids) do
12: n’ .disqualified = time;
13: for (V nodes n’ € n.kids) do
14: n’.wait + n’.wait — 1;
15: if (n’.wait = 0) then
16: if (n” is an OR-node) then
17: n’ frontier = time;
18: else if (n’ is an AND-node) then
19: Q + n’ at random index; }

20: search() {

21: time = 0;

22: while (—(path-end or cycle)) do

23: process-queue(time);

24: for (V nodes n : n.reached = time — 1) do
25: if (n.disqualified # time) then

26: Q <« n at random index;

27:  process-queue(time);

28: for (V nodes n : n.frontier = time) do

29: Q < n at random index;
30: time < time + 1;}
31: main() {

32: for (i = 1 to MAX-PATHS) do
33:  for (V nodes n) do

34: n.disqualified < n.frontier «+— n.reached < UNDEF;
35: reset n.wait to initial value;

36: for (V nodes n : nis true initially) do

37: Q «+ n at random index;

38: search(); }

Figure 6. Partial, random search procedure
for AND-OR graphs.

[20]. Figure 6 shows the fast partial, random search pro-
cedure LURCH uses to search AND-OR graphs. As stated
above, the search procedure is partial in that there is no
guarantee that the entire AND-OR graph will be explored.
Each iteration (of the search function, beginning on line 20
in figure 6) finds one global state path. With many iterations
it becomes likely that nearly all of the reachable state space
is explored. The procedure is random in that, when two or
more paths may be explored, the choice is made based on
the order nodes are popped from the queue (line 7). Since
nodes are always pushed at a random index (lines 19, 24, 29,
34), the choice of which path to explore is nondeterministic.

For each node (Figure 6, line 1), kids and NO-kids (line
2) are lists of children via normal and NO-edges. The dis-
qualified, frontier, and reached fields (line 3) mark at what
time during the search a node is disqualified, part of the
frontier, or reached; wait (line 4) is an integer indicating
how may parents still need to be reached before the node is
reached—wait is initialized to 1 for an OR-node and, for an
AND-node, to the number of parents it has.



4 Diagnosis and Validation of Autonomous
Ststems

Given a model of a physical system and a sequence
of commands and observations received over time, a con-
ventional diagnosis system determines the belief state (i.e.,
likely states of the system) and the actions required to move
the system to a desired configuration. Computing a belief
state (i.e., a probability distribution over the possible states
of the system) entails enumeration of the state space. Such
an approach is likely to suffer from the state explosion prob-
lem but for the simplest models. Diagnosis systems like
Livingstone [29] focus on monitoring and diagnosing net-
works whose components have simple behaviors.

Validation tools like SMV, SPIN [7,14] have been used to
detect when an undesirable state is reached. While they can
be used [3] to detect violation of diagnosability by exhibit-
ing a pair of paths that are indistinguishable but hide con-
ditions that should be distinguished, such tools cannot be
used for the actual state estimation problem that takes into
account a probability distribution over the possible states of
a system. Like their diagnosis counterparts, validation tools
like SMV, SPIN etc. suffer from the combinatorial explo-
sion in the state space.

LURCH combines the best of both worlds. On one hand
LURCH can test a system detecting deviations from the be-
havior predicted from the model. This functionality can be
used for diagnosis. On the other hand, LURCH can function
as a partial model checker performing an approximate vali-
dation of the model. Due to its partial search strategy, it is
less likely to suffer from the combinatorial explosion prob-
lem compared to the complete search techniques mentioned
above.

4.1 LURCH for Diagnosis

In order to use LURCH to diagnose autonomous sys-
tems, we need to convert the models to the input format of
LURCH. To this end, we have built a translator from RMPL
to LURCH. The translator is written in Awk and consists of
1100 lines of code. The output of the translator for the cam-
era control system shown in Section 2 is shown below.

CM5; -; p*=0.99; CM5;
CM5; (Camera_Signal==C_ON &&
TurnCamera==TurnC_OFF) ;
{MICAS=MI_OFF; };CM5;

CM5; (Camera_Signal==C_ON &&
TurnCamera==TurnC_ON) ;
{Camera_Signal=C_ON;}; CM5;

CM5; (Camera_Signal==C_ON &&
CameraTakePicture==TRUE) ;
{Camera_Signal=C_DONE; }; CM5;

CM5; (Camera_Signal==C_OFF &&
TurnCamera==TurnC_ON) ;
{Camera_Signal=C_ONj;}; CM5;

CM5; (Camera_Signal==C_OFF &¢&
TurnCamera==TurnC_OFF) ;
{Camera_Signal=C_OFF; fault+=1; };CM5;
CM5; (Camera_Signal==C_FAIL &&
MICAS==MI_RESET) ;
{Camera_Signal=C_OFF; }; CM5;

CM5; (Camera_Signal==C_FAIL &&
MICAS!=MI_RESET) ;
{Camera_Signal=C_FAIL;; fault+=1; };CM5;
CM5; -
{Camera_Signal=C_FAIL;

p*=0.01; fault+=1; };CM5;

A transition in the LURCH input language is of the
form Source-State; Pre-conditions;Sideeffects; Target-State.
A precondition is a conjunction of constraints (possibly
empty indicated by —) while a side effect is a sequence
of C statements (possibly empty). Notice that the proba-
bility of a path is represented by a variable p which is up-
dated (in the side effect) as a transition is taken (initially,
p = 1). This assumes that the underlying state machine is a
Markov machine. The number of faults occurring in a path
is represented by the variable fault. In the above example,
the mode C'_F'AIL of Camera_Signal is a faulty mode.
Whenever a faulty mode is reached, the variable fault is
incremented. Thus, at the end of a path, the variable p will
hold the probability of taking that path while the variable
fault will contain the number of faulty modes encountered
in the path. In order to track the history of each path, we
associate with it a cost ¢ = p/(fault + 1) which is a mea-
sure of how likely the path is and how desirable it is. The
diagnosis problem is then to determine the path with the
maximum cost.

Rather than computing a complete belief state (i.e., the
likelihood of each possible configuration of the system),
LURCH randomly chooses a trajectory (path) and computes
the value of the cost ¢ for that path. At the end of the tra-
jectory, LURCH stores the trajectory as well as its cost in
a buffer. This path is the current best path. If the cost of
the next path traversed by LURCH is more than that of the
current best path, then it replaces the latter. Trajectory ex-
tensions that are inconsistent with the current observation
are ruled out. Thus LURCH tests a path for its value and
updates the value of the current best path if the value of the
currently tested path is more than that of the current best
path. Since LURCH is a Monte Carlo algorithm, the test
runs again and again, each tikme increasing the chance of
finding the best path.
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Figure 8. cost vs path humber plot for propul-
sion system

4.1.1 Diagnosis: Case Studies

We have conducted case studies in diagnosis on (1) the cam-
era control system described in Section 2 (2) an optical nav-
igation system [28] and (3) a portion (reactor and tach) of a
propulsion subsystem for a spacecraft. The models for all
the three examples were written in RMPL. For the propul-
sion subsystem, each component has on the average 3 states
and has several faulty modes. The results of the experiments
are summarized in Figure 7. All experiments were carried
out on a 1.2 GHz Pentium PC running Linux.

In order to study how fast LURCH can converge to the
best path, we plotted the cost vs path number graph for the
propulsion system in Figure 8. It can be seen that the best
path is found within the first 10 trajectories traversed. Since
LURCH is a Monte Carlo algorithm, we also studied the
output of LURCH for different runs (i.e., different values of
the seed). We plotted the values of the cost obtained against
the trial number for the propulsion system in Figure 9. A
horizon of 30 trials was considered. The plot shows that (1)
repeated trials with LURCH are needed to get the best path
and (2) the best path is hit within the first few trials. We also
studied the convergence behavior (i.e., the number of paths
needed to converge to the best cost) of LURCH for different
runs (i.e., different values of the seed) for the propulsion
subsystem and found that LURCH uniformly converges to
the best path (for a particular run) after exploring only a few
paths.

4.2 LURCH for Validation

The random search of LURCH can be used as a partial
model checker for validating the models. Unlike model
checking, the partial search of LURCH is a quick anal-
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Figure 9. cost vs trial number plot for propul-
sion system

ysis method. It does not suffer from the state explosion
problem. We used LURCH’s random search to determine
whether fault states are reachable in the examples described
above. For probabilistic models, we experimented with both
blocking and non-blocking semantics. With the blocking
semantics, for a probabilistic choice with probabilities p
and 1 — p, a pseudorandom number is drawn in the inter-
val [0, 1] whose value determines which choice is enabled.
If the number lies in the interval [0, p], the first choice is en-
abled while the other is blocked while for the value of the
number in the interval [p, 1 —p] the converse holds true. For
the non-blocking semantics, transitions are taken indepen-
dently. The probability of reaching a state is the product of
the probabilities of all transitions on a path to the state from
the initial state. LURCH was run several hundred times on
each example. In each iteration of the search, we use a ran-
dom set of consistent nodes (i.e., a partial description of a
global state) as input. Our output is a set of states from all
iterations reachable from the input state. For all the three
examples LURCH was able to detect reachability of faulty
states quickly. In spite of the fact that LURCH implements
a Monte Carlo algorithm, we were able to detect reachabil-
ity of most of the faulty states in the first run itself. Only
a fraction of the state space of the models were searched.
In case of the propulsion subsystem, LURCH was able to
reach two fault states in the first run itself exploring a total
of 43 global states and 32 transitions.

5 Related Work

Recently, there has been a surge of activity in model-
based diagnosis and validation of autonomous systems.
Such activity has been spurred by NASA’s missions which



continue sending robotic explorers to space. Model-
based diagnosis traces its root back to Reiter’s seminal pa-
per [25]. Since then several generic systems for model-
based diagnosis have been developed using logical infer-
ence, assumption-based truth maintenance, and conflicts
as their underlying principles (see [5]). The works in
model-based diagnosis that come closest in spirit to ours
are [9-12,24,27-29]. Williams and Nayak [29] describe
Livingstone, an implemented kernel for a model-based re-
active self-configuring autonomous system. As mentioned
earlier, Livingstone has been successfully deployed in sev-
eral NASA missions including the Deep Space probe. Liv-
ingstone works by enumerating only the most likely portion
of the belief state at each point in time by transitioning a
small number of tracked states by the transitions that are
most likely, given the current observations. Such an approx-
imation is extremely efficient and well suited to the problem
of tracking the internal state of the machine, where the like-
lihood of the expected transition dominates, and immedi-
ate observations often rule out the expected trajectory when
a failure occurs. But as shown in [11], the true trajectory
(path) may not be among the most likely trajectory given
only the current observations. Kurien and Nayak [10, 11]
propose to maintain the information necessary to begin in-
crementally generating the current belief state in best first
order at any point in time. Since they do not update the
entire belief state, a history must be maintained. In con-
trast with [10, 11,29], LURCH is a randomized inference
engine that “tests” a path for a cost. Besides, Livingstone,
like other diagnostic systems focuses on monitoring net-
works whose components have simple behaviors. Trajec-
tories that spend their time wending their way through a
mixture of software and hardware functions are well be-
yond the capabilities of Livingstone. LURCH transitions
have the capability of calling functions written in ordinary
C code; this facility gives LURCH the capability to deal
with such trajectories involving a mixture of hardware and
software functions.

In his PhD thesis [27], Throop extends model-based di-
agnosis to continuous systems. Applying LURCH to con-
tinuous systems is a topic of our future. Williams et.
al [28] introduce RMPL a rich modeling language that
combines reactive programming constructs with probabilis-
tic constraint-based modeling. To support mode diagno-
sis, they translate RMPL models to hierarchical constraint
hidden Markov models (HMMs). They extend traditional
HMM belief update to track a system’s most likely states.
While the search procedure of [28] is a complete search,
LURCH is based on an incomplete partial search. Ku-
mar [9] provides a unifying theme behind all the approaches
to model-based diagnosis based on the notion of model
counting. It is intresting to see how LURCH fits this theme.
Lucas [12] develops methods for reasoning with uncertainty

in consistency-based dignosis by integrating logical reason-
ing as done in consistency-based diagnosis and probabilis-
tic reasoning as done in Bayesian networks. Poole [24] in-
troduces partial evaluation techniques in probabilistic infer-
ence. It is interesting to see if such techniques can be in-
corporated in a randomized inference engine like LURCH.
Menzies et. al [15] proposed testing a theory (instead of a
complete search) to check if it can produce its known behav-
ior. This paper can be thought of using the same principle
for model-based diagnosis.

In terms of validation of models, the works that come
closest to us are [3,13,23,26]. In [3], Cimatti et. al address
the problem of diagnosability: given a partially observable
dynamic system, and a diagnosis system observing its evo-
lution over time, [3] addresses the problem of verifying if
the diagnostic system will be able to infer the required infor-
mation on the hidden part of the dynamic state. They recast
this problem in the framework of model checking and use
symbolic model checking to solve the problem. Pecheur
et. al. [23,26] use SMV to validate Livingstone models.
They automatically translate Livingstone models written in
a model programming language to the SMV input language.
While SMV performs a complete search of the state space
of the model, being, thereby, vulnerable to the state explo-
sion problem, LURCH, as discussed above avoids the prob-
lem of exponential blowup in the search space by conduct-
ing a partial search. Besides, [23,26] deal with nonde-
terministic models while we deal with probabilistic models
as well. Kwaitkowska et. al [13] describe PRISM a proba-
bilistic extension of SMV. It would be interesting to see how
PRISM would perform on models of autonomous systems.
In [21], we introduce LURCH as an alternative to model
checking.

6 Conclusion

In this paper, we described the application of randomized
techniques for disgnosing and validating autonomous sys-
tems. We applied a randomized inference engine LURCH
for diagnosing and validating autonomous systems with
models written in RMPL. Unlike conventional model-based
diagnosis that computes a belief state by a complete search
of the state space, LURCH performs a partial random
search. Preliminary experiments using LURCH as a tool for
validating and diagnosing autonomous systems have shown
encouraging results. We intend to perform additional case
studies to confirm the effectiveness of LURCH as a model-
based diagnosis system and plan to compare the perfor-
mance of LURCH with complete search procedures. Fu-
ture work also includes analysis of correlation between the
search saturaation and the design structures that lead to it.
Finally, we plan to explore techniques from stochastic game
theory to diagnose and validate partially specified systems.
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Figure 2. Hard problems exhibit a phase transition.
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Figure 3. The power of a simple solution strategy.

1: next-global-state(state) {

2: Execute a transition for every machine in which there is
at least one whose input conditions are satisfied; if more
than one transition is possible for a machine, choose one
at random. }

. path(state) {
. while (—(path-end OR cycle)) do
state +— next-global-state(state); }

asw

> main() {

! repeat

path(initial-global-state);

. until (user-defined maximum reached) }

©O~No

Figure 4. LURCH’s partial, random search procedure.

Example Time Cost Maximum Number Local Transitions
Depth of paths States
Camera 0.00 0.004950 16 500 18 17
Propulsion 0.01 0.5 21 500 47 36
Navigation 0.00 0.33 2 500 14 10

Figure 7. Experimental Results
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