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Abstract

Business users often prefer simpler, rather than complicated theories. In
this paper we present SELECT: a new method for feature subset selection us-
ing the TAR2 “treatment learner”. SELECT can be used as a pre-processor
to other learners for identifying useful feature subsets. This approach finds
smaller theories that other approaches, with little or no loss of classifier accu-
racy.

1. Introduction

Data mining summarizes data but some of those summaries may be too complex.
Recently, we have been trying to explain C4.5’s decision trees 17 to business users.
After many failures, we concluded that busy business users don’t want elaborate
theories that describe all the details of their domain. Such busy users just want to
fewest details that most influence their domain. “Just give me the bottom line”,
one of our users demanded gruffly.

In response to these demands from our users, we have been exploring methods
for generating tiny theories. The drawback with generating tiny theories is that
they can ignore important domain details. The benefits of decreasing theory size
must be carefully balanced against the cost of decreasing theory accuracy. We will
accept a slight accuracy reduction ∆ in exchange for a much smaller theory.

This paper describes SELECT, a new method for generating a theory new that
is“better” than old where “better” is defined as follows:

|new| � |old| ∧
„

accuracy(old)− accuracy(new)

accuracy(old)
< ∆

«
(1)
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# of features accuracy

domain all−SELECTed
all

all−SELECTed
all

Ionosphere 94.1% 0.9%
HorseColic 90.9% I 4.45%

Diabetes 87.5% 2.28%
lymph 83.3% 2.75%
Anneal 81.6% -2.66%

Segment 78.9% 0.51%
breast-c 77.8% 0.0%
credit-g 75.0% -2.17%

vote 62.5% -0.21%
Soybean 54.3% -0.65%
average 78.6% 1.13%

Figure 1: Reduction in number of features/accuracy. Black triangles denote exper-
iments that violate Equation 1. Negative accuracies mean accuracy increased using
the SELECTed features.

According to our users, a 2% reduction is acceptable and a 3% reduction is not.
Hence, for this study, we will assume that ∆ < 3%.

SELECT is an extension to the TAR2 “treatment learner” 9,14. To describe
SELECT, this paper first describes TAR2. The use of TAR2 within SELECT is
then described, followed by an comparison of SELECT to six other feature subset
selection methods from the machine learning literature. Figure 1 shows some of the
results from learning theories using all available features and just those SELECTed

by our method. The method is quite successful: on average, we could remove about
4
5 ths of the features with an accuracy loss of only 1%.

Note that, in our results, we say that the size of a learnt theory is the number of
features that it uses. While fewer features often generates smaller output theories,
this is not necessarily always the case. For example, a decision tree with a single
continuous feature can still have many nodes if that tree splits on multiple thresh-
olds. However, the major benefit of measuring theory size in terms of number of
used features is that this one measure can be applied to widely differing learning
schemes. For example, there is no concept of “tree size” in the output of a Naive
Bayes classifier. While we can’t compare the simplicity of the learnt theory between
Naive Bayes and C4.5, we can still compare the number of input features used by
both schemes.

2. Treatment Learning with TAR2

We begin with a description of the TAR2 treatment learner. TAR2 seeks ranges
of features that select for preferred classes. A repeated empirical observation of
TAR2 selects only a very small number of treatments (see the experiments described
in 15). In the next section, we will experiment with using this property of TAR2 to
find ignorable features.

TAR2 learns treatments and a treatment is constraint which, if applied to a
data set, returns a subset of the data with a different distributions of classes. For
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Items Criteria
outlook temp(oF) humidity windy? class
sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

Figure 2: A log of some golf-playing behavior.

example, consider the distribution of classes in the log of sporting activity seen in
Figure 2. Before the treatment is applied, we play “lots” of golf in 6

14 cases and
“some” golf in 3

14 cases. The treatment “outlook=overcast” is consistent only with
the last four entries in the log and in all those cases, we play “lots” of golf. That is, if
our users picked a vacation location with overcast weather, then TAR2 is predicted
that we play “lots” of golf, all the time.

TAR2 learns treatments and the general form of a treatment is:

R1 if Attr1 = range1 ∧Attr2 = range2 ∧ ...

then good = more ∧ bad = less

R2 if Attr1 = range1 ∧Attr2 = range2 ∧ ...

then good = less ∧ bad = more

where R1 is the controller rule; R2 is the monitor rule; good and bad are sets of
classes that the agent likes and dislikes respectively; and more and less are the
frequency of these classes, compared against the current situation, which we call
the baseline. The nature of these output rules distinguishes TAR2 from many other
learning strategies.

Association rule learning: Classifiers like C4.5 and CART learn rules with a
single attribute pair on the right-hand side; e.g. class= goodHouse. Association rule
learners like APRIORI 1 generate rules containing multiple attribute pairs on both
the left-hand-side and the right-hand-side of the rules. That is, classifiers have a
small number of pre-defined targets (the classes) while, for association rule learners,
the target is less constrained.

General association rule learners like APRIORI input a set of D transactions
of items I and return associations between items of the form LHS ⇒ RHS where
LHS ⊂ I and RHS ⊂ I and LHS ∩ RHS = ∅. A common restriction with
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classifiers is that they assume the entire example set can fit into RAM. Learners
like APRIORI are designed for data sets that need not reside in main memory. For
example, Agrawal and Srikant report experiments with association rule learning
using very large data sets with 10,000,000 examples and size 843MB 1. However,
just like Webb 19, TAR2 makes the “memory-is-cheap assumption”; i.e. TAR2 loads
all it’s examples into RAM.

Specialized association rule learners like CBA 13 and TAR2 impose restrictions
on the right-hand-side. For example, TAR2’s right-hand-sides show a prediction
of the change in the class distribution if the constraint in the left-hand-side were
applied. The CBA learner finds class association rules; i.e. association rules where
the conclusion is restricted to one classification class feature. That is, CBA acts
like a classifier, but can process larger datasets that (e.g.) C4.5. TAR2 restricts the
right-hand-side features to just those containing criteria assessment.

Weighted-learning: Association rule learners such as MINWAL 4, TARZAN 16

and TAR2 explore weighted learning in which some items are given a higher priority
weighting that others. Such weights can focus the learning onto issues that are of
particular interest to some audience. For example TARZAN 16 swung through the
decision trees generated by C4.5 17 and 10-way cross-validation. TARZAN returned
the smallest treatments that occurred in most of the ensemble that increased the
percentage of branches leading to some preferred highly weighted classes and de-
creased the percentage of branches leading to lower weighted class. TAR2 was as
experiment with applying TARZAN’s tree pruning strategies directly to the C4.5
example sets. The resulting system is simpler, fast to execute, and does not require
calling a learner such as C4.5 as a sub-routine.

Contrast sets: Instead of finding rules that describe the current situation,
association rule learners like STUCCO 3 finds rules that differ meaningfully in their
distribution across groups. For example, in STUCCO, an analyst could ask ”what
are the differences between people with Ph.D. and bachelor degrees?”. TAR2’s
variant on the STUCCO strategy is to combine contrast sets with weighted classes
with minimality. That is, TAR2 treatments can be viewed as the smallest possible
contrast sets that distinguish situations with numerous highly-weighted classes from
situations that contain more lowly-weighted classes.

Support-based pruning: In the terminology of APRIORI, an association
rule has support s if s% of the D contains X ∧ Y ; i.e. s = |X∧Y |

|D| (where |X ∧ Y |
denotes the number of examples containing both X and Y ). The confidence c of an
association rule is the percent of transactions containing X which also contain Y ;
i.e. c = |X∧Y |

|X| .
Many association rule learners use support-based pruning i.e. when searching

for rules with high confidence, sets of items Ii, ...Ik are only be examined only if
all its subsets are above some minimum support value. Support-based pruning is
impossible in weighted association rule learning since with weighted items, it is not
always true that subsets of interesting items (i.e. where the weights are high) are
also interesting 4. Another reason to reject support-based pruning is that it can

4



force the learner to only miss features that apply to a small, but interesting subset
of the examples 18.

Confidence-based pruning: Without support-based pruning, association rule
learners rely on confidence-based pruning to reject all rules that fall below a minimal
threshold of adequate confidence. TAR2 uses confidence1 pruning.

2.1. Conf idence1 Pruning

TAR2 targets the feature ranges that “nudge” a system away from undesired
behavior and towards desired behavior. TAR2’s score for each range is the confi-
dence1 measure. This value is high if a range occurs frequently in desired situations
and infrequently in undesired situations. That is, if we were to impose this range
as a constraint, then it would tend to“nudge” the system into better behavior.

To find confidence1, we assume that we can access $class; i.e. some numeric
value assigned to class. The class with the highest value is the best class. The
lesser classes are the set of all classes, less the best class. Let O[C]A.R be the
number of occurrences of some feature range in some class C; i.e.

O[C]A.R = |A.R ∧ class = C ∧D|

To generate confidence1, we compare the relative frequencies of an feature range in
different classes. This comparison is weighted by the difference in the scores of the
classes, and normalized by the total frequency count of the feature range; i.e.∑

C∈lesser (($best− $C) ∗ (O[best]A.R −O[C]A.R))
|A.R ∧D|

2.2. Example

As an example of TAR2, suppose that users have scored the classes of Figure 2
as follows: ”lots”=8, ”some”=4, ”none”=2; i.e. ”lots” is the best class. The range
outlook=overcast appears four, zero, and zero times when playing ”lots”, ”some”,
and ”none” golf (respectively). The confidence1 of outlook=overcast is therefore:

((8− 2) ∗ (4− 0)) + ((8− 4) ∗ (4− 0))
4 + 0 + 0

= 10

Figure 3 shows the range of confidence1 seen in Figure 2. The confidence1 ranges
shown in black are outstandingly high; i.e. these are the values may generate the
best control treatments. TAR2 forms its treatments by exploring subsets of the
ranges with outstandingly high confidence1 values.

TAR2’s treatments are constraints which, if applied to the dataset, may reject
certain examples. For example, the controllerG treatment of Figure 4 contains
the constraint outlook = overcast. If we reject all items in the golf dataset that
contradicts this constraint, then our golfers now play ”lots”, ”some”, and ”none”
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Figure 3: Frequency of conf idence1 generated from Figure 2. Assumes that numeric
ranges have been divided into 3 bands. Outstandingly high conf idence1 values
shown are in black. Y-axis is the number of ranges that have a particular confidence1
value.

controllerG if outlook=overcast

then (230% more "lots" and no "some"

and no "none").

monitorG if 90 <= humidity < 97

then (43% less "lots" and 5% less "some"

and 167% more "none").

Figure 4: Control and monitor rules found from Figure 2. To control outlook, users
could select a vacation location with overcast weather.

baseline: controllerG: monitorG:
(from Fig-
ure 2)

outlook=
overcast

humid = [90..97)

0
25
50
75

100

36 21 43
0

25
50
75

100

0 0 100
0

25
50
75

100

60 20 20

Figure 5: Percentage of classes seen in different situations. The left-hand-side
histogram is a report of the class frequencies seen in Figure 2. The middle and
right-hand-side histograms were generated by applying the treatments of Figure 4.
KEY: none; some; lots.

6



input: D The examples.
items Attributes seen in the examples.
best The best combination of criteria.
N Desired size of LHS.
promising Threshold for a useful feature range.
skew Threshold for acceptable number of best entries in

treated.
bands Number of divisions within continuous ranges.

output: lhs A conjunction of feature ranges
rhs a change in the class distributions

01. D1 ← discretize(D, bands)
02. temp ← baseline ← frequency(D1)
03. for attribute in items {
04. for R in attribute.ranges {
05. if confidence1(attribute.R) ≥ promising
06. then candidates ← candidates + attribute.R}}
07. for C ⊆ candidates where |C| = N {
08. treated ← C ∧ D1
09. result ← frequency(treated)
10. if result>temp and |best∧D1|/|best∧treated|>skew
11. then {lhs ← C
12. rhs ← compare(baseline,result)
13. temp ← result}}
14. if (lhs 6= ∅ and rhs 6= ∅) then return (lhs, rhs)
15. else return "no treatment"

Figure 6: The TAR2 algorithm.

golf in 100%, 0%, and 0% (respectively) of the constrained dataset (as shown in the
middle histogram of Figure 5).

The monitor rule monitorG of Figure 4 was generated in a similar manner; but
with the scoring system reversed; i.e. ”lots”=2, ”some”=4, ”none”=8. In this
case, ”none” is the “best” class and TAR2 will find a treatment that selects for less
golf behavior; i.e. 90 ≤ humidity < 97. After applying this constraint, the class
distribution changes to the right-hand-side histogram of Figure 5.

2.3. Inside TAR2

TAR2 generates controller and monitor treatments. Monitors are generated
using in same manner as generating controllers. However, before the monitor is
generated, the scoring function for the criteria is reversed so TAR2 now seeks feature
ranges that “nudge” a system into worse behavior. The rest of this section discusses
how to generate controllers.

The TAR2 algorithm is shown in Figure 6. The frequency function counts
the frequency of examples falling into different criteria. Using this function, a
baseline class distribution is collected from D (this is used later to contrast different
treatments) and copied to a temp variable (this is used to store the best distribution
seen so far). The compare function compares two frequencies to generate reports like
(e.g.) 43% less ”lots” and 5% less ”some” and 167% more ”none”. The discretize
function divides the numeric ranges seen in the examples into bands number of
groups. TAR2 was originally designed using a very simple discretization policy;
i.e. TAR2 sorts the known values and divides into bandswith (roughly) the same
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cardinality. It was anticipated that this policy would be too simplistic and would
have to be improved. However, our empirical results (see below) were so encouraging
that we were never motivated to do so.

Once a treatment is found, it is applied to the example set to create a treated

example set; i.e. all the examples that don’t contradict the proposed treatment
(see line 8). A ”good” treatment includes most of the examples that have the best

criteria (e.g. in the golf example of Figure 2, best= playing ”lots” of golf). The
skewparameter is used at line 10 to reject ”bad” treatments; i.e. those that don’t
contain enough of the best criteria. For example, at skew=5, at least 20% of the
best criteria must appear in the treatment.

TAR2 explores subsets of the ranges found in a set of examples D (see line
7). Subset exploration is constrained to just the ranges with an outstandingly
large confidence1 score (see line 5). Even with this restriction, there are still an
exponential number of such subsets. Hence, to be practical, TAR2 must seek the
minimal possible number of control actions and monitors. Accordingly, the user of
TAR2 constrains its learning to rule conditions of size N , where N is small (see
line 7). Often, effective treatments can be found using N ≤ 4 which suggests that
narrow funnels existed in the datasets used for our case studies.

2.4. Comparisons

This section compare how a treatment learner like TAR2 and a decision tree
learner handles the same data set.

Figure 7 shows a tree learned by C4.5 17. This tree is generated from hundreds
of examples of houses in the Boston area. Each branch of the tree tell us how we
might recognize high, mediumHigh, mediumLow and low quality houses. TAR2,
applied to same data set, learns the controller and monitor rules of Figure 8.

For the purposes of learning tiny theories, the important aspect of Figure 7 and
Figure 8 is that they use only a subset of the 13 features available in the housing
data set. That is, only some of the available features were useful when learning
treatments or classifiers via entropy-based methods.

Note that for this housing example, TAR2 selected fewer features than C4.5:
C4.5’s learnt theory needed seven features while TAR2’s treatments only needed
four. It has often been observed that TAR2’s theories use far fewer features than
classifiers (see the experiments described in 15). Perhaps TAR2 might be useful for
finding core features that generate tiny classifiers? The SELECT algorithm tests
this speculation.

3. SELECT

SELECT is a loop around TAR2. In each loop, a different class is declared to
be the best class, and the features found in the resulting treatments are added to a
set of SELECTed features. That is, the SELECTed set contains any feature that
was useful for “nudging” towards any class.
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lstat <= 11.66
| rm <= 6.54
| | lstat <= 7.56 THEN medhigh
| | lstat > 7.56
| | | dis <= 3.9454
| | | | ptratio <= 17.6 THEN medhigh
| | | | ptratio > 17.6
| | | | | age <= 67.6 THEN medhigh
| | | | | age > 67.6 THEN medlow
| | | dis > 3.9454 THEN medlow
| rm > 6.54
| | rm <= 7.061
| | | lstat <= 5.39 THEN high
| | | lstat > 5.39
| | | | nox <= 0.435 THEN medhigh
| | | | nox > 0.435
| | | | | ptratio <= 18.4 THEN high
| | | | | ptratio > 18.4 THEN medhigh
| | rm > 7.061 THEN high
lstat > 11.66
| lstat <= 16.21
| | b <= 378.95
| | | lstat <= 14.27 THEN medlow
| | | lstat > 14.27 THEN low
| | b > 378.95 THEN medlow
| lstat > 16.21
| | nox <= 0.585
| | | ptratio <= 20.9
| | | | b <= 392.92 THEN low
| | | | b > 392.92 THEN medlow
| | | ptratio > 20.9 THEN low
| | nox > 0.585 THEN low

Features used in the decision tree:
age = proportion of houses built prior to 1940

b = information on racial mixture in the suburb
dis = weighted distances to five employment centers

lstat = living standard
nox = nitric oxides concentration

ptratio = parent-teacher ratio at local schools
rm = number of rooms

Figure 7: A decision tree learned from the HOUSING database using WEKA’s J4.8
algorithm 20 with the command line J4.8 -C 0.25 -M 10.

controllerH if rm <= 6.6 AND ptratio <= 15.9
then ("high" increases by 334% and "medhi" decreases by 90%

and no "medlo" and no "lo").

monitorH if 0.6 <= nox < 1.9 AND
17.16 <= lstat < 39

then (467% more "low" AND "medlow" decreases by 95.3%
and no "medhi" and no "high").

Figure 8: Control and monitor rules found from the UCIrvine housing example.
Percent changes are reported compared to the baseline class frequencies in original
data set.
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original 
data Set 

union of all  
features  
seen in  
TAR2’s 

treatments  
 
TAR2 

Target 
learner 

change 
the class 

preference 
ordering Repeat  

several times 

Figure 9: An illustration of SELECT

• Initialize the SELECTed features to nil.
• For each class in turn, declare it to be TAR2’s ”best”

class. Then:

– Set treatment size N to 1
– Find the ”best” treatment of size N via TAR2.
– If the score of the best treatment is no better than

that of the best treatment of size N-1, then

∗ Add the features seen in the best treatment
to SELECTed.

– Else, N++ and loop.

• Collect the average accuracy seen in a 10-way cross val-
idation of the target learner using

– just the features seen in SELECTed
– all features

Figure 10: SELECT algorithm.

After SELECT’s loops through each class, some target learner is executed using
all the features and the SELECTed features. Equation 1 is then applied to test if
the theory learnt from the SELECTed theory is better than the theory learnt from
all features. For more details on SELECT, see Figure 9 and Figure 10.

An important methodological point of SELECT is that TAR2 is not used in
the 10-way to assess the SELECTed features. TAR2 is a novel machine learning
algorithm that has yet to gain wide acceptance. Hence, SELECT relegates TAR2
to a pre-processor and uses commonly-used machine learners to assess the results.

Figure 1 was generated using SELECT and C4.5 as the target learner. As
mentioned in the introduction, the SELECTed features were always few and usually
satisfied Equation 1. But a complete assessment of SELECT requires a comparison
of the Figure 1 results with other approaches. The rest of this paper describes such
a comparison.
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number of attributes
before: 10 13 15 180 22 8 25 36 6 6 6
after: 2 2 2 11 2 1 3 12 1 1 2

reduction: 80% 84% 87% 94% 90% 87% 88% 67% 83% 83% 67%
∆accuracy: 0% 6% 5% 4% 2% 1% 0.5% 0% -25% 6% 7%

Figure 11: Feature subset selection using a WRAPPER of a decision tree leaner.
The ∆ accuracy figure is the difference in the accuracies of the theories found by
decision tree learner using the before and after features. From 11.

3.1. Feature Subset Selection

SELECT belongs to a class of algorithms called feature subset selection (FSS)
methods. This section reviews some FSS algorithms.

FSS is the process of identifying the most promising features in a given dataset.
Datasets used in practical data mining applications have a large number of fea-
tures. These data sets often contain several extraneous features which can reduce
the efficiency of the learning algorithm. Feature subset selection helps us identify
the important attributes and remove redundant ones. If only the most relevant
features were to be selected and given to the learning algorithm they can produce
smaller theories. This enhances the understanding of the dataset or domain under
consideration. Dimensionality reduction also speeds up the learning process.

A repeated result in the FSS field is that ignoring features need not degrade
classifier accuracy. How can ignoring information be useful? Kohavi & John 11 re-
view studies with Naive Bayes classifiers. The accuracy of such classifiers decreases
very slowly as irrelevant features are added to an instance set. However, the accu-
racy of the same classifiers can degrade sharply as the number of correlated features
increase.

Another explanation for the success of ignoring features is offered by Witten
& Frank 20. They note that effective generalization requires numerous examples.
Decision tree learners recursively split instances by ranking features according to
how much they decrease the diversity of the classes in the split sets. As learn-
ing progresses, fewer and fewer instances are available to learn the next sub-tree.
If the instances contain too many features of similar rank, then many splits are
quickly generated. Hence, instances become sparser in the sub-trees, and effective
generalization becomes harder.

The rest of this section describes several FSS methods.

3.1.1. WRP: Wrapper Subset Evaluation

In the WRAPPER method, a target learner is augmented with a pre-processor
that used a heuristic search to grow subsets of the available features. At each step
in the growth, the target learner is called to find the accuracy of the model learned
from the current subset. Subset growth is stopped when the addition of new features
did not improve the accuracy.
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Figure 12: Transformation of axis.

Figure 11 shows some WRAPPER results from experiments by Kohavi and
John 11. In their experiments, 83% (on average) of the measures in a domain could
be ignored with only a minimal loss of accuracy.

The advantage of the WRAPPER approach is that, if some target learner is
already implemented, then the WRAPPER is simple to implement. The disadvan-
tage of the wrapper method is that each step in the heuristic search requires another
call to the target learner; i.e. it may be very slow.

For the results shown below, we will use a WRAPPER of two target learners: a
decision tree learner (C4.5) and a Naive Bayes classifier.

3.1.2. PCA: Principal Component Analysis

Principal components analysis (PCA) 5 identifies the distinct orthogonal sources
of variation and mapping the raw measurements onto a set of uncorrelated features
that represent essentially the same information contained in the original measure-
ments. For example, the data shown in two dimensions of Figure 12 (left-hand-side)
could be approximated in a single transformed dimension, (right-hand-side).

3.1.3. IG: Information Gain Attribute Ranking

This is a simple and fast method for feature ranking 6. This method measures
the split criteria of the class before and after observing a feature. The differences in
the split criteria gives a measure of the information gained because of that feature 17.
A final comparison of this measure is used in feature selection.

3.1.4. RLF: Relief

Relief is an instance based learning scheme 10,12. It works by randomly sampling
one instance within the data. It then locates the nearest neighbors for that instance
from not only the same class but the opposite class as well. The values of the nearest
neighbor features are then compared to that of the sampled instance and the feature
scores are maintained and updated based on this. This process is specified for some
user-specified M number of instances. Relief can handle noisy data and other data
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anomalies by averaging the values for K nearest neighbors of the same and opposite
class for each instance 12. For data sets with multiple classes, the nearest neighbors
for each class that is different from the current sampled instance are selected and
the contributions are determined by using the class probabilities of the class in the
dataset.

3.1.5. CFS:Correlation-based Feature Selection

CFS uses subsets of features 8. This technique relies on a heuristic merit cal-
culation that assigns high scores to subsets with features that are highly correlated
with the class and poorly correlated with each other. Merit can find the redundant
features since they will be highly correlated with the other features. It can also
identify ignorable features since they will be poor predictors of any class. To do
this CFS informs a heuristic search for key features via a correlation matrix.

3.1.6. CBS: Consistency-based Subset Evaluation

CBS is really a set of methods that use class consistency as an evaluation metric.
The specific CBS studied by Hall and Holmes method finds the subset of features
whose values divide the data into subsets with high class consistency 2.

3.2. Experiments

SELECT was used to find a subset of these available features. Theories were
learnt using either all or the selected features by the C4.5 decision tree learner or
a Naive Bayes classifier. These two learners were deliberately selected to assess the
utility of FSS on radically different learning schemes:

• Decision tree learners recursively split instances by ranking feature ranges
according to how much they decreases the diversity of the classes in the split
sets.

• Naive Bayes classifiers work in a very different manner. Statistics are collected
on the distribution of feature ranges in different classes. Those statistics
are used to estimates the probability that some new combination of features
belongs to a certain class.

We used the implementation of C4.5 and Naive Bayes classifier found in WEKA:
the Waikato Environment for Knowledge Analysis 20. The WEKA is a free, JAVA-
based, open source, GUI tool that provides a rich variety of machine learners,
preprocessing tools, and visualization tools.

Our experiments were run on 10 datasets. These datasets, described in Fig-
ure 13, originally come from the UCI (University of California at Irvine) repository.
These datasets had a wide range of nominal and numeric features. The size of these
datasets varied from a few hundred to a few thousand instances.

The last column of Figure 14 shows the number of features found by SELECT.
The middle columns come from FSS by Hall & Holmes 7. In the Hall & Holmes
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dataset instances numeric nominal classes
anneal 898 6 32 5

breast-c 286 0 9 2
credit-g 1000 7 13 2
diabetes 768 8 0 2

horsecolic 368 7 15 2
ionosphere 351 34 0 2

lymph 148 3 15 4
segment 2310 19 0 7
soybean 683 0 35 19

vote 435 0 16 2

Figure 13: Datasets used.

original ig cfs cbs rlf wrp pc select
Anneal 38 17 21 15 20 18 36 I 7

breast-c 9 4 4 7 7 4 4 I 2
credit-g 20 8 7 8 9 8 I 4 5

Diabetes 8 33 3 4 4 4 6 I1
Horse colic 22 4 4 I2 3 5 3 I 2
Ionosphere 34 12 7 9 9 7 10 I 2

lymph 18 6.8 5.3 4 4 6 9 I 3
Segment 19 16 12 9 13 9 16 I 4
Soybean 35 19 24 35 32 19 30 I 16

vote 16 12 10 I 6 11 9 11 I 6

Figure 14: Features selected using C4.5. Black triangles denote which FSS method
found the smallest set of features.

experiments, WRP, PCA, IG, CBS, RLF, CFS and CBS were generate a sorting of
the available features. For N set from 1 to the maximum number of features, the
top N features were passed to some target learner (C4.5 or Naive Bayes). Hall &
Holmes returned the N features that generated the maximum accuracy. Figure 14
is therefore a comparison of two FSS methods:

• SELECT vs
• Hall & Holmes using {WRP, PCA, IG, CBS, RLF, CFS} to rank features

then C4.5 to assess the top N features.

Similarly, Figure 15 is a comparison between

• SELECT vs
• Hall & Holmes using the same FSS methods to rank features then Naive Bayes

to assess them.

Note that the last column of Figure 14 and Figure 15 are the same since they both
report the same results from SELECT.

Hall & Holmes repeated their FSS procedure repeated ten times, each time
using a ten-way cross-validation on their FSS methods to rank the features, then
passing the top N features to some target learner to assess their utility. Hence
the middle columns of Figure 14 and Figure 15 are actually the average, rounded
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original ig cfs cbs rlf wrp pc select
anneal 38 10 I 4 5 39 7 25 7

breast-c 9 4 7 6 5 3 3 I 2
credit-g 20 13 14 14 20 12 11 I 5
diabetes 8 3 4 4 6 3 4 I 1

horse colic 22 9 4 4 23 6 6 I 2
ionosphere 34 8 8 11 18 13 12 I 2

lymph 18 17 13 14 15 2 13 I 3
segment 19 11 11 5 15 8 9 I 4
soybean 35 31 31 33 36 26 21 I 16

vote 16 I 1 2 3 15 I 1 3 6

Figure 15: Features selected using Naive Bayes. Black triangles denote which FSS
method found the smallest set of features.

number of features found to generate maximum accuracy in a ten-times ten-way-
FSS followed by a ten-way-cross-val. Hall & Holmes argue that such a laborious
method is required to compare different classes of FSS tools.

To our way of thinking, the analysis of Hall & Holmes is perhaps over-elaborate.
An FSS can be viewed as a black-box preprocessor to a machine learner. This black-
box method generates features (by any method), and the merits of those features
are assessed via a single 10-way experiment with some target learner.

How can we reject the Hall & Holmes experimental method, yet still compare
our results to theirs? Returning to the FSS-as-black-box metaphor, we argue that
Hall & Holmes are delivering a set of features via some method and the size of that
set can be compared to the size of the features found via SELECT. However, it
would be an error to compare accuracies between SELECT and the Hall & Holmes
study since the ten-times ten-way FSS sub-divides the available data into a smaller
set that what is offered to SELECT. Hence, we will assess the accuracies of the
theories learnt from the SELECTed attributes using our goal (Equation 1) and not
via comparison with the accuracies seen in the Hall & Holmes study.

The key features of Figure 14 and Figure 15 is that SELECT found the smallest
subset of any method studied here in 17 of the 20 experiments. For decision tree
target learners, SELECT found the smallest subset in 9 of the 10 experiments. For
Naive Bayes target learners, SELECT found the smallest subsets in 8 of the 10
experiments.

Hall & Holmes do not offer runtimes for their FSS methods. Hence, we can’t
compare the runtimes of SELECT with the other FSS results shown here. However,
we have some evidence that SELECT will be a much faster than some FSS methods.
Kohavi & John 11 report that their WRAPPER method can take up to hundreds or
thousands of seconds to terminate. Total SELECT runtime for any of the domains
studied here is much faster: i.e. always less than ten seconds.

Figure 16 show the average accuracies seen in 10-way cross validation using
the two target learners using all or the features SELECTed by our methods. The
features rejected by SELECT changed classification accuracy very little. In only
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C4.5 Naive Bayes
c1 c2 n1 n2

all selected
(c1−c2)

c1 all selected
(n1−n2)

n1
anneal 98.2 98.2 0.00% 86.6 84.3 2.66%

breast-c 75.2 75.2 0.00% 74.1 75.2 -1.48%
credit-g 73.9 72.3 2.17% 75.9 74.3 2.11%
diabetes 74.5 72.8 2.28% 76 74.6 1.84%

horsecolic 85.3 81.5 I 4.45% 78.8 79.6 -1.02%
ionosphere 88.6 87.8 0.90% 82.9 87.5 -5.55%

lymph 76.4 74.3 2.75% 81.8 77.7 I 5.01%
segment 97.1 96.6 0.51% 79.8 86.3 -8.15%
soybean 92.4 93 -0.65% 92.7 93 -0.32%

vote 95.9 96.1 -0.21% 90.1 94.9 -5.33%
average: 1.22 average: -1.02

Figure 16: Accuracies of theories using all or the SELECT-ed features. Black tri-
angles denote cases where the SELECT-ed features generated a theory that violate
our goal of Equation 1. Negative accuracies mean accuracy increased using the
SELECTed features.

two cases out of twenty did SELECT violate our goal statement of Equation 1.
The largest difference seen in Table 3 was the 5.01% loss seen for the vote domain
and such a large difference was not the usual case. On average, the classification
accuracies changed by around 1%. More specifically:

• A 1.22% average relative decrease for accuracy using C4.5 as the target learner.
• A 1.02% average relative increase for accuracy using Naive Bayes as the target

learner.

In summary, of the FSS methods studied here, SELECT usually found the small-
est feature subsets and those subsets usually resulted in an acceptable accuracies.

4. Conclusions

Theories generated by data miners aren’t useful if users can’t or won’t read
them. We work with business users that declines to read complex theories. These
users wish to be shown the smallest possible “useful” theory.

In this paper, we have defined a theory new to be more “useful” than another
theory old if new is uses far fewer features than old, and new is not “much less
accurate” that old. Our user community asserts that an acceptable loss of accuracy
is:

accuracy(old)− accuracy(new)
accuracy(old)

< 3%

Under that assumption, we have developed the SELECT feature subset selector
method. SELECT uses the TAR2 treatment learner as a sub-routine. In compar-
isons with other feature subset selectors, we have shown that:

• The feature selected by SELECT were usually smaller that features selected
by other FSS methods.
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• Measured in terms of averages over a 10-way cross validation, the impact on
accuracy was minimal and acceptable (where “acceptable” is defined as per
Equation 1).

• SELECT runs faster than certain other leading FSS methods such as WRAP-
PER (but the evidence for this last conclusion is somewhat limited).

Future work would involve trying this approach on more datasets and with datasets
have more number of features
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