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Abstract. Softwaredefect detectorsinput structural metrics of code and output a prediction
of how faulty a code module might be. Previous studies have shown that such metrics many
be confused by the high correlation between metrics. To resolve this,feature subset selection
(FSS) techniques such asprincipal components analysiscan be used to reduce the dimen-
sionality of metric sets in hopes of creating smaller and more accurate detectors. This study
benchmarks several FSS techniques and reports several studies where a large set metrics were
reduced to a handful with little loss of detection accuracy. This result raises the possibility that
software defect detection may be much simpler than previously believed.
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1. Introduction

Perfection is reached, not when there is no
longer anything to add, but when there is no longer
anything to take away.– Antoine de Saint-Exupery

Over the past several years, many sophisticated structural measurements
of software systems have been used to identify fault-prone components and
predict their fault content. Examples of this work include the classification
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Figure 1. Transformation of axis.

methods proposed by Khoshgoftaar and Allen (Khoshgoftaar and Allen, 1999)
and by Ghokale and Lyu (Gokhale and Lyu, 1997); Schneidewind’s work
on Boolean Discriminant Functions (Schneidewind, 1997), Khoshgoftaar’s
application of zero-inflated Poisson regression to predicting software fault
content (Khoshgoftaar, 2001), and Schneidewind’s investigation of logistic
regression as a discriminant of software quality (Schneidewind, 2001).

An evident trend found within the above work is the increasing sophistica-
tion and complexity of the analysis techniques. Increasing the sophistication
of our defect detection is not necessarily the best approach. This paper will
argue that such increasing complexity is unnecessary. It will be shown that, at
least for the data sets studied here, that very unsophisticated and very simple
methods can generate good defect detectors.

Many researchers have explored methods to reduce modeling complex-
ity. In the reliability engineering literature, principal components analysis
(PCA) (Dillon and Goldstein, 1984) has been widely applied to resolve prob-
lems with structural code measurements; e.g. (Munson and Khoshgoftaar,
1990; Munson and Khoshgoftaar, 1991). PCA eliminates the problem of highly
correlated measures by identifying the distinct orthogonal sources of vari-
ation and mapping the raw measurements onto a set of uncorrelated fea-
tures that represent essentially the same information contained in the original
measurements. For example, the data shown in two dimensions of Figure 1
(left-hand-side) could be approximated in a single transformed dimension,
(right-hand-side).

PCA has its drawbacks. Fault models developed from PCA results are
expressed in terms that are not directly visible to users of the model. Such
models relate fault content or fault-proneness to the “domain scores” result-
ing from the PCA. These domain scores are weighted sums of the structural
measurements standardized with respect to a chosen baseline. The structure
of these models may be very simple. For example, we have used PCA and a
decision tree learner to find the following defect detector:
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if domain1 ≤ 0.180
then NoDefects
elseif domain1 > 0.180

then if domain1 ≤ 0.371 then NoDefects
else if domain1 > 0.371 then Defects

Here, “domain1” is one of the domains found by PCA. This tree seems
very simple, yet is very hard to explain to business clients users since “domain1”
is calculated using the following, somewhat intimidating, weighted sum:

domain1 = 0.241 ∗ loc + 0.236 ∗ v(g)

+0.222 ∗ ev(g) + 0.236 ∗ iv(g) + 0.241 ∗ n

+0.238 ∗ v − 0.086 ∗ l + 0.199 ∗ d

+0.216 ∗ i + 0.225 ∗ e + 0.236 ∗ b + 0.221 ∗ t

+0.241 ∗ lOCode + 0.179 ∗ lOComment

+0.221 ∗ lOBlank + 0.158 ∗ lOCodeAndComment

+0.163 ∗ uniqOp + 0.234 ∗ uniqOpnd

+0.241 ∗ totalOp + 0.241 ∗ totalOpnd

+0.236 ∗ branchCount

(Here,v(g), ev(g), iv(g) are the standard McCabe structural metrics (Mc-
Cabe, 1976) while the rest are either Halstead metrics (Halstead, 1977) or
simple variants on lines of code count. The appendix of this article contains
a brief tutorial on these metrics.)

This problem with explaining domain scores encouraged us to look for
alternatives to PCA. Our reading of the data mining literature suggested that
PCA belongs to a class offeature subset selection(FSS) techniques which
aim to remove superfluous features (Hall and Holmes, 2003; Kohavi and
John, 1997b; Gunnalan et al., 2003). The goal of FSS is to drastically reduce
the dimensionality of the data, thus simplifying any subsequent processing.
The dimensionality reduction of FSS means that any subsequent processing
can ignore irrelevant, redundant and noisy features and focus on only rel-
evant, highly predictive ones to improve its performance. Lastly, detectors
learnt from reduced dimensionality are more compact, easily understandable
representations of the underlying concept.

To the best of our knowledge, it has not been previously noted in the relia-
bility literature that PCA is one member of a large set of FSS techniques. This
study benchmarks PCA against those FSS techniques, in terms of accuracy of
the learnt defect detectors. We will show that in the special case of generating
defect detectors, very simple FSS methods can out-perform PCA both in
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Figure 2. A large decision tree produced by the C4.5 decision learner (Quinlan, 1992) using
all 22 metrics in the JM1 data set analyzed in this article.

Figure 3. Small decision tree produced by C4.5 from the JM1 data set using just the three
metrics selected by the SELECT FSS method (described later in this paper).

terms of the number of features rejected and the accuracy of the detectors
learnt from the remaining features.

Unlike other studies (e.g. (Munson and Nikora, 1998)), which contained
a mere fifty observations, the experimental data used for this paper is large
(hundreds to thousands of records) and is drawn from five different software
projects shown in Figure 4. Apart from being written in “C” or “C++”, there
is little commonality in our sample. These projects come from five different
teams working at four different locations around the country. This software
performs a wide range of different functions from spacecaft instrumentation
to real-time predictive simulations. That is our conclusions are based on a
broader experience base than previous work: specifically, 15,730 modules for
which there exist 3975 defect reports.
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# % with developed notes

project modules defects language at notes

AN1 1719 58% C++ location 1 development project for
reusable code libraries

CM1 496 9.7% C location 2 a NASA spacecraft instru-
ment

JM1 10885 19% C location 3 real-time predictive ground
system (uses simulations to
generate the predictions)

KC1 2107 15.4% C++ location 4 storage management for
receiving and processing
ground data

KC2 523 20% C++ location 4 science data processing;
another part of the same
project as KC1; different
personnel to KC1. shared
some third-party software
libraries as KC1, but no
other software overlap.

Figure 4. Data sets used in this study. Here, a “module” is the equivalent of a C function
or a C++ method. All modules analyzed were built by NASA developers excluding several
thousands modules that are COTS software (COTS is an acronym for Commercial Off The
Shelf). The McCabe and Halstead structural metrics were extracted from these systems and
mapped to the defect logs kept for each project. Note that AN1 is an artificially generated data
set. That system has not finished its testing phase so its defect logs are incomplete. For this
data set, we hence used all the log entries relating to defects and a nearly equal number of
entries with no defects (selected at random).

Another important feature of this study is that it is arepeatableexperi-
ment. Four of the five data sets used here publicly available1. These exper-
iments also use freely distributed tools available online, such as the WEKA
machine learning toolkit2 and the TAR2 treatment learner (Menzies and Hu,
2001; Menzies and Hu, 2002a; Menzies and Hu, 2002b)3. Repeatability is
an important methodologically principle since it allows other researchers to
independently assess our results.

The most important feature of our study was the dramatic reduction in
number of features. In all the case studies shown below, over 75% of the

1 http://mdp.ivv.nasa.gov , or http://menzies.us/data.html
2 http://www.cs.waikato.ac.nz/˜ml/weka/
3 http://menzies.us/rx.html
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available features could be ignored, without compromising the detector accu-
racy. For example our case studies show that the complex defect detector
decision tree of Figure 2 can be reduce to simpler tree of Figure 3, with
little or no loss in defect detection accuracy. Interestingly, these reductions
are obtained using methods much simpler than anything used before in the
software reliability literature. This result has made us reevaluate our own
previous results (Munson and Nikora, 1998; Menzies and DiStefeno, 2002)
that used PCA and other techniques to simplify fault detectors.

This is not to say that the prior research on PCA was useless. On the
contrary, claims that methodX is simpler, but just as effective, as method
Y is meaningless without knowledge of methodY. The only way this paper
can claim that something is a better FSS than (e.g.) PCA is to have access to
the prior results on PCA. Hence, we say that prior research on PCA was an
essential precursor to this work.

2. Related Results

The thesis of this paper is thatmany features are ignorable. That is, most
of the available metrics can be omitted from defect detectors without affect-
ing the accuracy of those detectors. There is some evidence for this thesis,
scattered throughout the literature. This section reviews that evidence.

A defect detector in this domain is a test that some measured software
structural feature has passed some threshold. Different metric ranges may
also be combined to form a composite defect detector in order to compose
trees or other classifier structures.

Decision tree learning has been frequently applied to the task of generating
summaries of defect logs. Often, these summaries use only a small subset of
the available features. For example, Figure 5 shows one study where, of the
42 features offered in the data set, only six were deemed significant by the
learner.

For another example, Figure 7 shows 18 metrics given to a particular
learner. Figure 6 shows what that learner generated. The key feature of Fig-
ure 6 is what isnot shownin the learnt decision tree: of the 18 features
available to this learner, only the four underlined metrics appear in the tree.

For yet another example, we can look at the individual domains learnt by
PCAs for a mission software technology development effort at JPL (Dvorak
et al., 1999). Figure 8 shows that, with respect to the index of cumulative
faults, not all features are equally associated with faults. Figure 8 plots the
cumulative domain values for each of the system builds, together with the cu-
mulative number of faults for each build. It is quite apparent from this figure
that Domain 1, associated with control, is most closely associated with the
cumulative fault count. Indeed, the correlation coefficient between Domain 1
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fault prone

not fault prone

#include
files

<=27

new+changed
SLOC

>27

proportion
of sites using
this module

>30

max control
structure
nesting

<=30

> 0.005

<=0.005

<=6

#design
changes

>6
<=10

#control
statements

>10 >630

#include
files

<=630

>34

<=29

(29..34]

estimated
error=

27% (approx)

Figure 5. Predicting fault-prone modules (Khoshgoftaar and Allen, 1999). Learned from data
collected from a telecommunications system with> 10 million lines of code containing a few
thousand modules.

normalized cumulative domain values and the cumulative fault values is 0.94.
The correlation between Domain 2 and cumulative faults is -0.20. Finally,
correlation between Domain 3 and cumulative faults is 0.71.

The above examples can only be found after reading widely in the liter-
ature. The rest of this article checks if the phenomenon thatmany features
are ignorableis easily repeatable. A range of data sets will be explored using
a range offeature subset selection(FSS) techniques. With the exception of
PCA, most of these FSS techniques come from the data mining literature.
Hence, before we explain FSS, we must offer some background notes on data
mining.

3. Data Mining

Data mining is a summarization technique that reduces large sets of examples
to a small understandable pattern using a range of techniques taken from
statistics and artificial intelligence. It is commonly referred to as searching
for pearls in the sand. This next section is a review of data mining methods
and algorithms used in this study. The subsequent section describes feature
subset selection.

3.1. METHODS AND ALGORITHMS

Cross Validation: A common mistake that new data miners make isover-
training. Over-training happens when a data miner to gettoo specific in its
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cost&faults
=high

cost&faults
=not high

cost&faults
=?

cyclomatic
complexity <7

[13..26)

function plus
module calls

(FC plus MC)

[7..13)

operators
>=26

[18..35)

<18

>=35

[26..31)

[31..34}

<26

module
calls
(MC)>=34

[4..10)

<4

>=10

Figure 6. Predicting modules with high cost modules and many faults. Data from 16 NASA
ground support software for unmanned spacecraft control (Tian and Zelkowitz, 1995). These
systems were of size 3,000 to 112,000 lines of FORTRAN and contained 4,700 modules.

learning. If that happens then your results, while extremely applicable to
current data, are unlikely to apply to data seen in the future.

Across whole module:
total operators
total operators

Averages per KSLOC:
assignment statements
cyclomatic complexity
executable statements
decision statements
function calls (FC)
module calls (MC)

Averages per KSLOC:
FC plus MC
IO statements
IO parameters
origin
operands
operators
comments (C)
source lines (SL)
SL minus C
format statements

Figure 7. Metrics available to the learner that generated Figure 6. “Cyclomatic complexity”
is a measure of internal program intricacy (McCabe, 1976).
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Figure 8. Three domain scores and a cumulative total for one JPL system.

One way of avoiding this pitfall is by assessing the learnt treatments against
data not used during training. One method for doing so is N-way cross val-
idation. In this process, a training set is divided intoN buckets. For each
bucket in turn, a select is learned on the otherN − 1 buckets, then tested on
the bucket that was put aside. A learner is deemedstableif it works in the
majority of allN turns.

Decision Tree Learning:Figure 2, Figure 3, Figure 5 and Figure 6 were
generated via decision tree learners. One way to learn such trees is tosplit the
whole example set into subsets based on some metric/threshold comparison.
The process then repeats recursively on the subsets. Each splitter value be-
comes the root of a sub-tree. Splitting stops when either a subset gets so small
that further splitting is superfluous, or a subset is contains examples with only
one type (e.g. all the remaining examples are about defective modules).

A good splitdecreases the percentage of different types of modules in
a subset. Such a good split ensures that smaller subtrees will be generated
since less further splitting is required to sort out the subsets. Various schemes
have been described in the literature for finding good splits. For example,
the C4.5 (Quinlan, 1992) and J4.8 (Witten and Frank, 1999) decision tree
algorithms uses an information theoretic measure (entropy) to find its splits
while the CART (Breiman et al., 1984) decision tree learner uses another
measure called the GINA index.

Bayesian Learning:An alternative to decision tree learning is Naive Bayesian
learning (Witten and Frank, 1999). In this approach, a prior probability of an
hypothesisH is updated whenever new evidenceE comes to hand. Baye’s
rule tells us how:

P (H|E) =
P (E|H)P (H)

P (E)
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Such learners are “naive” in that they assume no correlation between at-
tributes. However, this seemingly “naive” assumption has proven to be re-
markably robust and useful in many domains.

For example of Bayesian learning, consider the log of golf-playing be-
havior shown in Figure 9. In that log, the frequency of playing some, or lots
of golf is P (none) = 5

14 , P (some) = 3
14 andP (lots) = 6

14 respectively.
In the special case where it is not windy (i.e.E = notwindy) then the
probabilities change toP (not windy|none)= 2

8 , P (not windy|some)= 3
8 ,

P (not windy|lots)= 3
8 . If we have evidence that today is not windy, we can

update our prior beliefs about golf-playing behavior. First, we compute the
likelihoods that we will play none,some, or lots of golf:

likelihood(none|not windy) =
2
5
∗ 5

14
= 0.143

likelihood(some|not windy) =
3
3
∗ 3

14
= 0.214

likelihood(lots|not windy) =
3
6
∗ 6

14
= 0.214

These likelihoods are then normalized in the standard way to get probabilities:

P (none|not windy) =
0.143

0.143 + 0.214 + 0.214
= 0.250

P (some|not windy) =
0.214

0.143 + 0.214 + 0.214
= 0.375

P (lots|not windy) =
0.214

0.143 + 0.214 + 0.214
= 0.375

That is, on non-windy days, it is least probable that we will play no golf.
Treatment Learning: A new data mining technique is the TAR2 treat-

ment learning technique developed by Menzies and Yu (Hu, 2002; Menzies
and Hu, 2002b; Menzies et al., 2002b; Menzies et al., 2002a; Menzies and Hu,
2002b; Menzies and Hu, 2001; Menzies and Hu, 2002a). Treatment learning
searches for a strongselect statementthat mostchangesthe ratio of classes.
To understand the concept of astrong select statement, consider the log of
golf playing behavior seen in Figure 9. In that log, we only playlots of golf
in 6

5+3+6 = 43% of the cases. To improve our game, we might search for
conditions that increases our golfing frequency. Two such searches are shown
in the bottom of Figure 9. In the case ofoutlook=overcast , we play
lots of golf all the time. In the case ofhumidity ≥ 90 , we only playlots
of golf in 20% of the cases. The net effect of these two select statements is
shown in Figure 10.

TheWHEREstatements within a select statement can contain conjunctions
of arbitrary size. Exploring all such conjunctions manually is a tedious task.
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outlook temp(oF) humidity windy? class

sunny 85 86 false none

sunny 80 90 true none

sunny 72 95 false none

rain 65 70 true none

rain 71 96 true none

rain 70 96 false some

rain 68 80 false some

rain 75 80 false some

sunny 69 70 false lots

sunny 75 70 true lots

overcast 83 88 false lots

overcast 64 65 true lots

overcast 72 90 true lots

overcast 81 75 false lots

SELECT class FROM original
WHERE outlook = ’overcast’

lots
lots
lots
lots

SELECT class FROM original
WHERE humidity >= 90

none
none
none
some
lots

Figure 9. Attributes that select for golf playing behavior.

TAR2 is an automatic tool for finding the strongest select statements; i.e., the
statement thatmostselects for preferred behavior whilemostdiscouraging

baseline outlook =
overcast

humidity ≥ 90

0
2
4
6

5 3 6
0
2
4
6

0 0 4
0
2
4
6

3 1 1

LEGEND: none some lots

Figure 10. Changes to golf playing behavior from the baseline.
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undesirable behavior. TAR2 calls this strongest select statement the “treat-
ment” since it is a recommended action for improving the current situation.
The algorithm is automatic and, as used in this study, searched the entire
range of possible conditions. TAR2’s configuration file lets an analyst search
for the best select statement using conjunctions of size 1,2,3,4, etc. Since
TAR2’s search is elaborate, an analyst can automatically find thebestand
worstpossible situation within a data set. For example, the select statements
seen in Figure 10 were learnt by TAR2 and show thebestandworstpossible
situation for playinglotsof golf.

1R: Simpler than any of the above techniques is the 1R machine learner (Holte,
1993). It creates a set of rules from a single attribute. First 1R selects an
attribute then branches within the attribute to create a set of divisions based
on class value. For each division it assigns the most frequent class and then
computes the error rate. Finally, 1R simply chooses the attribute with the total
least error rate.

ROCKY: Simpler even than 1R is ROCKY (Menzies et al., 2003). Given
a set of numeric metrics

attribute1, attribute2, ...attributen

ROCKY exhaustively explores all singleton rules of the form

attribute ≥ threshold

Thresholdis found as follows. Every numeric attribute is assumed to come
from a gaussian distribution.Thresholds are then selected corresponding to
equal areas under that distribution. For example, in one of the data sets we
examine, the McCabe cyclomatic complexityv(g) had a mean ofµ = 4.9
and a standard deviation ofσ = 11. If this Gaussian is converted to a unit
Gaussian (by subtracting the mean and dividing by the standard deviation),
then standard Z-tables could be used to calculate av(g) threshold value of
7.65 could be found as follows:

area = 0.6 (just for example)

Z−1(area) =
v(g)− µ

σ

Z−1(area) ≈ 0.25
∴ v(g).threshold(area) ≈ 7.65

ROCKYgenerates one detector

attributei ≥ attributei[threshold(area)]

for the range
area ∈ {0.05, 0.1, 0.15, . . . 0.9, 0.95}
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A key point that will be important below is that ROCKY and 1R can only
ever find detectors based on a single attribute.

3.2. FEATURE SUBSET SELECTION

Feature subset selection finds what subset of the available features is most
informative. PCA is the FSS method best known to the reliability engineering
community. However, as we shall see, numerous other FSS methods have
been evolved in the data mining community.

A repeated empirical observation is that ignoring features can improve
classifier accuracy. How can ignoring information be useful? Kohavi & John (Ko-
havi and John, 1997b) review studies with Naive Bayes classifiers. The ac-
curacy of such classifiers decreases very slowly as irrelevant features are
added to an instance set. However, the accuracy of the same classifiers can
degrade sharply as the number of correlated features increase. Note that this
observation is similar to the original motivations for using PCA: i.e. learning
is simpler when highly correlated features don’t conflate the learning process.

Another explanation for the success of FSS is offered by Witten & Frank (Wit-
ten and Frank, 1999). They note that effective generalization requires numer-
ous examples. Decision tree learners recursively split instances by ranking
features according to how much they decrease the diversity of the classes in
the split sets. As learning progresses, fewer and fewer instances are available
to learn the next sub-tree. If the instances contain too many features of sim-
ilar rank, then many splits are quickly generated. Hence, instances become
sparser in the sub-trees, and effective generalization becomes harder.

Yet another explanation for the success of FSS comes from Gunnalan,
Menzies,et.al.(Gunnalan et al., 2003) who argue that solvable problems have
an average case property calledsmall backbones. Small backbone problems
contain a small number of variables that control all other variables in the
system. Learning the essential features of small backbone problems means
finding the variables that are either in the small backbone or highly correlated
to the backbone variables.

PCA: Principal Component Analysis: PCA first began to be used in
modeling software reliability and fault content in the late 1980s and early
1990s, when Munson and Khoshgoftaar first developed the concept of relative
complexity (Munson and Khoshgoftaar, 1990; Munson and Khoshgoftaar,
1991), which is described as a weighted sum of the domain scores result-
ing from the application of PCA to raw structural measurements. Unlike
other complexity metrics, relative complexity simultaneously combines all
feature dimensions of all structural measures. In an early paper, they iden-
tified clear relationships between complexity metric domains and software
quality (Munson and Khoshgoftaar, 1990). In a later paper, they examined re-
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lationships between the relative complexity and software reliability (Munson
and Khoshgoftaar, 1991). This study concluded that:

− The relative complexity measure is appropriate for the comparison and
classification of software modules, and

− It is feasible to include relative complexity as a parameter in software
reliability models.

In particular, they noted that relative complexity could be used to represent
the complexity of a particular software module for a particular build, which
laid the foundation for measuring the evolution of software system.

In 1996, Munson and Werries presented a methodology for measuring
software evolution that extended the notion of software complexity across
sequential builds (Munson and Werries, 1996). In this paper, they addressed
the issue of establishing a baseline against which all change to a software
system will be measured. To properly account for the amount of change that
occurs between subsequent builds of a system, it is necessary to measure
each build with respect to a baseline that remains constant across all builds.
This is accomplished by choosing one particular build as the baseline, and
then standardizing the measurements from all other builds with respect to
the means and standard deviations of the baseline measurements. They also
developed a mechanism wherein the precise manner in which builds differ
from each other may be measured. This is accomplished by computing the
difference in relative complexity between subsequent versions of a module
within the system. The measurement mechanism also takes into account the
situation in which a module is present in one of the builds but not the other.

Recent investigations have focused on identifying relationships between
the measured structural evolution of a software system and the rate at which
faults are inserted into it during development (i.e., the number of faults in-
serted per unit of structural change). In a small study (Munson and Nikora,
1998), Nikora and Munson analyzed the flight software and software failure
reports for the command and data handling subsystem of a NASA planetary
exploration spacecraft, and found strong indications that measurements of a
system’s structural evolution could serve as predictors of the fault insertion
rate. However, this study had two limitations: The study was relatively small
- fewer than 50 observations were used in the regression analysis relating
the number of faults inserted to the amount of structural change. The def-
inition of faults that was used was not quantitative. The ad-hoc taxonomy,
first described in (Nikora and Munson, 1997), was an attempt to provide an
unambiguous set of rules for identifying and counting faults. The rules were
based on the types of changes made to source code in response to failures
reported in the system. Although the rules provided a way of classifying
the faults by type, and attempted to address faults at the level of individual
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number of attributes

before: 10 13 15 180 22 8 25 36 6 6 6

after: 2 2 2 11 2 1 3 12 1 1 2

reduction: 80% 84% 87% 94% 90% 87% 88% 67% 83% 83% 67%

∆accuracy: 0% 6% 5% 4% 2% 1% 0.5% 0% -25% 6% 7%

Figure 11. Feature subset selection using a WRAPPER of a decision tree leaner. The
∆Accuracy figure is the difference in the accuracies of the theories found by decision tree
learner using thebefore andafter attributes. From (Kohavi and John, 1997b).

modules, they were not sufficient to enable repeatable and consistent fault
counts by different observers to be made. The rules in and of themselves
were unreliable. To overcome these limitations, the investigators developed
a quantitative definition of software faults, based on the grammar of the lan-
guage of the software system (Munson and Nikora, 2002). They also initiated
a collaboration with the Mission Data System, a mission software technology
development effort at the Jet Propulsion Laboratory (Dvorak et al., 1999).
They were able to collect significantly more information than for the previous
study; over the time interval during which they study was conducted, there
were over 1500 builds of the MDS. The total number of distinct versions of
all modules was greater than 65,000, and over 1400 problem reports were
included in the analysis. This study agreed with the earlier study’s conclu-
sions that there appear to be strong relationships between measurements of a
software system’s structural evolution and the number of faults inserted into
that system, and extended the earlier work by identifying types of structural
change more likely to result in the introduction of faults and types less likely
to do so.

WRP: Wrapper Subset Evaluation:PCA is a common FSS method used
by statisticians. WRAPPER is a common FSS method used by data miners.
In this method, atarget learneris augmented with a pre-processor that used a
heuristic search to grow subsets of the available features. At each step in the
growth, the target learner is called to find the accuracy of the model learned
from the current subset. Subset growth is stopped when the addition of new
features did not improve the accuracy.

Figure 11 shows some WRAPPER results from experiments by Kohavi
and John (Kohavi and John, 1997a). In their experiments, 83% (on average)
of the measures in a domain could be ignored with only a minimal loss of
accuracy.

The advantage of the this approach is that, if some target learner is already
implemented, then the WRAPPER is simple to implement. The disadvantage
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of the wrapper method is that each step in the heuristic search requires another
call to the target learner; i.e. it may be very slow.

For the results shown below, we will use a WRAPPER of two target
learners: a decision tree learner (C4.5) and a Naive Bayes classifier.

IG: Information Gain Attribute Ranking: This is a simple and fast
method for feature ranking (Dumais et al., 1998). This method measures the
split criteria of the class before and after observing a feature. The differences
in the split criteria gives a measure of the information gained because of
that attribute (Quinlan, 1992). A final comparison of this measure is used
in feature selection.

RLF: Relief: Relief is an instance based learning scheme (Kira and Ren-
dell, 1992; Kononenko, 1994). It works by randomly sampling one instance
within the data. It then locates the nearest neighbors for that instance from not
only the same class but the opposite class as well. The values of the nearest
neighbor features are then compared to that of the sampled instance and the
feature scores are maintained and updated based on this. This process is spec-
ified for some user-specified M number of instances. Relief can handle noisy
data and other data anomalies by averaging the values for K nearest neighbors
of the same and opposite class for each instance (Kononenko, 1994). For
data sets with multiple classes, the nearest neighbors for each class that is
different from the current sampled instance are selected and the contributions
are determined by using the class probabilities of the class in the dataset.

CFS:Correlation-based Feature Selection:CFS uses subsets of features (Hall.,
1998). This technique relies on a heuristic merit calculation that assigns high
scores to subsets with features that are highly correlated with the class and
poorly correlated with each other. Merit can find the redundant features since
they will be highly correlated with the other features. It can also identify
ignorable features since they will be poor predictors of any class. To do this
CFS informs a heuristic search for key features via a correlation matrix.

CBS: Consistency-based Subset Evaluation:CBS is really a set of meth-
ods that use class consistency as an evaluation metric. The specific CBS
studied by Hall and Holmes method finds the subset of features whose val-
ues divide the data into subsets with high class consistency (Almuallim and
Dietterich, 1991).

SELECT: Figure 12 shows the SELECT FSS developed by Gunnalan,
Menzies,et.al. (Gunnalan et al., 2003). SELECT runs TAR2 many times,
each time targeting a different class; e.g. defects, no defects:

1. Initialize the SELECTED features to nil.

2. For each class in turn, declare it to be TAR2’s ”best” class. Then enter
the following loop:

− Set treatment size N to 1
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Figure 12. SELECT algorithm.

− Find the ”best” treatment of size N via TAR2.
− If the score of the best treatment is no better than that of the best

treatment of size N-1, then

• Add the features seen in the best treatment to SELECTED.

− Else, N++ and loop.

3. Collect the average accuracy seen in a 10-way cross validation of the
target learner using

− just the features seen in SELECTED
− all features

Note that each single run of TAR2 finds features that most selected for one
class. Over all the runs, TAR2less finds the union of all the features that most
selected for every class.

1R and ROCKY: Most FSS methods inputM features and output some
subsetN,N < M . An extreme form of feature subset selection is to use
learners that can only output theories containingN = 1 features. Two such
learners are the 1R and ROCKY systems described above.

Note that this method is far less general than the other methods described
above since it will fail ifN > 1 features must be selected.

4. Experiments

The remainder of this paper is dedicated to a case study on the AN1, CM1,
KC1, KC2, JM1 datasets described in Figure 4.
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Learner Attributes CM1 KC1 KC2 JM1 AN1

Original (C4.5) 21 89.52% 83.77% 82.11% 79.34% 65.90%

Original (Bayes) 21 84.88% 82.34% 83.65% 80.41% 58.27%

1R 1 89.30% 83.10% 82.95% 79.55% 65.02%

ROCKY 1 90.50% 85.63 85.28% 81.10% 66.14%

Figure 13. 1R and ROCKY runs. Baseline accuracies generated from all features via C4.5
and Naive Bayes shown on lines one and two. Underlined entriesdenotes an increase over all
baselines.

Methods: FSS was conducted using the PCA, CBS, IG, RLF, WRAPPER,
and 1R implementations supplied with the WEKA machine learning toolkit4.
We used our own implementations of ROCKY and TAR25. SELECT was
applied manually using TAR2.

Each FSS methodgeneratedcandidate features which were thenselected
andassessed. Usually, the selected features wereassessedby running them
through a 10-way cross validation over the C4.5 and Naive Bayes classifiers
supplied within the WEKA. Assessing FSS via these two learners is quite
standard in the FSS literature (e.g. (Kohavi and John, 1997b)) since these
are widely used and understood learning systems. Also, these two classifiers
are very different kinds of learners so results that repeat in both C4.5 and
Naive Bayes are guaranteed not to be the result of quirks in (e.g.) decision
tree learning.

Sometimes, however, other methods were required to assess the selected
features. For example, if we were “wrapping” learner “X” then we assessed
the WRAPPER’s output only on learner ”X”. Also, in the case of ROCKY and
1R, those learners have their own cross-val facilities to assess the accuracies
of their learnt theories.

Thegenerationmethods varied. In the usual case, the WEKA environment
offered options to conduct FSS via a 10-way cross validation. We disabled
this option for WRAPPER since that was impractically slow, especially for
the 10,000 records in JM1. 10-way cross validation was also used within
SELECT when finding the best treatment of size N.

Results:Figure 13 shows the classification on 10-way generated by ROCKY
and 1R. Figures 14 to 18 show the average classification accuracies seen in
10-way cross validation runs of Naive Bayes and WRAPPER using just the
features found by our FSS methods.

The first line of Figure 14, Figure 15, Figure 16, Figure 17 and Figure 18
shows the results of running all available features through Naive Bayes and
C4.5. Underlinedentries mark the largest accuracy generated by any method.

4 http://www.cs.waikato.ac.nz/˜ml/weka/
5 Available from http://menzies.us/rx.html and http://menzies.us/

pace.html
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C4.5 Naive Bayes

Attributes accuracy tree Size accuracy

Original 15 65.90% 131 58.27%

SELECT 4 66.82% 119 58.61%

CFS 5 65.02% 17 60.42%

CBS 9 66.07% 81 57.57%

IG 4 64.55% 3 60.65%

RLF 4 67.11% 41 60.77%

PCA 7 65.77% 13 61.87%

Wrapper 5 (c4.5) 66.88% 37

2 (bayes) 62.51%

mean 66.02% mean 60.08%

Figure 14. AN1 FSS and learner accuracy runs. Baseline accuracies shown on line one.
Underlinedentries mark the largest accuracy generated by any method.Italicized entries
mark an increase over the baseline. WRAPPER’s selected features were only assessed on
the “wrapped” learner- either C4.5 or Naive Bayes (hence the blank cells on the WRAPPER
line).

C4.5 Naive Bayes

Attributes accuracy tree Size accuracy

Original 24 89.52% 33 84.88%

SELECT 6 90.32% 1 86.49%

CFS 6 89.2% 1 86.90%

CBS 1 89.92% 1 89.11%

IG 4 90.12% 1 87.90%

RLF 4 89.52% 1 83.48%

PCA 7 89.52% 13 86.29%

Wrapper 0 (C4.5) N/A 1

0 (bayes) N/A

mean 89.84% mean 86.43%

Figure 15. CM1 FSS and learner accuracy runs. Baseline accuracies shown on line one.Ital-
icizedand blank entries have the same meaning as in Figure 14. N/A denotes runs were the
feature subset selector returned no attributes

Italicizedentries show where features found by FSS generated detectors with
a higher accuracy than the baseline. Figure 19 is a summary table showing
how often our FSS methods out-performed all baselines.

Of all our results, CM1 is most unusual. Figure 15 shows that the accu-
racy after FSS was nearly the same as before FSS. Further, in that dataset
some FSS methods (WRAPPER) selected no feature at all; i.e. WRAPPER
found that no feature was more informative than any other. This result can
be partially explained by the nature of that data. Of all our datasets, CM1 is
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C4.5 Naive Bayes

Attributes accuracy tree Size accuracy

Original 21 79.34% 677 80.41%

SELECT 4 81.06% 11 80.70%

CFS 7 80.51% 63 80.46%

CBS 19 79.48% 671 80.25%

IG 4 81.25% 15 80.43%

RLF 4 80.98% 25 79.62%

PCA 8 80.09% 17 79.67%

Wrapper 5 (C4.5) 85.57% 15

2 (bayes) 80.90%

mean 81.04% mean 80.31%

Figure 16. JM1 FSS and learner accuracy runs. Baseline accuracies shown on line one.
Italicizedand blank entries have the same meaning as in Figure 14.

C4.5 Naive Bayes

Attributes accuracy tree Size accuracy

Original 21 83.79% 163 82.34%

SELECT 3 85.00% 5 83.82%

CFS 7 84.24% 99 82.91%

CBS 18 83.29% 135 82.34%

IG 4 85.38% 5 84.20%

RLF 4 85.19% 9 80.83%

PCA 6 82.05% 21 83.00%

Wrapper 5 (C4.5) 85.29% 13

1 (bayes) 85.52%

mean 84.65% mean 83.12%

Figure 17. KC1 FSS and learner accuracy runs. Baseline accuracies shown on line one.
Italicizedand blank entries have the same meaning as in Figure 14.

the smallest and has the lowest defect rate (see Figure 4). Perhaps the target
concept in CM1 is too small to be found by the methods discussed here.

5. Questions and Answers

Our results let us comment on the the following issues.
Q: Is throwing away information useful for defect detection?
A: Surprisingly, it would seem so. Figure 19 shows that in57/80 = 71%

of our experiments, using any FSS method improved the accuracy over the
baseline. Also, in all our experiments, if all the FSS methods described here
are used, then detectors were found with a higher accuracy than the baseline,
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C4.5 Naive Bayes

Attributes accuracy tree Size accuracy

Original 21 82.11% 51 83.65%

SELECT 2 82.89% 5 83.08%

CFS 2 85.25% 9 84.10%

CBS 6 83.33% 23 83.72%

IG 4 84.29% 3 84.10%

RLF 4 81.61% 5 82.18%

PCA 2 82.57% 5 84.87%

Wrapper 1 (C4.5) 85.57% 3

4 (bayes) 85.19%

mean 83.45% mean 83.86%

Figure 18. KC2 FSS and learner accuracy runs. Baseline accuracies shown on line one.
Italicizedand blank entries have the same meaning as in Figure 14.

C4.5 Naive Bayes 1R ROCKY total

JM1 7/7 4/7 0/1 1/1 12/16

AN1 4/7 6/7 0/1 1/1 11/16

KC2 6/7 5/7 0/1 1/1 12/16

KC1 6/7 5/7 0/1 1/1 12/16

CM1 4/7 5/7 0/1 1/1 10/16

total 27/35 25/35 0/5 5/5 57/80

Figure 19. How often FSS generates theories of higher accuracy than using all available
features.

while using far fewer features. If we look at the best detector (the underlined
entries), then we see that the best detectors used between 1 to 6 features
selected from a space of 15 to 21 features. Hence, this study endorses FSS
for defect detector generation.

Q: What is a good FSS method for defect detection?
A: This is unclear but the very simple FSS methods (ROCKY and 1R)

ran very fast and resulted in highly accurate theories. Further, ROCKY out-
performed the other FSS methods in four of our five case studies. The CPU-
intensive WRAPPER method is slow to run but, of the more complex FSS
methods, always generated the most accurate theory (using either C4.5 or
Naive Bayes).

Q:Comparatively speaking, how does PCA compare to other FSS meth-
ods?

A: In this study, PCA has not scored well. In none of our experiments were
the highest accuracy detectors learnt via FSS. Hall & Holmes have assessed a
similar set of FSS methods as this study, but on a broader set of data (none of
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which related to software defect detection). Their results are hardly support-
ive of PCA. They conclude that if the slow run times of WRAPPER can be
tolerated, then it usually generates the most accurate theories. Otherwise, in
their opinion, CFS and RLF are best (Hall and Holmes, 2003). Our results do
not contradict their conclusions- we obtained high accuracies with CFS, RLF
and WRAPPER, and never with CBS, IG, or PCA.

Q: How simple is defect detection?
A: Apparently, very simple. The “clean-up” offered by FSS was very

small. In all cases the accuracy found using all features was less than 7% of
the best accuracy found after FSS. This suggests that the correlations between
variables in these data sets do not greatly confound defect detector generation.
Note that if most defect data sets lack such correlations then tools designed
to handle highly-correlated datasets (e.g. PCA) are not necessary.

Q: Is accuracy the best way to judge the effectiveness of a defect detector?
A: Perhaps not. A striking feature of Figures 14 to 18 is the very small

variance in the accuracy figures. In other work (Menzies et al., 2003), we
have assessed hundreds of learnt theories and found that accuracy can re-
main stable while other important features can vary wildly. For example,
two detectors with the same accuracy can have very different probabilities
of false alarms. Other data mining research suggests that accuracy alone is
not a good indicator of learner performance in many domains (Provost et al.,
1998). This may be attributed to greatly skewed class distributions or do-
main related anomalies. We are currently repeating our study, but this time
assessing detectors via:

− The costof collecting the data for the detectors (collecting cyclomatic
complexity using Mccabes can be very expensive due to licensing is-
sues);

− The probability of false alarms, given that the detector has been trig-
gered;

− The probability of true detection alarms, given that the detector has been
triggered;

− The probability that a defect has been missed, given that the detector has
not been triggered;

− The stability of the detector under N-way cross validation;

− The stability of the detector when applied to different data sets;

Our current thinking is that finding a “best” detector judged on all the
above criteria will require some kind of N-dimensional optimization toolkit.

Q: What is the best detector?
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dataset detector accuracy

AN1 unique operands >= 8.14 66.08%

CM1 I ≥ 167.94 90.54%

JM1 unique operands >= 60.48 81.10%

KC1 V ≥ 1106.55 85.62%

KC2 ev(g) >= 4.99 85.28%

Figure 20. Best detectors learnt by ROCKY.

A: We did not find that McCabe’s standard detector ofv(g) > 10 was the
most accurate. However, we cannot offer an external valid alternative. The
defect detectors did not stabilize across the different data sets. For example,
the most accurate defect detectors found by ROCKY are shown in Figure 20
(we report ROCKY’s output here since that output is small enough to read
and ROCKY’s best accuracies were always very close to the best overall
accuracies). Note that variations in the learnt detectors:

− The McCabeev(g) value was the most accurate in KC2

− The Halstead values ofintelligence content(I), thevolumeof the pro-
gram (V ) or theunique operands value were the feature that yielded
the most accurate detectors in the other data sets (for an explanation on
these metrics, see the appendix).

− The threshold value for the two detectors that use the same Halstead
metric were wildly different: 60.48 in JM1 and 8.14 in AN1.

Clearly, the distributions of variables seen in JM1 and AN1 are very different.
If distributions always vary so wildly between defect data sets, then we it may
be folly to imagine that a single defect detector rule such asv(g) > 10 will
suit all software development. Instead, companies should tune their defect
detectors according to their own historical logs describing their own people
building their own kind of application.

6. Discussions

We offer our results with two cautions. Firstly, we have only explored feature
subset selection for defect detectors using five data sets. To the best of our
knowledge, our sample is much larger and more repeatable than previous
studies. While it would be preferrable to base our analysis on more data sets,
to the best of our knowledge, our study is based on a broader sample size than
previous reports about defect detectors. Most of our data is public domain and
encourage other researchers to test their methods on our data.
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Secondly, we caution researchers against restricting their analysis of struc-
tural measurements and failure data to the simple techniques described in this
paper. Although software defect detection may be a simple task, and simple
fault models may be deployed as part of production software development
efforts, the research underlying such models must still apply the full range of
measurement and analysis techniques to develop the models in the first place.
This ensures that a richer set of relationships between structural measures and
fault content will be developed, and allows the development of meaningful
benchmarks for the simpler models.

Those two cautions notwithstanding, our conclusion must be as follows.
If in the usual case we see that accurate defect detectors can be found after
trivially simple algorithms have rejected most of the structural features, then
software defect detection is a very simple task indeed.
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Appendix

A. Metrics

This appendix shows our standard tutorial on commonly used structure met-
rics.

A.1. MCCABE

In order to facilitate the search for error-prone modules or functions, many
tools have evolved over the past few years. One of the most popular ones (and
the one being used extensively at NASA IV&V) is the McCabe IQc© package.
This package can evaluate Ada, C and C++ source code, and provides many
different types of software metrics.

The McCabe metrics are a collection of four software metrics: essential
complexity, cyclomatic complexity, design complexity and LOC (McCabe,
1976). Of these four, all but LOC are metrics which were developed by
T. J. McCabe. McCabe & Associates claim that these complexity measure-
ments provide insight into the reliability and maintainability of a module.
For example, around NASA IV&V, a cyclomatic complexity of over 10 or an
essential complexity of over 4 is flagged as a module that will be difficult to
maintain and/or debug. This paper will not attempt to make any refutation to
those claims and practices; however, these metrics are also commonly used
as predictors for error-prone modules. As this paper will demonstrate, these
complexity measurements do notalwayspoint the way towards modules with
increased error density.

The following paragraphs present a short overview of the three complexity
metrics mentioned previously.
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Cyclomatic Complexity, orv(G), measures the number oflinearly in-
dependent paths6 through a program’s flow graph7. v(G) is calculated by
v(G) = e−n+2, whereG is a program’s flow graph,e is the number of arcs
in the flow graph, andn is the number of nodes in the flow graph (Fenton and
Pfleeger, 1995).

Essential Complexity, orev(G), is the extent to which a flow graph can be
“reduced” by decomposing all the sub-flow-graphs ofG that are D-structured
primes8. ev(G) is calculated byev(G) = v(G)−m wherem is the number
of sub-flow-graphs ofG that are D-structured primes. (Fenton and Pfleeger,
1995)

Design Complexity, oriv(G), is the cyclomatic complexity of a module’s
reduced flow graph. The flow graph,G, of a module is reduced to eliminate
any complexity which does not influence the interrelationship between design
modules. This complexity measurement reflects the modules calling patterns
to its immediate subordinate modules.

A.2. HALSTEAD

Another commonly used collection of software metrics are the Halstead Met-
rics (Halstead, 1977). They are named after their creator, Maurice H. Hal-
stead. Halstead felt that software (or the writing of software) could be related
to the themes which were being advanced at that time in the psychology
literature. He created several metrics which are meant to encapsulate these
properties; these metrics can be extracted by use of the McCabe IQ tool
mentioned previously, and are discussed in detail below.

Halstead began by defining some basic measurements (these measure-
ments are collected on a per module basis):

µ1 = number of unique operators
µ2 = number of unique operands

N1 = total occurrences of operators
N2 = total occurrences of operands

µ∗1 = potential operator count
µ∗2 = potential operand count

These six metrics are self explanatory, with the possible exception of the po-
tential operator/operand counts. Halstead definesµ∗1 andµ∗2 as theminimum

6 A set of paths is linearly independent if no path in the set is a linear combination of any
other paths in the set

7 A flow graph is a directed graph where each node corresponds to a program statement,
and each arc indicates the flow of control from one statement to another

8 D-structured primes are also sometimes referred to as “proper one-entry one-exit sub-
flow-graphs”. For a more thorough discussion of D-primes, see (Fenton and Pfleeger, 1995)
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possible number of operators and operands for a module. This minimum num-
ber would occur in a (potentially fictional) language in which the required
operation already existed, possibly as a subroutine, function, or procedure. In
such a case,µ∗1 = 2, since at least two operators must appear for any func-
tion; one for the name of the function, and one to serve as an assignment or
grouping symbol.µ∗2 represents the number of parameters, without repetition,
which would need to be passed to the function or procedure.

Using these measurements, Halstead defined thelengthof a programP
as:N = N1 + N2; the vocabulary ofP is µ = µ1 + µ2; and thevolumeof
P (akin to the number of mental comparisons needed to write a program of
length N) isV = N ∗ log2µ.

A variant ofV is V ∗ is the potential volume - the volume of the minimal
size implementation ofP : V ∗ = (2+µ2

∗)log2(2+µ2
∗). Theprogram levelof

a programP with volumeV is L = V ∗/V . The inverse of level isdifficulty;
i.e.D = 1/L

According to Halstead’s theory, we can calculate an estimateL̂ of L as
L̂ = 1/D = 2

µ1
∗ µ2

N2
. The intelligence content of a program,I, is I = L̂ ∗ V

and the effort required to generateP is given byE = V
L̂

= µ1N2Nlog2µ
2µ2

where
the unit of measurementE is elementary mental discriminations needed to
understandP . FromE we can generateB (an estimate of the number of er-
rors) usingB = K ∗E0.67 (whereK is a language-specfic constant). Finally,
according to Halstead, the required programming timeT for a program of
effort E is T = E/18seconds.
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