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Abstract

Some of the most influential decisions about a software
system are made in the early phases of the software develop-
ment life cycle. Those decisions about requirements and de-
sign are generally made by teams of software engineers and
domain experts who must weigh the complex interactions
among requirements and the associated developmental and
operational risks of those requirements. Some of these early
life cycle decisions are more influential, or perhaps fateful,
to subsequent software design and development than are
others.

When debating about complex systems with a large num-
ber of options, humans can often be slower than an AI sys-
tem at identifying theclusters of key decisionsthat give the
most leverage. By focusing a group of human domain ex-
perts or software engineers on these key decision clusters,
more time can be devoted to these pivotal decisions and less
time is wasted on irrelevancies.

1 Introduction

In early phases of a system development, many crucial
decisions about software are taken. In the process of re-
quirements elicitation and analysis, it is common for clients
to request much more than can be afforded - either because
of budgetary constraints, time limitations, or other issues
like safety concerns. That is, there are risks associated with
requirements. (In this context, we take a broad definition of
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risk - anything that gets in the way of satisfying a require-
ment.)

There are often many things that can be done to lower the
risk, and thus increase the chances of meeting requirements.
Preventative measures (e.g., training, adherence to coding
standards) may reduce the likelihood of risks arising in the
first place. Any verification of validation activity (e.g., re-
quirements reviews, analysis and testing) that detects the
presence of defects in time to allow for their correction also
serve to reduce risk. Each of these risk reducting actions -
which from now on we will refer to as “mitigations” - has
a cost associated with it (e.g., cost of training; time taken
to perform reviews). In a typical system development, the
sum total cost of all possible mitigations far exceeds the
resources available. There is thus the need to pick from
among these mitigations to emerge with a judicious selec-
tion that cost-effectively reduces risk.

Two factors make this challenging - firstly, many of the
key decisions must be made early in the life cycle, when de-
tailed information is lacking; secondly, requirements, risks
and mitigations can be numerous and interrelated in con-
voluted ways. This renders the selection of mitigations a
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difficult task, one that requires the involvement of human
experts, but for which unaided human decision making is
ineffective. Decision support tools are essential to aid ex-
perts to make these selections. The focus of this paper is on
an AI-based approach that promises to extend the capabili-
ties of the decision support mechanisms in current use.

2 Imagine the Scene ...

A team of NASA’s top experts are debating options on
some complex deep space mission. The mission is in its
early planning stages so few of the details are fixed. The
science team wants to add a new instrument package to
the mission. But the propulsion experts are already wor-
ried about the payload mass and any addition worries them.
Also, the electronics team members are worried about the
added stress to power consumption and heat production
on the on-board systems. A spirited discussion follows in
which each team tries to explain the costs and benefits of
their various proposals.

In the midst of this heated debated, a screen flickers. The
AI system monitoring the debate produces a visual display
of the several clusters of alternate decisions, each of which
meets cost restrictions and satisfies requirements to an ac-
ceptable level. The visualization of these clusters helps the
team to realize that some sets of decisions, although fea-
sible, do not fit their development organization. Simulta-
neously, the automated monitoring system has just realized
that of the dozens issues remaining, a resolution on (e.g.)
four matters makes debates about most of the other issues
redundant. The AI system presents to the team a decision
cluster- a set of useful alternative decisions. The team finds
that it has consensus on two of those decisions, so those are
quickly adopted. These two decisions greatly reduce the
space of remaining discussions and the group finishes their
debates in time for lunch.

3 The DDP Tool

The above scene is not science fiction- some of the tech-
nology has already been developed, and applied to space-
craft technonogies for use in NASA missions. At JPL, the
“Defect Detection and Prevention (DDP)” tool [3] is in use
to organize interactive knowledge acquisition and decision
making sessions with spacecraft experts. The DDP tool
provides an ontology for representing these requirements,
risks, and mitigations, and for reasoning about them. The
process by which DDP is emploed is as follows:

• 6 to 20 experts are gathered together for short, inten-
sive knowledge acquisition sessions (typically, 3 to 4
half-day sessions). These sessionsmustbe short since

DDP assertions are either:

• Requirements(free text) describing the objectives and
constraints of the mission and its development process;

• Weights(numbers) associated with requirements, re-
flecting their relative importance;

• Risks(free text) describing events that can damage re-
quirements;

• Mitigations: (free text) describing actions that can re-
duce risks;

• Costs: (numbers) effort associated with mitigations,
and repair costs for correcting Risks detected by Miti-
gations;

• Mappings: directed edges between requirements, mit-
igations, and risks that capture quantitative relation-
ships among them. The key ones areimpacts, each
one of which is a quantitative estimate of the propor-
tion of a requirement that would be lost should a risk
occur, andeffects, each one of which is a quantitative
estimate of the proportion by which a risk would be re-
duced were a mitigation to be employed (the ontology
is also able to capture the phenomenon of a mitigation
making some risksworse).

• Part-of relationsstructure the collections of require-
ments, risks and mitigations;

Figure 1. DDP’s ontology

it is hard to gather together these experts for more than
a very short period of time.

• The DDP tool supports a graphical interface for the
rapid entry of the assertions. Such rapid entry is essen-
tial, lest using the tool slows up the debate.

• Assertions from the experts are expressed in using an
ultra-lightweight decision ontology (e.g. see Figure 1).
The ontologymustbe ultra-lightweight since:

– Only brief assertions can be collected in short
knowledge acquisition sessions.

– If the assertions get more elaborate, then experts
may be unable to understand technical arguments
from outside their own field of expertise.

The result of these sessions is a network of influences
connecting project requirements to risks to possible mitiga-
tions. A (highly) stylized version of that network is shown
in Figure 2.

The ontology of Figure 1 may appear too weak for use-
ful reasoning. However, in repeated sessions with DDP, it
has been seen that the ontology is rich enough to structure
and guide debates between NASA experts. For example,
DDP has been applied to over a dozen applications to study
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action1reduces the negative impact offault1.

Oval denotes structures that are expressible in the latest version
of the JPL semantic net editor (under construction).

Figure 2. A semantic net of the type used at
JPL [4].

advanced technologies such as

• a computer memory device;
• gyroscope design;
• software code generation;
• a low temperature experiment’s apparatus;
• an imaging device;
• circuit board like fabrication;
• micro electromechanical devices;
• a sun sensor;
• a motor controller;
• photonics; and
• interferometry.

In those studies, DDP sessions have led to cost savings
exceeding $1 million in at least two instances, and lesser
amounts (exceeding $100,000) in some others. The DDP
sessions have also generated numerous design improve-
ments such as savings of power or mass, and shifting of
risks from uncertain architectural ones to better understood
(and hence more predictable and manageable) design ones.

Fitness

local
optima

global
optima

start

Figure 3. Simulated annealing, an example.

Further, at these meetings, some non-obvious significant
risks have been identified and mitigated. Lastly, DDP can
be used to document the information and decision making
of these studies. Hence, DDP, although not mandated, re-
mains in use at JPL:

• not only as a group decision support tool (as it was
designed to do);

• but also a design rationale tool to document decisions.

That is not to say DDP cannot be improved.

4 Improving DDP

4.1 Improving DDP with Simulated Annealing

Optimizing risk mitigations meansminimizing costs
while maximizingbenefits. That is, it is a classicoptimiza-
tion problem. A commonly-used search technique for such
optimization issimulated annealing[7], illustrated in Fig-
ure 3. Simulated annealing is a kind of hill-climbing search
for finding a good solution. A simple hill-climber searches
in the neighborhood of the best solution found to date, and
jumps to a new solution whenever one is found that im-
proves upon the best to date. Hill-climbing can miss glob-
ally optimal solutions since it can’t move to a near-by higher
peak if, to do so, means traveling down-hill across a valley.
Simulated annealing avoids this problem using a “jump”
factor that is a function of a “temperature” variable. At
high “temperatures”, simulated annealing can sample more
of the local terrain since it can jump up-hillor down-hill,
that is, it is not constrained to only jumping to solutions
that improve upon the best found to date. As the search
proceeds and the “temperature” cools, simulated annealing
makes down-hill jumps less and less frequently. Eventually,
the jumping mechanism “freezes” and simulated annealing
completes its search like a simple hill climber.
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Figure 4. A simulated annealing run on a DDP
dataset.

A simulated annealing capability is now part of the DDP
tool [2]. This gives automated support for the difficult
choices that project managers have to make among possi-
ble mitigations needed to reduce risk to acceptable levels.
It is common in systems being developed at JPL for expert
to identify 50 to 100 risks to requirements, and 50 to 100
mitigating actions that can be taken to reduce these risks to
acceptable levels. Making a binary choice for each of 50
mitigations gives a search space of size250. A simulated
annealing algorithm can search this space in a few minutes
to give an adequate solution, or can be run for several hours
to give a near optimal solution. An example of simulated
annealing run on a DDP dataset is shown in Figure 4.

In a typical JPL system development, such a search could
be conducted overnight, between DDP sessions. This would
provide the session participants the additional information
that they need to finish the requirements and/or high level
design.

4.2 Improving DDP with Clustering

When searching a complex space of decision options,
simulated annealing produces anear-optimalsolution. That
is, after a large number of steps of the simulated anneal-
ing algorithm, a set of decisions is discovered that meets
the objective function, and meets it more closely than any
other decision set checked. However, it should be noted
that the data of this search space is generally produced by

expert judgment. Although such judgments are typically
quite good (and are the best measure available), they cannot
be assumed to be completely accurate. Thus, other sets of
decisions, that are judged to meet the objective function at
a slightly lower level, may have other properties that make
them more desirable.

For example, if there are 100 decisions to be made (per-
haps 100 mitigating activities that the project manager may
do to assure product quality), there are2100 possible sets
of decision that could be taken. Of these, it would not be
surprising for the simulated annealing to identify 1000 that
are within 2% of the optimal value of the objective func-
tion. To ask a project manager or management team to
chose among these 1000 may be a daunting task. We have
been experimenting with various clustering strategies to re-
duce the complexity of this decision. As seen in Figure 5,
this large number of decisions may be collected into a much
smaller of clusters. Each cluster has the property that all its
members share 95% of the decision.

With this visualization, the human experts can now
choose the cluster that best fits the characteristics of their
development organization. That is, if the management team
is aware that their team is especially strong in formal spec-
ification, but much weaker in model checking, then they
would choose a cluster that includes more formal specifica-
tion activities rather than model checking activities.

4.3 Improving DDP with the TAR2 Tool

In a typical use of DDP, experts sketch out mappings be-
tween requirements, risks, and mitigations then search for
the cheapest mitigations that most reduce risks. As dis-
cussed previously, this search can be overwhelming large.
Figure 6.A shows the results of 50,000 runs with DDP for
one spacecraft technology design study with 99 possible
mitigations; i.e. 299 ≈ 1030 possibilities. This space is
far too large to explore thoroughly. In each run, a random
set of mitigations were selected each time. Note the huge
range of possible costs and benefits.

1030 seems a dauntingly large number of options to ex-
plore. Fortunately, our TAR2contrast set learner[6, 8–12]
has shown that a heated discussion on most of the risk
mitigations would be acomplete waste of time. A con-
trast set learner finds the differences in variable settings
seen in different situations. For example, an analyst could
ask a contrast set leaner “what are the differences between
people with Ph.D. and bachelor degrees?”. TAR2 differs
from other contrast set learners such as TARZAN [13] and
STUCCO [1] in that it searches for thesmallestcontrast set
thatmostseparates preferred and undesired behavior.
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Figure 5. Clusters of mitigations. In ac-
tual use, the identifiers are short descriptive
phrases for each mitigation. These are short-
ened to fit this display, and to hide any de-
tails of the project. The shading indicates the
number of solutions in the cluster that include
that mitigation. The darker the shading, the
more solutions that include it.
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Figure 6.A: Before. Here, one dot is one project plan; i.e. one possible
setting to the 99 risk mitigation options.
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Figure 6.B: After . Results from applying the constraints learnt by the

TAR2 contrast set learner.

Figure 6. An application of TAR2. X-axis=
“cost” = sum of the cost of selected risk miti-
gations (lower is better). Y-axis= “benefit”=
requirements coverage, less the effects of
risk (more is better)

4.3.1 Inside TAR2

TAR2 searches for a strongselect statementthat most
changesthe ratio of classes. To understand the concept of
a strong select statement, consider the log of golf playing
behavior seen in Figure 7. In that log, we only playlots of
golf in 6

5+3+6 = 43% of the cases. To improve our game,
we might search for conditions that increases our golfing
frequency. Two such searches are shown in the bottom of
Figure 7. In the case ofoutlook=overcast , we play
lots of golf all the time. In the case ofhumidity ≥ 90 ,
we only playlotsof golf in 20% of the cases. The net effect
of these two select statements is shown in Figure 8.

The WHEREstatements within a select statement can
contain conjunctions of arbitrary size. Exploring all such
conjunctions manually is a tedious task. TAR2 automati-
cally finds the strongest select statements; i.e., the statement
thatmostselects for preferred behavior whilemostdiscour-
aging undesirable behavior. TAR2 calls this strongest select
statement the “treatment” since it is a recommended action
for improving the current situation. TAR2’s configuration
file lets an analyst search for the best select statement us-
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outlook temp(oF) humidity windy? class
sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

SELECT class
FROM original
WHERE outlook=

’overcast’

lots
lots
lots
lots

SELECT class
FROM original
WHERE humidity >= 90

none
none
none
some
lots

Figure 7. Attributes that select for golf playing
behavior.

baseline outlook = overcast humidity ≥ 90

0
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4
6

0 0 4
0
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4
6

3 1 1

LEGEND: none some lots

Figure 8. Changes to golf playing behavior
from the baseline.

ing conjunctions of size 1,2,3,4, etc. Since TAR2’s search
is elaborate, an analyst can automatically find thebestand
worstpossible situation within a data set. For example, the
select statements seen in Figure 8 were learnt by TAR2 and
show thebestandworst possible situation for playinglots
of golf.

4.3.2 TAR2 and DDP

TAR2 processed Figure 6.A by dividing the known out-
puts into “preferred” and “undesired” regions (here, “pre-
ferred” means lower costs and higher benefits and “unde-
sired” means not preferred). With knowledge of that di-
vision, TAR2 learnt a set of constraints that select for the
preferred outcomes while avoiding the undesired regions.

The goal of TAR2 is toimprove the meanand reduce the
variancein the behavior of a system.

Figure 6.A shows 50,000 runs with DDP using mitiga-
tions compatible with the constraints learnt by TAR2. Com-
paring Figure 6.A withFigure 6.B, we see that the variance
in behavior has indeed been greatlyreducedwhile decreas-
ing mean costs andincreasingmean benefits.

TAR2 generated Figure 6.B using only a small subset
of the available risks mitigations. TAR2 made recommen-
dations on only1

3rd of the 99 mitigations available in this
DDP models.

Further details on this use of TAR2 on a DDP dataset are
found in reference [5].

4.3.3 Drawbacks with TAR2

Figure 6.B shows that it is possible to use DDP models to
optimize risk mitigation actions for complex systems, using
only a small subsetof the available options. However, in
two aspects, the TAR2 experiment was a failure:

• The hiding problem. TAR2’s output can hide important
details. Recall from Figure 6.B that there exists a clus-
ter of results that are the best TAR2 can find. While
any point in those clusters are the best TAR2 can offer,
adjacent points in the cluster may represent very differ-
ent mitigations, some of which are more acceptable to
the users than others. We intend to explore the hiding
problem using the clustering methods shown above.

• The runtime problem:TAR2 is too slow. The DDP
model had to be executed 50,000 times to learn the
constraints that generated Figure 2b. This runtime
is too long to support interactive argument support.
Worse still, bigger DDP models would take even
longer to execute. Perhaps another method, like simu-
lated annealing, might be better than TAR2.

5 Is Simulated Annealing Better Than
TAR2?

Figure 9 compares TAR2 and simulated annealing. At
each round X (shown on the x-axis), simulated annealing or
TAR2 was used to extract key decisions from a log of runs
of a DDP model. A new log is generated, with the inputs
constrained to the key decisions found between round zero
and round X. Further rounds of learning continue until the
observed changes on costs and benefits stabilizes.

It is insightful to compare the results from TAR2 and
simulated annealing:

• As seen in Figure 9, simulated annealing and TAR2
terminate in (nearly) the same cost-benefit zone.

• Simulated annealing did so using only 40% of the data
needed by TAR2; i.e. while TAR2 needed 50,000 runs
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Figure 9. Comparison of TAR2 and simulated
annealing.

of DDP, the simulated annealing method needed only
20,000.

• The bad news is that, while TAR2 proposed con-
straints on 33% of the mitigations, simulated annealing
proposed actions on 100% of the mitigations. Such
a result is consistent with the nature of simulated
annealing- this search is a global search through all
options. Hence, it tends to propose solutions to a large
part of the model.

In summary, the directed search of simulated annealing
needs less data than the random search of TAR2, but in do-
ing so, we lose the main advantage of TAR2; i.e. no drastic
reduction in the space of options.

6 Conclusions and Future Work

Our current work has produced a set of tools to support
decisions that need to be made by software engineers early
in the software development life cycle. The DDP tool sup-
ports a model of requirements, risks (things that may cause
requirements not to be attained), and mitigations (activities
to reduce these risks.) This tool has been supplemented
with an automated search mechanism (simulated annealing)
that automates the process of finding near optimal sets of
decisions in the large space of possible mitigating actions.

We have also introduced some clustering abilities into DDP.
This allows a visual representation of sets of decisions that
are that are self-similar within each cluster, and significantly
distinct between cluster. In a parallel development, we have
been exploring the use of machine learning to identify those
critical decisions that have an especially strong impact on
cost and effectiveness.

6.1 Future Work: STAR1= simulated annealing
+ TAR2

In the future, we plan to explore additional ways of mod-
eling Requirements and risk early in the lifecycle, to more
completely integrate this existing set of tools, and to fur-
ther test this integrated package on actual projects at JPL or
other NASA laboratories. For example, the directed search
of SA needs less data than TAR2, but in doing so, we lose
the main advantage of TAR2; i.e. no drastic reduction in
the space of options. Perhaps we can get the best of both
approaches.

Our research is exploring combining the advantages of
TAR2 (the selection of a small number of critical decisions)
with SA (faster, directed search and an exploration of a
larger space of possibilities). The “jumps” in simulated an-
nealing are generated by mutating the best solution seen so
far. In traditional SA, these mutations are selected at ran-
dom. In our proposed approach, we would run a contrast
set learner in parallel with the SA to build up a probability
profile on settings that were most associated with worse so-
lutions. The mutation sub-routine of the SA would then be
modified to avoid mutations that include settings from the
worst solutions.

Our analogy for this process is that of a rocket flying
down towards some preferred solution. SA is thegravity
that pulls the rocket down faster while the contrast set learn-
ing is theboosterthan thrusts the rocket away from unde-
sired situations.

Specifically, our goals are:

• Implement STAR1, a combination of SA (or other AI
search algorithms) and TAR2, and integrate the result
with DDP

• Tune the STAR1 such that it such that it terminates in
< 10 seconds (i.e. in time to interact with some active
debate on some part of a DDP model).

• Augment this integrated tool (STAR1) with a decision
clustering tool

• Improve the modeling of risk in DDP through proba-
bility distributions

• Test this supplemented version of DDP during live de-
bates on system options by JPL analysts.
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