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Abstract

We present a case study comparing automatic vs manual
analysis of defect data. In summary, while automatic ma-
chine learning methods simplified part of the manual anal-
ysis, human expertise usually out-performed automatic ma-
chine learning. However, in two cases, the combination of
manual plus machine learning has significant productivity
advantages: when the data set is too large or too complex
for humans to explore manually; and when the required do-
main expertise is in short supply.

Keywords: Software engineering (metrics, testing and
debugging), Artificial intelligence (learning, association
rule learning, treatment learning).

1 Introduction

A fool learns from her own mistakes;
the wise learns from the mistakes of others.

– Anonymous

This quote illustrates the goal of defect analysis at
NASA. Based on past experience, missions should be run
in a better way that avoids the mistakes of the past while
continually improving future practice.

Much recent progress has been made towards this
goal. Lutz and Mikulski (hereafter, the LM team) re-
cently completed an extensive study of 191 ISA (Inci-
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dent/Surprise/Anomaly) reports on deep space NASA mis-
sions [3, 4] and 171 problem reports generated to date on
the testing of a spacecraft under development [1]. The
challenge with categorizing those reports was that they
were hard to analyze since they were expressed in loosely-
structured free text. Hence, the LM team applied IBM’s
orthogonal defect classification(ODC [2]) technique to the
text of those messages. ODC is a structuring tool for defect
reports. The ODC categories developed by the LM team for
this study are shown in Figure 1:

• New defects are tagged with theactivity-in-progress
andtriggeringevent that revealed the problem;

• When defects are fixed, analysts record thetarget of
the fix and the defecttype.

This simple categorization scheme injected enough
structure into the anomaly reports to permit some data min-
ing. The LM team found five clusters ofactivities-triggers-
targets-typesthat reflect repeated patterns in defect inci-
dents at NASA. These clusters where then explored in detail
and the LM team tried to explain why each cluster existed.
These explanations were then assessed with the assistance
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Activities





FlightOperations





DataAccess/Delivery
HardwareFailure
NormalActivity
Recovery
SpecialProcedure

SystemTest





CmdSeqTest
HardwareConfiguration
Inspection/Review
SoftwareConfiguration
Start/Restart/Shutdown

Targets





BuildPackage

{
Installdependency
Installationdependency
PackagingScript

F lightSoftware

{
Assignment/Initialization
Function/Algorithm
Interfaces
T iming

GroundResources
{

ResourceConflict

GroundSoftware

{
Assignment/Initialization
Function/Algorithm
Interfaces
T iming

Hardware
{

Hardware

InformationDevelopment

{
Documentation
Procedures

None/Unknown

{
NothingFixed
Unknown

Figure 1. Defect classifications used in the
study. Right-hand-side terms are either the
activity’s triggersor the target’s type.

of JPL mission experts. As a result of these reviews, one
of the explanations was confirmed, two were rejected, and
the remaining three were modified. These confirmed and
modified explanations were then used to derive recommen-
dations for changes to NASA’s operational guidelines for
deep space missions.

This experiment was successful enough to produce the
following results:

1. The LM team now works with a spacecraft project cur-
rently in the testing phase to apply ODC.

2. TheJPL problem-reporting teamis discussing support
for ODC classification in their next-generation toolset

3. The IV&V defect tracking teamat NASA’s Indepen-
dent Verification and Validation facility is configur-
ing a commercial defect tracing tool to support ODC.
Their plan is to purchase many licenses for that tool
and give these away to projects, in return for their de-
fect data.

Consequently, in the near future, we can expect a very
large number of ODC datasets from a wide range of NASA
projects. Hence, two questions now become relevant:

1. Can current ODC analysis methods scale up to handle
a very large number of datasets?

2. If not, how can we optimize the ODC analysis?

In summary, our argument will be that automaticma-
chine learningmethods can simplify part of the ODC anal-
ysis. Experiments with this approach have shown that hu-
man expertise can out-perform automatic machine learn-
ing. However, in two cases, the combination of ODC plus
machine learning has significant productivity advantages.
Those cases are:

• When the data set is too large or too complex for hu-
mans to explore manually,

• When the required domain expertise is in short supply

2 Manual ODC Analysis

This section reviews the strengths and weaknesses of
current ODC analysis. Recall that that process consists of
five steps:

1. Initial categorization: When anomalies are detected,
activities and triggers are recorded.

2. Final categorization: When anomalies are resolved,
targets and types are recorded.

3. Clustering:Once the anomalies are classified, they are
clustered.

4. Explanation: Once they clusters are identified, they
are reviewed. Review comprised three steps: explana-
tion generation, explanation review, explanation mod-
ification. During modification, explanations can be re-
jected.

5. Action plan: Once the set of explanations are stable,
they can be used to motivated changes to current prac-
tices.

In the initial study of the LM team, theinitial and fi-
nal categorizationwas a manual process that categorized
loosely-structured English defect reports into the ODC
headings. This process is time-consuming and will be
avoidable once the JPL problem-reporting tool and the
IV&V defect tracking tool are modified to include the ODC
categories. That is, once the data entry method has been
modified to an ODC framework, no post-processing will be
required to categorize the defect reports.
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Clusteringis a process of looking for patterns of ODC
classifications that often occur together. The LM team used
the standard spreadsheet program to find high frequency
patterns. For example Figure 2 shows one generated spread-
sheet. Three features of interest are:

1. Distribution within classifications is uneven. Research
should focus on the small number of high-frequency
problems.

2. The large number of anomalies seen during sending
commands and receiving data from spacecraft (see the
large numbers in thedata access/deliverycolumn).

3. The large number of anomalies in theinformation
Developmentandground software developmentcells.
When the LM team checked these patterns, they dis-
covered that the receipt of information from the space-
craft by the ground systems was subject to many tech-
nical complications.

While a simple spreadsheet analysis is adequate for the
LM team, other studies might require more elaborate tools.
For example, the LM team only used five of the eight di-
mensions of the standard ODC scheme (the four shown in
Figure 1 plus “impact”, which is implicit in the selection by
the LM team of only high-criticality anomalies). The other
three dimensions were not used due to domain-specific rea-
sons, e.g. they were invariant in these projects. These
domain-specific reasons for restricting the dimensionality
may not apply to other domains. For example:

• The IV&V defect tracking team is planning to collect
ODC-type data on defects seen in NASA applications
as well as a range of static code metrics such as param-
eters describing the data flow and control flow struc-
tures of a program.

• In all, it is anticipated that these data sets will contain
not just the four dimensions studied by the LM team,
but up to 40 dimensions.

• It is unlikely, to say the least, that simple spread-
sheet methods will suffice for studying such a complex
space.

Once the clusters are generated, they must be audited.
The LM team audited the clusters by trying to generateex-
planationsfor each one. This is an inherently manual pro-
cess since it requires a detailed discussion with business
users about the significance of each cluster.

Similarly, generating theaction planis also an inherently
manual process. Action plans reflect changes to current
practices and if such changes are not endorsed by practi-
tioners, they may be ignored. Hence, it is vital to carefully

discuss the explanations with the user community in order
to determine the most clearly motivated actions.

In summary, of the five steps in LM-style ODC, the last
two must not be automated further and automatic support
tools are being already coded for the first two steps. The
remaining step of clustering is a clearly a candidate for au-
tomation since, in the case of datasets with large dimen-
sionality, automatic support will be essential to scaling up
the technique.

3 Automatic Clustering via Machine Learn-
ing

Many of the numerous clustering algorithms currently
available make some assumption of the parameters being
clustered. For example, a common assumption is that the
parameters come from a simple linear continuous function.
While this assumption simplifies methods such as (e.g.) re-
gression, they may not be appropriate for discrete data. Dis-
crete data sets can contain ”holes” where the target function
changes radically. Two alternatives to continuous clustering
methods areassociation rule learningthat seeks patterns of
attributes [7] andtreatment learnersthat find control actions
that select for preferred attributes [5].

3.1 Experiments with Association Rule Learners

Association rule learners make no assumption of linear-
ity and so can succeed when (e.g.) regression fails. In the
associationLHS =⇒ RHS, no attribute can appear on
both sides of the association; i.e.LHS ∩ RHS = ∅. The
ruleLHS =⇒ RHS@c holds in the example set withcon-
fidencec if c% of the examples that containLHS also con-
tain RHS; i.e. c = |LHS∪RHS|

|LHS| . Association rule learners
return rules with high confidence (e.g.c > 0.9).

For example, in the following example set with five
items:

1. Bread, milk
2. Beer, diaper, bread, eggs
3. Beer, coke, diaper, milk,
4. Beer, bread, diaper, milk,
5. Coke, bread, diaper, milk

an association rule learner could find association

Diaper AND Beer =⇒ Milk@0.66

i.e. the rule has a confidence of2
3 = 0.66. When applied to

the ODC data used by the LM team, the following associa-
tions were discovered:

1. Trigger=DataAccess/Delivery=⇒
Activity=FlightOperations @1
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Trigger

Target

Cmd
Seq
Test

Data Ac-
cess/ De-
liverey

H/W Con-
figuration

H/W
Failure

Inspection/
Review

Normal
Activity

Recovery S/W Con-
figuration

Special
Procedure

Start/
Restart/
Shut-
down

Unknown

Total
BuildPackage 4 4 8
Flight S/W 2 5 2 6 4 3 12 1 7 42
Ground Resources 1 1 1 3
Ground S/W 6 20 3 3 2 6 2 4 46
Hardware 4 2 6
Info. Development 29 3 3 3 8 2 6 5 3 62
None/Unknown 15 2 3 2 3 2 2 2 4 35

Totals 12 69 10 17 14 17 16 20 16 4 7

Figure 2. ODC trigger and targets seen in JPL applications.

2. Type=Procedures=⇒
Target=InformationDevelopment @1

3. Activity=FlightOperations AND
Target=InformationDevelopment=⇒
Type=Procedures @0.96

4. Activity=FlightOperations AND
Type=Procedures=⇒
Target=InformationDevelopmen @1

5. Target=InformationDevelopment=⇒
Type=Procedures @0.95

Note that these were all of high confidence (> 0.9). Most
of these associations are not informative; e.g. associations
1, 2, and 4 just report that part of the hierarchy shown in Fig-
ure 1 appears in the data. However, in terms of the theme
of this paper, association 3 is very interesting. Association
3 reports a major clustering of defects aroundflight opera-
tions, information development, and procedures. The same
pattern was a major finding of the LM team. That is, this
automatic method can reproduce at least some of known re-
sults of a manual process.

What is also interesting about these associations is what
is notappearing.

• Recall from Figure 1 theflight operationsactivity has
five triggers: data access/delivery, hardware failure,
normal activity, recoveryandspecial procedure. Only
oneof these triggers appears in the associations; i.e.
data access/delivery. This association is exactly the
kind of result we seek from defect analysis since it tells
us what intuitions to revise and where to best focus
future effort.

• Another missing feature of the above associations is
that these form only one of the five clusters identified
by the LM team. Clearly, a manual analysis by ex-
perts within an area can reveal more than an automatic
analysis by a machine learner that can only access the
symbols within a data set. However, in cases where

the data set is too complex for manual analysis, or in
circumstances when the experts are not available, it is
useful to know that at least something can be achieved
via automatic methods.

3.2 Experiments with Treatment Learners

The TAR2 treatment learningassumes that each class
has a numeric value representing its worth to a user. For this
study, we went back to the ODC logs and found that each
defect was scored according to a criticality scale “A..E”,
where “A” was highest priority. Atreatmentis a constraint
that selects for amore interestingratio of classes; e.g. one
with a larger proportion of criticality “A” anomaly reports.
For example, it is possible to ask TAR2 “what is the con-
straint thatmostselects for the highest/lowest criticality er-
rors?”. By “most” we mean that when TAR2 terminates, it
has searched all combinations of possible constraints to find
the most influential ones. Theoretically, this search takes
exponential time and is intractable. In practice, the algo-
rithm works successfully (a curious phenomenon explored
elsewhere [6]).

TAR2’s results are best viewed as a comparison be-
tween abaselinedistribution and the distribution of classes
seen after applying the learnt constraint. For example, the
baselineplot of Figure 3 shows the ratio of criticality “A”
through criticality “E” anomalies in the ODC data set.

TAR2 found that the constraint that most selects for crit-
icality “A” anomalies wastrigger= command sequence test.
Note that the imposition of this constraint shifts the ratio
of criticality classes to the left-hand-side of the middle his-
togram of Figure 3; i.e. it selects formorehigh criticality
anomalies. Command sequence tests selecting for high crit-
icality anomalies is hardly surprising. These tests are an
activity that are designed to guide changes to the software
prior to operations.

TAR2 also found that the constraint that most selects for
criticality “E” anomalies wastargets= none/unknown. Note
that the imposition of this constraint shifts the ratio of criti-
cality classes to the right-hand-side of the right histogram of
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baseline trigger=
CmdSeqTest

target=
None/Unknown

0

30

60

90

20 60 3 9 9
0

30

60

90

88 13 0 0 0
0

30

60

90

29 34 3 9 26

Figure 3. Distribution of criticality one
through five seen in this study. Each his-
togram is sorted left-to-right highest to lowest
criticality.

Figure 3; i.e. it selects forfewerhigh criticality anomalies.
None/unknownwas a category for anomalies where no fix
was made (e.g., the reported behavior was in fact, accept-
able, or the anomalous scenario could not recur during the
rest of the mission) or where the fix was not described (inad-
equate documentation). At first glance, there is no business
interpretation for this treatment. However, consider the case
where treatment learning was applied to incrementally ap-
plied to anomaly data during the life time of that project.
If this category starts appearing as a significant treatment,
then that would suggest that the data collection instrument
should be improved. That is, the prominence of this cate-
gory could serve as a flag warning the QA team that, e.g.,
corrective actions were not being fully described.

4 Discussion

We have argued for the need to better automate the clus-
tering part of an ODC analysis. Are association rule learn-
ing and treatment learning good candidates for this automa-
tion support? Based on the above experiment, we offer sev-
eral conclusions.

A manual analysis by experts is preferable to automatic
machine learning. Automatic machine learners can only ac-
cess the symbols in a training set. Human experts skilled
in the domain being studied can access more background
knowledge about a domain. Hence, they can generate bet-
ter theories and, in the case of an LM-style ODC analysis,
more explanations for the clusters in the data than any ma-
chine learner.

However, for data sets with large dimensionality, argu-
ments for the superiority of manual clustering analysis by
human experts are spurious. Manual clustering methods us-

ing simple spreadsheet methods work when dealing with
five attributes. These methods may not scale to the data
sets we expect to see in the near future. Automatic machine
learning, on the other hand, does scale to very large data
sets and data sets with large dimensionality.

There are two other cases where machine learning might
be preferred to the mostly-manual analysis of the LM team:

• The audit check of TAR2 described above (where a
“catch-all” activity appeared in a treatment) could be
applied incrementally whenever anomaly data sets are
updated. Such audit checks would ensure the quality
of the data, as it is collected. Note that automatic anal-
ysis is faster than a manual method; i.e. incremen-
tally applying machine learners to check for data qual-
ity would be a cheap activity.

• In the case were the experts are unavailable, machine
learning methods can reproduce at least some of the
analysis of human experts. Hence, ODC coupled with
machine learning could scale to more sites across the
NASA enterprise.

Availability of Software

The TAR2 treatment learner is available fromhttp:
//www.ece.ubc.ca/twiki/bin/view/Softeng
/TreatmentLearner . The APRIORI association rule
learner is available within the WEKA toolkit [8] from
http://www.cs.waikato.ac.nz/˜ml/weka/ .
WEKA is a JAVA tool and runs on most platforms. TAR2 is
compiled for Windows but is simple to compile for UNIX.
Both WEKA and TAR2 are freely available open source
tools.
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